URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [block/] [paride/] [pt.c] - Rev 1765
Compare with Previous | Blame | View Log
/* pt.c (c) 1998 Grant R. Guenther <grant@torque.net> Under the terms of the GNU public license. Special 2.0.35 version This is the high-level driver for parallel port ATAPI tape drives based on chips supported by the paride module. The driver implements both rewinding and non-rewinding devices, filemarks, and the rewind ioctl. It allocates a small internal "bounce buffer" for each open device, but otherwise expects buffering and blocking to be done at the user level. As with most block-structured tapes, short writes are padded to full tape blocks, so reading back a file may return more data than was actually written. By default, the driver will autoprobe for a single parallel port ATAPI tape drive, but if their individual parameters are specified, the driver can handle up to 4 drives. The rewinding devices are named /dev/pt0, /dev/pt1, ... while the non-rewinding devices are /dev/npt0, /dev/npt1, etc. The behaviour of the pt driver can be altered by setting some parameters from the insmod command line. The following parameters are adjustable: drive0 These four arguments can be arrays of drive1 1-6 integers as follows: drive2 drive3 <prt>,<pro>,<uni>,<mod>,<slv>,<dly> Where, <prt> is the base of the parallel port address for the corresponding drive. (required) <pro> is the protocol number for the adapter that supports this drive. These numbers are logged by 'paride' when the protocol modules are initialised. (0 if not given) <uni> for those adapters that support chained devices, this is the unit selector for the chain of devices on the given port. It should be zero for devices that don't support chaining. (0 if not given) <mod> this can be -1 to choose the best mode, or one of the mode numbers supported by the adapter. (-1 if not given) <slv> ATAPI devices can be jumpered to master or slave. Set this to 0 to choose the master drive, 1 to choose the slave, -1 (the default) to choose the first drive found. <dly> some parallel ports require the driver to go more slowly. -1 sets a default value that should work with the chosen protocol. Otherwise, set this to a small integer, the larger it is the slower the port i/o. In some cases, setting this to zero will speed up the device. (default -1) major You may use this parameter to overide the default major number (96) that this driver will use. Be sure to change the device name as well. name This parameter is a character string that contains the name the kernel will use for this device (in /proc output, for instance). (default "pt"). verbose This parameter controls the amount of logging that the driver will do. Set it to 0 for normal operation, 1 to see autoprobe progress messages, or 2 to see additional debugging output. (default 0) If this driver is built into the kernel, you can use the following command line parameters, with the same values as the corresponding module parameters listed above: pt.drive0 pt.drive1 pt.drive2 pt.drive3 In addition, you can use the parameter pt.disable to disable the driver entirely. */ /* Changes: 1.01 GRG 