URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [block/] [raid5.c] - Rev 1626
Go to most recent revision | Compare with Previous | Blame | View Log
/***************************************************************************** * raid5.c : Multiple Devices driver for Linux * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman * * RAID-5 management functions. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * You should have received a copy of the GNU General Public License * (for example /usr/src/linux/COPYING); if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/locks.h> #include <linux/malloc.h> #include <linux/md.h> #include <linux/raid5.h> #include <asm/bitops.h> #include <asm/atomic.h> struct buffer_head *efind_buffer(kdev_t dev, int block, int size); #define MAJOR_NR MD_MAJOR #define MD_DRIVER #define MD_PERSONALITY static struct md_personality raid5_personality; struct stripe_head { struct stripe_head *hash_next, **hash_pprev; /* hash pointers */ struct stripe_head *handle_next; /* completed during hash scan pointers */ struct raid5_data *raid_conf; struct buffer_head *bh_old[MD_SB_DISKS]; /* disk image */ struct buffer_head *bh_new[MD_SB_DISKS]; /* buffers of the MD device (present in buffer cache) */ struct buffer_head *bh_copy[MD_SB_DISKS]; /* copy on write of bh_new (bh_new can change from under us) */ int cmd_new[MD_SB_DISKS]; /* READ/WRITE for new */ int new[MD_SB_DISKS]; /* buffer added since the last handle_stripe() */ unsigned long sector; /* sector of this row */ int size; /* buffers size */ int pd_idx; /* parity disk index */ int nr_pending; /* nr of pending cmds */ __u32 state; /* state flags */ int cmd; /* stripe cmd */ int count; /* nr of waiters */ int write_method; /* reconstruct-write / read-modify-write */ int phase; /* PHASE_BEGIN, ..., PHASE_COMPLETE */ struct wait_queue *wait; /* processes waiting for this stripe */ }; /* * Phase */ #define PHASE_BEGIN 0 #define PHASE_READ_OLD 1 #define PHASE_WRITE 2 #define PHASE_READ 3 #define PHASE_COMPLETE 4 /* * Write method */ #define METHOD_NONE 0 #define RECONSTRUCT_WRITE 1 #define READ_MODIFY_WRITE 2 /* * Stripe state */ #define STRIPE_LOCKED 0 #define STRIPE_ERROR 1 /* * Stripe commands */ #define STRIPE_NONE 0 #define STRIPE_WRITE 1 #define STRIPE_READ 2 /* * Stripe cache */ #define RAID5_STRIPE_POOL_SIZE 128 #define HASH_PAGES 1 #define HASH_PAGES_ORDER 0 #define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *)) #define HASH_MASK (NR_HASH - 1) #define stripe_hash(sect, size) (stripe_hashtbl[((sect) / (size >> 9)) & HASH_MASK]) int nr_stripes = 0, nr_locked_stripes = 0, nr_pending_stripes = 0; struct stripe_head **stripe_hashtbl; static struct wait_queue *raid5_wait_for_stripe = NULL; struct stripe_head *stripe_handle_list = NULL, *stripe_handle_tail = NULL; /* * Free buffers pool */ #define RAID5_POOL_SIZE 3000 static int nr_free_buffers = 0, nr_used_buffers = 0, max_nr_used_buffers = 0; static struct buffer_head *raid5_buffer_list = NULL; static struct wait_queue *raid5_wait_for_bh = NULL; /* * The following can be used to debug the driver */ #define RAID5_DEBUG 0 #if RAID5_DEBUG #define PRINTK(x) do { printk x; } while (0); static int nr_pending = 0, free_1024 = 0, free_4096 = 0, used_1024 = 0, used_4096 = 0; #else #define PRINTK(x) do { ; } while (0) #endif static inline int stripe_locked(struct stripe_head *sh) { return test_bit(STRIPE_LOCKED, &sh->state); } static inline int stripe_error(struct stripe_head *sh) { return test_bit(STRIPE_ERROR, &sh->state); } /* * Stripes are locked whenever new buffers can't be added to them. */ static inline void lock_stripe(struct stripe_head *sh) { if (!set_bit(STRIPE_LOCKED, &sh->state)) { PRINTK(("locking stripe %lu\n", sh->sector)); nr_locked_stripes++; } } static inline void unlock_stripe(struct stripe_head *sh) { if (clear_bit(STRIPE_LOCKED, &sh->state)) { PRINTK(("unlocking stripe %lu\n", sh->sector)); nr_locked_stripes--; wake_up(&sh->wait); } } static inline void finish_stripe(struct stripe_head *sh) { unlock_stripe(sh); sh->cmd = STRIPE_NONE; sh->phase = PHASE_COMPLETE; nr_pending_stripes--; wake_up(&raid5_wait_for_stripe); } static void unplug_devices(struct stripe_head *sh) { struct raid5_data *raid_conf = sh->raid_conf; int i; for (i = 0; i < raid_conf->raid_disks; i++) unplug_device(blk_dev + MAJOR(raid_conf->disks[i].dev)); } static void raid5d (void *data); void __wait_on_stripe(struct stripe_head *sh) { struct wait_queue wait = { current, NULL }; PRINTK(("wait_on_stripe %lu\n", sh->sector)); sh->count++; add_wait_queue(&sh->wait, &wait); repeat: current->state = TASK_UNINTERRUPTIBLE; if (stripe_locked(sh)) { schedule(); goto repeat; } PRINTK(("wait_on_stripe %lu done\n", sh->sector)); remove_wait_queue(&sh->wait, &wait); sh->count--; current->state = TASK_RUNNING; } static inline void wait_on_stripe(struct stripe_head *sh) { if (stripe_locked(sh)) __wait_on_stripe(sh); } static inline void remove_hash(struct stripe_head *sh) { PRINTK(("remove_hash(), stripe %lu\n", sh->sector)); if (sh->hash_pprev) { if (sh->hash_next) sh->hash_next->hash_pprev = sh->hash_pprev; *sh->hash_pprev = sh->hash_next; sh->hash_pprev = NULL; nr_stripes--; } } static inline void insert_hash(struct stripe_head *sh) { struct stripe_head **shp = &stripe_hash(sh->sector, sh->size); PRINTK(("insert_hash(), stripe %lu, nr_stripes %d\n", sh->sector, nr_stripes)); if ((sh->hash_next = *shp) != NULL) (*shp)->hash_pprev = &sh->hash_next; *shp = sh; sh->hash_pprev = shp; nr_stripes++; } static void add_bh (struct buffer_head *bh) { unsigned long flags; save_flags(flags); cli(); bh->b_next = raid5_buffer_list; raid5_buffer_list = bh; nr_free_buffers++; #if RAID5_DEBUG if (bh->b_size == 1024) free_1024++; if (bh->b_size == 4096) free_4096++; #endif restore_flags(flags); } static void raid5_kfree_bh (struct buffer_head *bh) { unsigned long flags; save_flags(flags); cli(); nr_used_buffers--; #if RAID5_DEBUG if (bh->b_size == 1024) used_1024--; if (bh->b_size == 4096) used_4096--; #endif if (nr_free_buffers < RAID5_POOL_SIZE) { #if 0 /* This can magically catch races :-) */ char *b_data = ((volatile struct buffer_head *) bh)->b_data; int b_size = ((volatile struct buffer_head *) bh)->b_size; memset (bh, 0, sizeof (struct buffer_head)); ((volatile struct buffer_head *) bh)->b_data = b_data; ((volatile struct buffer_head *) bh)->b_size = b_size; #endif add_bh (bh); wake_up (&raid5_wait_for_bh); } else { if (bh->b_size == PAGE_SIZE) free_page ((unsigned long) bh->b_data); else kfree (bh->b_data); #if 0 memset (bh, 0, sizeof (struct buffer_head)); #endif kfree (bh); } #if RAID5_DEBUG printk ("kfree_bh: nr_free == %d, nr_used == %d, max_nr_used == %d\n", nr_free_buffers, nr_used_buffers, max_nr_used_buffers); #endif restore_flags(flags); } static void raid5_kfree_old_bh(struct stripe_head *sh, int i) { if (!sh->bh_old[i]) { printk("raid5_kfree_old_bh: bug: sector %lu, index %d not present\n", sh->sector, i); return; } raid5_kfree_bh(sh->bh_old[i]); sh->bh_old[i] = NULL; } static void raid5_update_old_bh(struct stripe_head *sh, int i) { PRINTK(("stripe %lu, idx %d, updating cache copy\n", sh->sector, i)); if (!sh->bh_copy[i]) { printk("raid5_update_old_bh: bug: sector %lu, index %d not present\n", sh->sector, i); return; } if (sh->bh_old[i]) raid5_kfree_old_bh(sh, i); sh->bh_old[i] = sh->bh_copy[i]; sh->bh_copy[i] = NULL; } static void kfree_stripe(struct stripe_head *sh) { struct raid5_data *raid_conf = sh->raid_conf; int disks = raid_conf->raid_disks, j; PRINTK(("kfree_stripe called, stripe %lu\n", sh->sector)); if (sh->phase != PHASE_COMPLETE || stripe_locked(sh) || sh->count) { printk("raid5: kfree_stripe(), sector %lu, phase %d, locked %d, count %d\n", sh->sector, sh->phase, stripe_locked(sh), sh->count); return; } for (j = 0; j < disks; j++) { if (sh->bh_old[j]) raid5_kfree_old_bh(sh, j); if (sh->bh_new[j] || sh->bh_copy[j]) printk("raid5: bug: sector %lu, new %p, copy %p\n", sh->sector, sh->bh_new[j], sh->bh_copy[j]); } remove_hash(sh); kfree(sh); } static int shrink_stripe_cache(int nr) { struct stripe_head *sh; int i, count = 0; static int clock = 0; PRINTK(("shrink_stripe_cache called, %d/%d, clock %d\n", nr, nr_stripes, clock)); for (i = 0; i < NR_HASH; i++) { repeat: sh = stripe_hashtbl[(i + clock) & HASH_MASK]; for (; sh; sh = sh->hash_next) { if (sh->phase != PHASE_COMPLETE) continue; if (stripe_locked(sh)) continue; if (sh->count) continue; kfree_stripe(sh); if (++count == nr) { PRINTK(("shrink completed, nr_stripes %d\n", nr_stripes)); clock = (i + clock) & HASH_MASK; return nr; } goto repeat; } } PRINTK(("shrink completed, nr_stripes %d\n", nr_stripes)); return count; } static struct stripe_head *find_stripe(struct raid5_data *raid_conf, unsigned long sector, int size) { struct stripe_head *sh; if (raid_conf->buffer_size != size) { PRINTK(("switching size, %d --> %d\n", raid_conf->buffer_size, size)); shrink_stripe_cache(RAID5_STRIPE_POOL_SIZE); raid_conf->buffer_size = size; } PRINTK(("find_stripe, sector %lu\n", sector)); for (sh = stripe_hash(sector, size); sh; sh = sh->hash_next) if (sh->sector == sector && sh->raid_conf == raid_conf) { if (sh->size == size) { PRINTK(("found stripe %lu\n", sector)); return sh; } else { PRINTK(("switching size for %lu, %d --> %d\n", sector, sh->size, size)); kfree_stripe(sh); break; } } PRINTK(("stripe %lu not in cache\n", sector)); return NULL; } static struct stripe_head *kmalloc_stripe(struct raid5_data *raid_conf, unsigned long sector, int size) { struct stripe_head *sh = NULL, *tmp; PRINTK(("kmalloc_stripe called\n")); while (nr_stripes > RAID5_STRIPE_POOL_SIZE) { shrink_stripe_cache(RAID5_STRIPE_POOL_SIZE / 8); if (nr_stripes <= RAID5_STRIPE_POOL_SIZE) break; md_wakeup_thread(raid_conf->thread); PRINTK(("waiting for some stripes to complete\n")); sleep_on(&raid5_wait_for_stripe); } md_wakeup_thread(raid_conf->thread); sh = kmalloc(sizeof(*sh), GFP_KERNEL); /* * The above might have slept, so perhaps another process * already created the stripe for us.. */ if ((tmp = find_stripe(raid_conf, sector, size)) != NULL) { kfree(sh); wait_on_stripe(tmp); return tmp; } if (sh) { memset(sh, 0, sizeof(*sh)); sh->phase = PHASE_COMPLETE; sh->cmd = STRIPE_NONE; sh->raid_conf = raid_conf; sh->sector = sector; sh->size = size; insert_hash(sh); } return sh; } static struct stripe_head *get_stripe(struct raid5_data *raid_conf, unsigned long sector, int size) { struct stripe_head *sh; PRINTK(("get_stripe, sector %lu\n", sector)); sh = find_stripe(raid_conf, sector, size); if (sh) wait_on_stripe(sh); else sh = kmalloc_stripe(raid_conf, sector, size); return sh; } static struct buffer_head *remove_bh (int b_size) { struct buffer_head *bh, *bhp = NULL; unsigned long flags; save_flags(flags); cli(); if ((bh = raid5_buffer_list) == NULL) return NULL; do { if (bh->b_size == b_size || b_size == -1) break; bhp = bh; bh = bh->b_next; } while (bh); if (!bh) return NULL; if (bhp) bhp->b_next = bh->b_next; else raid5_buffer_list = bh->b_next; #if RAID5_DEBUG if (bh->b_size == 1024) free_1024--; if (bh->b_size == 4096) free_4096--; #endif nr_free_buffers--; if (!nr_free_buffers && raid5_buffer_list) printk ("raid5: bug: buffer_list != NULL, nr_free_buffers == 0\n"); restore_flags(flags); return bh; } static void shrink_buffers (int num) { struct buffer_head *bh; while (num--) { if ((bh = remove_bh(-1)) == NULL) return; if (bh->b_size == PAGE_SIZE) free_page ((unsigned long) bh->b_data); else kfree (bh->b_data); kfree (bh); } } static void grow_buffers (int num, int b_size, int priority) { struct buffer_head *bh; while (num--) { bh = kmalloc (sizeof (struct buffer_head), priority); if (!bh) break; memset (bh, 0, sizeof (struct buffer_head)); if (b_size == PAGE_SIZE) bh->b_data = (char *) __get_free_page (priority); else bh->b_data = kmalloc (b_size, priority); if (!bh->b_data) { kfree (bh); break; } bh->b_size = b_size; add_bh (bh); } } static struct buffer_head *raid5_kmalloc_bh (struct stripe_head *sh, int b_size) { struct buffer_head *bh; struct raid5_data *raid_conf = sh->raid_conf; unsigned long flags; bh = remove_bh(b_size); if (!bh && nr_free_buffers > RAID5_POOL_SIZE / 10) shrink_buffers (RAID5_POOL_SIZE / 10); if (!bh && nr_used_buffers < RAID5_POOL_SIZE) { #if 0 grow_buffers (200, b_size, GFP_BUFFER); #else grow_buffers (200, b_size, GFP_KERNEL); #endif bh = remove_bh(b_size); } if (bh == NULL && nr_used_buffers > RAID5_POOL_SIZE / 2) { shrink_stripe_cache(RAID5_STRIPE_POOL_SIZE / 2); bh = remove_bh(b_size); } while (bh == NULL && nr_used_buffers > 3 * RAID5_POOL_SIZE / 4) { md_wakeup_thread(raid_conf->thread); run_task_queue (&tq_disk); unplug_devices(sh); PRINTK(("waiting for bh\n")); sleep_on (&raid5_wait_for_bh); bh = remove_bh(b_size); } if (bh == NULL) { grow_buffers (200, b_size, GFP_KERNEL); bh = remove_bh(b_size); } if (bh) { save_flags(flags); cli(); nr_used_buffers++; if (nr_used_buffers > max_nr_used_buffers) max_nr_used_buffers = nr_used_buffers; #if RAID5_DEBUG if (bh->b_size == 1024) used_1024++; if (bh->b_size == 4096) used_4096++; printk ("kmalloc_bh: free, used, pending, max = %d, %d, %d, %d\n", nr_free_buffers, nr_used_buffers, nr_pending, max_nr_used_buffers); printk ("kmalloc_bh: free1, used1, free4, used4 = %d, %d, %d, %d\n", free_1024, used_1024, free_4096, used_4096); #endif restore_flags(flags); } return bh; } static inline void raid5_end_buffer_io (struct stripe_head *sh, int i, int uptodate) { struct buffer_head *bh = sh->bh_new[i]; sh->bh_new[i] = NULL; clear_bit (BH_MD, &bh->b_state); bh->private_bh = NULL; bh->personality = NULL; mark_buffer_uptodate(bh, uptodate); unlock_buffer(bh); if (!uptodate) printk(KERN_ALERT "raid5: %s: unrecoverable I/O error for " "block %lu\n", kdevname(bh->b_dev), bh->b_blocknr); } static inline void raid5_mark_buffer_uptodate (struct buffer_head *bh, int uptodate) { if (uptodate) set_bit(BH_Uptodate, &bh->b_state); else clear_bit(BH_Uptodate, &bh->b_state); } static void raid5_end_request (struct buffer_head * bh, int uptodate) { struct stripe_head *sh = bh->private_bh; struct raid5_data *raid_conf = sh->raid_conf; int disks = raid_conf->raid_disks, i; unsigned long flags; PRINTK(("end_request %lu, nr_pending %d\n", sh->sector, sh->nr_pending)); save_flags(flags); cli(); raid5_mark_buffer_uptodate(bh, uptodate); --sh->nr_pending; if (!sh->nr_pending) { md_wakeup_thread(raid_conf->thread); atomic_inc(&raid_conf->nr_handle); if (!stripe_handle_tail) stripe_handle_list = sh; else stripe_handle_tail->handle_next = sh; sh->handle_next = NULL; stripe_handle_tail = sh; } if (!uptodate) md_error(bh->b_dev, bh->b_rdev); if (raid_conf->failed_disks) { for (i = 0; i < disks; i++) { if (raid_conf->disks[i].operational) continue; if (bh != sh->bh_old[i] && bh != sh->bh_new[i] && bh != sh->bh_copy[i]) continue; set_bit(STRIPE_ERROR, &sh->state); } } restore_flags(flags); } static int raid5_map (struct md_dev *mddev, kdev_t *rdev, unsigned long *rsector, unsigned long size) { /* No complex mapping used: the core of the work is done in the * request routine */ return 0; } static void raid5_build_block (struct stripe_head *sh, struct buffer_head *bh, int i) { struct raid5_data *raid_conf = sh->raid_conf; struct md_dev *mddev = raid_conf->mddev; int minor = (int) (mddev - md_dev); char *b_data; b_data = ((volatile struct buffer_head *) bh)->b_data; memset (bh, 0, sizeof (struct buffer_head)); ((volatile struct buffer_head *) bh)->b_data = b_data; bh->personality = &raid5_personality; bh->private_bh = (void *) sh; bh->b_rdev = raid_conf->disks[i].dev; bh->b_dev = MKDEV(MD_MAJOR, minor); bh->b_rsector = sh->sector; bh->b_blocknr = sh->sector / (sh->size >> 9); bh->b_state = (1 << BH_MD) | (1 << BH_Req); bh->b_count = 1; bh->b_size = sh->size; bh->b_list = BUF_LOCKED; } static int raid5_error (struct md_dev *mddev, kdev_t dev) { struct raid5_data *raid_conf = (struct raid5_data *) mddev->private; md_superblock_t *sb = mddev->sb; struct disk_info *disk; int i; PRINTK(("raid5_error called\n")); for (i = 0, disk = raid_conf->disks; i < raid_conf->raid_disks; i++, disk++) if (disk->dev == dev && disk->operational) { disk->operational = 0; sb->disks[disk->number].state |= (1 << MD_FAULTY_DEVICE); sb->disks[disk->number].state &= ~(1 << MD_SYNC_DEVICE); sb->disks[disk->number].state &= ~(1 << MD_ACTIVE_DEVICE); sb->active_disks--; sb->working_disks--; sb->failed_disks++; mddev->sb_dirty = 1; raid_conf->working_disks--; raid_conf->failed_disks++; md_wakeup_thread(raid_conf->thread); printk (KERN_ALERT "RAID5: Disk failure on %s, disabling device." "Operation continuing on %d devices\n", kdevname (dev), raid_conf->working_disks); } return 0; } /* * Input: a 'big' sector number, * Output: index of the data and parity disk, and the sector # in them. */ static inline unsigned long raid5_compute_sector (int r_sector, unsigned int raid_disks, unsigned int data_disks, unsigned int * dd_idx, unsigned int * pd_idx, struct raid5_data *raid_conf) { unsigned int stripe; int chunk_number, chunk_offset; unsigned long new_sector; int sectors_per_chunk = raid_conf->chunk_size >> 9; /* First compute the information on this sector */ /* * Compute the chunk number and the sector offset inside the chunk */ chunk_number = r_sector / sectors_per_chunk; chunk_offset = r_sector % sectors_per_chunk; /* * Compute the stripe number */ stripe = chunk_number / data_disks; /* * Compute the data disk and parity disk indexes inside the stripe */ *dd_idx = chunk_number % data_disks; /* * Select the parity disk based on the user selected algorithm. */ if (raid_conf->level == 4) *pd_idx = data_disks; else switch (raid_conf->algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: *pd_idx = data_disks - stripe % raid_disks; if (*dd_idx >= *pd_idx) (*dd_idx)++; break; case ALGORITHM_RIGHT_ASYMMETRIC: *pd_idx = stripe % raid_disks; if (*dd_idx >= *pd_idx) (*dd_idx)++; break; case ALGORITHM_LEFT_SYMMETRIC: *pd_idx = data_disks - stripe % raid_disks; *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; break; case ALGORITHM_RIGHT_SYMMETRIC: *pd_idx = stripe % raid_disks; *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; break; default: printk ("raid5: unsupported algorithm %d\n", raid_conf->algorithm); } /* * Finally, compute the new sector number */ new_sector = stripe * sectors_per_chunk + chunk_offset; #if 0 if ( *dd_idx > data_disks || *pd_idx > data_disks || chunk_offset + bh->b_size / 512 > sectors_per_chunk ) printk ("raid5: bug: dd_idx == %d, pd_idx == %d, chunk_offset == %d\n", *dd_idx, *pd_idx, chunk_offset); #endif return new_sector; } static unsigned long compute_blocknr(struct stripe_head *sh, int i) { struct raid5_data *raid_conf = sh->raid_conf; int raid_disks = raid_conf->raid_disks, data_disks = raid_disks - 1; unsigned long new_sector = sh->sector, check; int sectors_per_chunk = raid_conf->chunk_size >> 9; unsigned long stripe = new_sector / sectors_per_chunk; int chunk_offset = new_sector % sectors_per_chunk; int chunk_number, dummy1, dummy2, dd_idx = i; unsigned long r_sector, blocknr; switch (raid_conf->algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: case ALGORITHM_RIGHT_ASYMMETRIC: if (i > sh->pd_idx) i--; break; case ALGORITHM_LEFT_SYMMETRIC: case ALGORITHM_RIGHT_SYMMETRIC: if (i < sh->pd_idx) i += raid_disks; i -= (sh->pd_idx + 1); break; default: printk ("raid5: unsupported algorithm %d\n", raid_conf->algorithm); } chunk_number = stripe * data_disks + i; r_sector = chunk_number * sectors_per_chunk + chunk_offset; blocknr = r_sector / (sh->size >> 9); check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, raid_conf); if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { printk("compute_blocknr: map not correct\n"); return 0; } return blocknr; } static void xor_block(struct buffer_head *dest, struct buffer_head *source) { int lines = dest->b_size / (sizeof (int)) / 8, i; int *destp = (int *) dest->b_data, *sourcep = (int *) source->b_data; for (i = lines; i > 0; i--) { *(destp + 0) ^= *(sourcep + 0); *(destp + 1) ^= *(sourcep + 1); *(destp + 2) ^= *(sourcep + 2); *(destp + 3) ^= *(sourcep + 3); *(destp + 4) ^= *(sourcep + 4); *(destp + 5) ^= *(sourcep + 5); *(destp + 6) ^= *(sourcep + 6); *(destp + 7) ^= *(sourcep + 7); destp += 8; sourcep += 8; } } static void compute_block(struct stripe_head *sh, int dd_idx) { struct raid5_data *raid_conf = sh->raid_conf; int i, disks = raid_conf->raid_disks; PRINTK(("compute_block, stripe %lu, idx %d\n", sh->sector, dd_idx)); if (sh->bh_old[dd_idx] == NULL) sh->bh_old[dd_idx] = raid5_kmalloc_bh(sh, sh->size); raid5_build_block(sh, sh->bh_old[dd_idx], dd_idx); memset(sh->bh_old[dd_idx]->b_data, 0, sh->size); for (i = 0; i < disks; i++) { if (i == dd_idx) continue; if (sh->bh_old[i]) { xor_block(sh->bh_old[dd_idx], sh->bh_old[i]); continue; } else printk("compute_block() %d, stripe %lu, %d not present\n", dd_idx, sh->sector, i); } raid5_mark_buffer_uptodate(sh->bh_old[dd_idx], 1); } static void compute_parity(struct stripe_head *sh, int method) { struct raid5_data *raid_conf = sh->raid_conf; int i, pd_idx = sh->pd_idx, disks = raid_conf->raid_disks; PRINTK(("compute_parity, stripe %lu, method %d\n", sh->sector, method)); for (i = 0; i < disks; i++) { if (i == pd_idx || !sh->bh_new[i]) continue; if (!sh->bh_copy[i]) sh->bh_copy[i] = raid5_kmalloc_bh(sh, sh->size); raid5_build_block(sh, sh->bh_copy[i], i); mark_buffer_clean(sh->bh_new[i]); memcpy(sh->bh_copy[i]->b_data, sh->bh_new[i]->b_data, sh->size); } if (sh->bh_copy[pd_idx] == NULL) sh->bh_copy[pd_idx] = raid5_kmalloc_bh(sh, sh->size); raid5_build_block(sh, sh->bh_copy[pd_idx], sh->pd_idx); if (method == RECONSTRUCT_WRITE) { memset(sh->bh_copy[pd_idx]->b_data, 0, sh->size); for (i = 0; i < disks; i++) { if (i == sh->pd_idx) continue; if (sh->bh_new[i]) { xor_block(sh->bh_copy[pd_idx], sh->bh_copy[i]); continue; } if (sh->bh_old[i]) { xor_block(sh->bh_copy[pd_idx], sh->bh_old[i]); continue; } } } else if (method == READ_MODIFY_WRITE) { memcpy(sh->bh_copy[pd_idx]->b_data, sh->bh_old[pd_idx]->b_data, sh->size); for (i = 0; i < disks; i++) { if (i == sh->pd_idx) continue; if (sh->bh_new[i] && sh->bh_old[i]) { xor_block(sh->bh_copy[pd_idx], sh->bh_copy[i]); xor_block(sh->bh_copy[pd_idx], sh->bh_old[i]); continue; } } } raid5_mark_buffer_uptodate(sh->bh_copy[pd_idx], 1); } static void add_stripe_bh (struct stripe_head *sh, struct buffer_head *bh, int dd_idx, int rw) { struct raid5_data *raid_conf = sh->raid_conf; if (sh->bh_new[dd_idx]) printk("raid5: bug: stripe->bh_new[%d], sector %lu exists\n", dd_idx, sh