1998.05.06 Round up transfer size, fix ready_wait, loosed interpretation of ATAPI standard for clearing error status. Eliminate sti(); 1.02 GRG 1998.06.16 Eliminate an Ugh. 1.03 GRG 1998.08.15 Adjusted PT_TMO, use HZ in loop timing, extra debugging 1.04 GRG 1998.09.24 Repair minor coding error, added jumbo support */ #define PT_VERSION "1.04s" #define PT_MAJOR 96 #define PT_NAME "pt" #define PT_UNITS 4 /* Here are things one can override from the insmod command. Most are autoprobed by paride unless set here. Verbose is on by default. */ static int verbose = 0; static int major = PT_MAJOR; static char *name = PT_NAME; static int disable = 0; static int drive0[6] = {0,0,0,-1,-1,-1}; static int drive1[6] = {0,0,0,-1,-1,-1}; static int drive2[6] = {0,0,0,-1,-1,-1}; static int drive3[6] = {0,0,0,-1,-1,-1}; static int (*drives[4])[6] = {&drive0,&drive1,&drive2,&drive3}; static int pt_drive_count; #define D_PRT 0 #define D_PRO 1 #define D_UNI 2 #define D_MOD 3 #define D_SLV 4 #define D_DLY 5 #define DU (*drives[unit]) /* end of parameters */ #include <linux/module.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/malloc.h> #include <linux/mtio.h> #include <asm/segment.h> #ifndef MODULE #include "setup.h" static STT pt_stt[5] = {{"drive0",6,drive0}, {"drive1",6,drive1}, {"drive2",6,drive2}, {"drive3",6,drive3}, {"disable",1,&disable}}; void pt_setup( char *str, int *ints) { generic_setup(pt_stt,5,str); } #endif #include "paride.h" #define PT_MAX_RETRIES 5 #define PT_TMO 3000 /* interrupt timeout in jiffies */ #define PT_SPIN_DEL 50 /* spin delay in micro-seconds */ #define PT_RESET_TMO 30 /* 30 seconds */ #define PT_READY_TMO 60 /* 60 seconds */ #define PT_REWIND_TMO 1200 /* 20 minutes */ #define PT_SPIN ((1000000/(HZ*PT_SPIN_DEL))*PT_TMO) #define STAT_ERR 0x00001 #define STAT_INDEX 0x00002 #define STAT_ECC 0x00004 #define STAT_DRQ 0x00008 #define STAT_SEEK 0x00010 #define STAT_WRERR 0x00020 #define STAT_READY 0x00040 #define STAT_BUSY 0x00080 #define STAT_SENSE 0x1f000 #define ATAPI_TEST_READY 0x00 #define ATAPI_REWIND 0x01 #define ATAPI_REQ_SENSE 0x03 #define ATAPI_READ_6 0x08 #define ATAPI_WRITE_6 0x0a #define ATAPI_WFM 0x10 #define ATAPI_IDENTIFY 0x12 #define ATAPI_MODE_SENSE 0x1a #define ATAPI_LOG_SENSE 0x4d int pt_init(void); #ifdef MODULE void cleanup_module( void ); #endif static int pt_open(struct inode *inode, struct file *file); static int pt_ioctl(struct inode *inode,struct file *file, unsigned int cmd, unsigned long arg); static void pt_release (struct inode *inode, struct file *file); static int pt_read(struct inode *inode, struct file *filp, char *buf, int count); static int pt_write(struct inode *inode, struct file *filp, const char *buf, int count); static int pt_detect(void); static int pt_identify (int unit); /* bits in PT.flags */ #define PT_MEDIA 1 #define PT_WRITE_OK 2 #define PT_REWIND 4 #define PT_WRITING 8 #define PT_READING 16 #define PT_EOF 32 #define PT_NAMELEN 8 #define PT_BUFSIZE 16384 struct pt_unit { struct pi_adapter pia; /* interface to paride layer */ struct pi_adapter *pi; int flags; /* various state flags */ int last_sense; /* result of last request sense */ int drive; /* drive */ int access; /* count of active opens ... */ int bs; /* block size */ int capacity; /* Size of tape in KB */ int present; /* device present ? */ char *bufptr; char name[PT_NAMELEN]; /* pf0, pf1, ... */ }; struct pt_unit pt[PT_UNITS]; /* 'unit' must be defined in all functions - either as a local or a param */ #define PT pt[unit] #define PI PT.pi static char pt_scratch[512]; /* scratch block buffer */ /* kernel glue structures */ static struct file_operations pt_fops = { NULL, /* lseek - default */ pt_read, /* read */ pt_write, /* write */ NULL, /* readdir - bad */ NULL, /* select */ pt_ioctl, /* ioctl */ NULL, /* mmap */ pt_open, /* open */ pt_release, /* release */ NULL, /* fsync */ NULL, /* fasync */ NULL, /* media change ? */ NULL /* revalidate new media */ }; void pt_init_units( void ) { int unit, j; pt_drive_count = 0; for (unit=0;unit<PT_UNITS;unit++) { PT.pi = & PT.pia; PT.access = 0; PT.flags = 0; PT.last_sense = 0; PT.present = 0; PT.bufptr = NULL; PT.drive = DU[D_SLV]; j = 0; while ((j < PT_NAMELEN-2) && (PT.name[j]=name[j])) j++; PT.name[j++] = '0' + unit; PT.name[j] = 0; if (DU[D_PRT]) pt_drive_count++; } } int pt_init (void) /* preliminary initialisation */ { int unit; if (disable) return -1; pt_init_units(); if (pt_detect()) return -1; if (register_chrdev(major,name,&pt_fops)) { printk("pt_init: unable to get major number %d\n", major); for (unit=0;unit<PT_UNITS;unit++) if (PT.present) pi_release(PI); return -1; } return 0; } #ifdef MODULE /* Glue for modules ... */ void cleanup_module(void); int init_module(void) { int err; #ifdef PARIDE_JUMBO { extern paride_init(); paride_init(); } #endif err = pt_init(); return err; } void cleanup_module(void) { int unit; unregister_chrdev(major,name); for (unit=0;unit<PT_UNITS;unit++) if (PT.present) pi_release(PI); } #endif #define WR(c,r,v) pi_write_regr(PI,c,r,v) #define RR(c,r) (pi_read_regr(PI,c,r)) #define DRIVE (0xa0+0x10*PT.drive) static int pt_wait( int unit, int go, int stop, char * fun, char * msg ) { int j, r, e, s, p; j = 0; while ((((r=RR(1,6))&go)||(stop&&(!(r&stop))))&&(j++<PT_SPIN)) udelay(PT_SPIN_DEL); if ((r&(STAT_ERR&stop))||(j>=PT_SPIN)) { s = RR(0,7); e = RR(0,1); p = RR(0,2); if (j >= PT_SPIN) e |= 0x100; if (fun) printk("%s: %s %s: alt=0x%x stat=0x%x err=0x%x" " loop=%d phase=%d\n", PT.name,fun,msg,r,s,e,j,p); return (e<<8)+s; } return 0; } static int pt_command( int unit, char * cmd, int dlen, char * fun ) { pi_connect(PI); WR(0,6,DRIVE); if (pt_wait(unit,STAT_BUSY|STAT_DRQ,0,fun,"before command")) { pi_disconnect(PI); return -1; } WR(0,4,dlen % 256); WR(0,5,dlen / 256); WR(0,7,0xa0); /* ATAPI packet command */ if (pt_wait(unit,STAT_BUSY,STAT_DRQ,fun,"command DRQ")) { pi_disconnect(PI); return -1; } if (RR(0,2) != 1) { printk("%s: %s: command phase error\n",PT.name,fun); pi_disconnect(PI); return -1; } pi_write_block(PI,cmd,12); return 0; } static int pt_completion( int unit, char * buf, char * fun ) { int r, s, n, p; r = pt_wait(unit,STAT_BUSY,STAT_DRQ|STAT_READY|STAT_ERR, fun,"completion"); if (RR(0,7)&STAT_DRQ) { n = (((RR(0,4)+256*RR(0,5))+3)&0xfffc); p = RR(0,2)&3; if (p == 0) pi_write_block(PI,buf,n); if (p == 2) pi_read_block(PI,buf,n); } s = pt_wait(unit,STAT_BUSY,STAT_READY|STAT_ERR,fun,"data done"); pi_disconnect(PI); return (r?r:s); } static void pt_req_sense( int unit, int quiet ) { char rs_cmd[12] = { ATAPI_REQ_SENSE,0,0,0,16,0,0,0,0,0,0,0 }; char buf[16]; int r; r = pt_command(unit,rs_cmd,16,"Request sense"); udelay(1000); if (!r) pt_completion(unit,buf,"Request sense"); PT.last_sense = -1; if (!r) { if (!quiet) printk("%s: Sense key: %x, ASC: %x, ASQ: %x\n", PT.name,buf[2]&0xf,buf[12],buf[13]); PT.last_sense = (buf[2]&0xf) | ((buf[12]&0xff)<<8) | ((buf[13]&0xff)<<16) ; } } static int pt_atapi( int unit, char * cmd, int dlen, char * buf, char * fun ) { int r; r = pt_command(unit,cmd,dlen,fun); udelay(1000); if (!r) r = pt_completion(unit,buf,fun); if (r) pt_req_sense(unit,!fun); return r; } static void pt_sleep( int cs ) { current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + cs; schedule(); } static int pt_poll_dsc( int unit, int pause, int tmo, char *msg ) { int k, e, s; k = 0; e = 0; s = 0; while (k < tmo) { pt_sleep(pause); k++; pi_connect(PI); WR(0,6,DRIVE); s = RR(0,7); e = RR(0,1); pi_disconnect(PI); if (s & (STAT_ERR|STAT_SEEK)) break; } if ((k >= tmo) || (s & STAT_ERR)) { if (k >= tmo) printk("%s: %s DSC timeout\n",PT.name,msg); else printk("%s: %s stat=0x%x err=0x%x\n",PT.name,msg,s,e); pt_req_sense(unit,0); return 0; } return 1; } static void pt_media_access_cmd( int unit, int tmo, char *cmd, char *fun) { if (pt_command(unit,cmd,0,fun)) { pt_req_sense(unit,0); return; } pi_disconnect(PI); pt_poll_dsc(unit,100,tmo,fun); } static void pt_rewind( int unit ) { char rw_cmd[12] = {ATAPI_REWIND,0,0,0,0,0,0,0,0,0,0,0}; pt_media_access_cmd(unit,PT_REWIND_TMO,rw_cmd,"rewind"); } static void pt_write_fm( int unit ) { char wm_cmd[12] = {ATAPI_WFM,0,0,0,1,0,0,0,0,0,0,0}; pt_media_access_cmd(unit,PT_TMO,wm_cmd,"write filemark"); } #define DBMSG(msg) ((verbose>1)?(msg):NULL) static int pt_reset( int unit ) { int i, k, flg; int expect[5] = {1,1,1,0x14,0xeb}; pi_connect(PI); WR(0,6,DRIVE); WR(0,7,8); pt_sleep(2); k = 0; while ((k++ < PT_RESET_TMO) && (RR(1,6)&STAT_BUSY)) pt_sleep(10); flg = 1; for(i=0;i<5;i++) flg &= (RR(0,i+1) == expect[i]); if (verbose) { printk("%s: Reset (%d) signature = ",PT.name,k); for (i=0;i<5;i++) printk("%3x",RR(0,i+1)); if (!flg) printk(" (incorrect)"); printk("\n"); } pi_disconnect(PI); return flg-1; } static int pt_ready_wait( int unit, int tmo ) { char tr_cmd[12] = {ATAPI_TEST_READY,0,0,0,0,0,0,0,0,0,0,0}; int k, p; k = 0; while (k < tmo) { PT.last_sense = 0; pt_atapi(unit,tr_cmd,0,NULL,DBMSG("test unit ready")); p = PT.last_sense; if (!p) return 0; if (!(((p & 0xffff) == 0x0402)||((p & 0xff) == 6))) return p; k++; pt_sleep(100); } return 0x000020; /* timeout */ } static void xs( char *buf, char *targ, int offs, int len ) { int j,k,l; j=0; l=0; for (k=0;k<len;k++) if((buf[k+offs]!=0x20)||(buf[k+offs]!=l)) l=targ[j++]=buf[k+offs]; if (l==0x20) j--; targ[j]=0; } static int xn( char *buf, int offs, int size ) { int v,k; v=0; for(k=0;k<size;k++) v=v*256+(buf[k+offs]&0xff); return v; } static int pt_identify( int unit ) { int dt, s; char *ms[2] = {"master","slave"}; char mf[10], id[18]; char id_cmd[12] = { ATAPI_IDENTIFY,0,0,0,36,0,0,0,0,0,0,0}; char ms_cmd[12] = { ATAPI_MODE_SENSE,0,0x2a,0,36,0,0,0,0,0,0,0}; char ls_cmd[12] = { ATAPI_LOG_SENSE,0,0x71,0,0,0,0,0,36,0,0,0}; char buf[36]; s = pt_atapi(unit,id_cmd,36,buf,"identify"); if (s) return -1; dt = buf[0] & 0x1f; if (dt != 1) { if (verbose) printk("%s: Drive %d, unsupported type %d\n", PT.name,PT.drive,dt); return -1; } xs(buf,mf,8,8); xs(buf,id,16,16); PT.flags = 0; PT.capacity = 0; PT.bs = 0; if (!pt_ready_wait(unit,PT_READY_TMO)) PT.flags |= PT_MEDIA; if (!pt_atapi(unit,ms_cmd,36,buf,"mode sense")) { if (!(buf[2] & 0x80)) PT.flags |= PT_WRITE_OK; PT.bs = xn(buf,10,2); } if (!pt_atapi(unit,ls_cmd,36,buf,"log sense")) PT.capacity = xn(buf,24,4); printk("%s: %s %s, %s", PT.name,mf,id,ms[PT.drive]); if (!(PT.flags & PT_MEDIA)) printk(", no media\n"); else { if (!(PT.flags & PT_WRITE_OK)) printk(", RO"); printk(", blocksize %d, %d MB\n", PT.bs,PT.capacity/1024); } return 0; } static int pt_probe( int unit ) /* returns 0, with id set if drive is detected -1, if drive detection failed */ { if (PT.drive == -1) { for (PT.drive=0;PT.drive<=1;PT.drive++) if (!pt_reset(unit)) return pt_identify(unit); } else { if (!pt_reset(unit)) return pt_identify(unit); } return -1; } static int pt_detect( void ) { int k, unit; printk("%s: %s version %s, major %d\n", name,name,PT_VERSION,major); k = 0; if (pt_drive_count == 0) { unit = 0; if (pi_init(PI,1,-1,-1,-1,-1,-1,pt_scratch, PI_PT,verbose,PT.name)) { if (!pt_probe(unit)) { PT.present = 1; k++; } else pi_release(PI); } } else for (unit=0;unit<PT_UNITS;unit++) if (DU[D_PRT]) if (pi_init(PI,0,DU[D_PRT],DU[D_MOD],DU[D_UNI], DU[D_PRO],DU[D_DLY],pt_scratch,PI_PT,verbose, PT.name)) { if (!pt_probe(unit)) { PT.present = 1; k++; } else pi_release(PI); } if (k) return 0; printk("%s: No ATAPI tape drive detected\n",name); return -1; } #define DEVICE_NR(dev) (MINOR(dev) % 128) static int pt_open (struct inode *inode, struct file *file) { int unit = DEVICE_NR(inode->i_rdev); if ((unit >= PT_UNITS) || (!PT.present)) return -ENODEV; PT.access++; if (PT.access > 1) { PT.access--; return -EBUSY; } MOD_INC_USE_COUNT; pt_identify(unit); if (!PT.flags & PT_MEDIA) { PT.access--; MOD_DEC_USE_COUNT; return -ENODEV; } if ((!PT.flags & PT_WRITE_OK) && (file ->f_mode & 2)) { PT.access--; MOD_DEC_USE_COUNT; return -EROFS; } if (!(MINOR(inode->i_rdev) & 128)) PT.flags |= PT_REWIND; PT.bufptr = kmalloc(PT_BUFSIZE,GFP_KERNEL); if (PT.bufptr == NULL) { PT.access--; MOD_DEC_USE_COUNT; printk("%s: buffer allocation failed\n",PT.name); return -ENOMEM; } return 0; } static int pt_ioctl(struct inode *inode,struct file *file, unsigned int cmd, unsigned long arg) { int unit; struct mtop mtop; if (!inode || !inode->i_rdev) return -EINVAL; unit = DEVICE_NR(inode->i_rdev); if (unit >= PT_UNITS) return -EINVAL; if (!PT.present) return -ENODEV; switch (cmd) { case MTIOCTOP: memcpy_fromfs((char *)&mtop, (char *)arg, sizeof(struct mtop)); switch (mtop.mt_op) { case MTREW: pt_rewind(unit); return 0; default: printk("%s: Unimplemented mt_op %d\n",PT.name, mtop.mt_op); return -EINVAL; } default: printk("%s: Unimplemented ioctl 0x%x\n",PT.name,cmd); return -EINVAL; } } static void pt_release (struct inode *inode, struct file *file) { int unit = DEVICE_NR(inode->i_rdev); if ((unit >= PT_UNITS) || (PT.access <= 0)) return; if (PT.flags & PT_WRITING) pt_write_fm(unit); if (PT.flags & PT_REWIND) pt_rewind(unit); PT.access--; kfree(PT.bufptr); PT.bufptr = NULL; MOD_DEC_USE_COUNT; } static int pt_read(struct inode *inode, struct file *filp, char *buf, int count) { int unit = DEVICE_NR(inode->i_rdev); char rd_cmd[12] = {ATAPI_READ_6,1,0,0,0,0,0,0,0,0,0,0}; int k, n, r, p, s, t, b; if (!(PT.flags & (PT_READING|PT_WRITING))) { PT.flags |= PT_READING; if (pt_atapi(unit,rd_cmd,0,NULL,"start read-ahead")) return -EIO; } else if (PT.flags & PT_WRITING) return -EIO; if (PT.flags & PT_EOF) return 0; t = 0; while (count > 0) { if (!pt_poll_dsc(unit,1,PT_TMO,"read")) return -EIO; n = count; if (n > 32768) n = 32768; /* max per command */ b = (n-1+PT.bs)/PT.bs; n = b*PT.bs; /* rounded up to even block */ rd_cmd[4] = b; r = pt_command(unit,rd_cmd,n,"read"); udelay(1000); if (r) { pt_req_sense(unit,0); return -EIO; } while (1) { r = pt_wait(unit,STAT_BUSY,STAT_DRQ|STAT_ERR|STAT_READY, DBMSG("read DRQ"),""); if (r & STAT_SENSE) { pi_disconnect(PI); pt_req_sense(unit,0); return -EIO; } if (r) PT.flags |= PT_EOF; s = RR(0,7); if (!(s & STAT_DRQ)) break; n = (RR(0,4)+256*RR(0,5)); p = (RR(0,2)&3); if (p != 2) { pi_disconnect(PI); printk("%s: Phase error on read: %d\n",PT.name,p); return -EIO; } while (n > 0) { k = n; if (k > PT_BUFSIZE) k = PT_BUFSIZE; pi_read_block(PI,PT.bufptr,k); n -= k; b = k; if (b > count) b = count; memcpy_tofs(buf+t,PT.bufptr,b); t += b; count -= b; } } pi_disconnect(PI); if (PT.flags & PT_EOF) break; } return t; } static int pt_write(struct inode *inode, struct file *filp, const char *buf, int count) { int unit = DEVICE_NR(inode->i_rdev); char wr_cmd[12] = {ATAPI_WRITE_6,1,0,0,0,0,0,0,0,0,0,0}; int k, n, r, p, s, t, b; if (!(PT.flags & PT_WRITE_OK)) return -EROFS; if (!(PT.flags & (PT_READING|PT_WRITING))) { PT.flags |= PT_WRITING; if (pt_atapi(unit,wr_cmd,0,NULL,"start buffer-available mode")) return -EIO; } else if (PT.flags&PT_READING) return -EIO; if (PT.flags & PT_EOF) return -ENOSPC; t = 0; while (count > 0) { if (!pt_poll_dsc(unit,1,PT_TMO,"write")) return -EIO; n = count; if (n > 32768) n = 32768; /* max per command */ b = (n-1+PT.bs)/PT.bs; n = b*PT.bs; /* rounded up to even block */ wr_cmd[4] = b; r = pt_command(unit,wr_cmd,n,"write"); udelay(1000); if (r) { /* error delivering command only */ pt_req_sense(unit,0); return -EIO; } while (1) { r = pt_wait(unit,STAT_BUSY,STAT_DRQ|STAT_ERR|STAT_READY, DBMSG("write DRQ"),NULL); if (r & STAT_SENSE) { pi_disconnect(PI); pt_req_sense(unit,0); return -EIO; } if (r) PT.flags |= PT_EOF; s = RR(0,7); if (!(s & STAT_DRQ)) break; n = (RR(0,4)+256*RR(0,5)); p = (RR(0,2)&3); if (p != 0) { pi_disconnect(PI); printk("%s: Phase error on write: %d \n",PT.name,p); return -EIO; } while (n > 0) { k = n; if (k > PT_BUFSIZE) k = PT_BUFSIZE; b = k; if (b > count) b = count; memcpy_fromfs(PT.bufptr,buf+t,b); pi_write_block(PI,PT.bufptr,k); t += b; count -= b; n -= k; } } pi_disconnect(PI); if (PT.flags & PT_EOF) break; } return t; } /* end of pt.c */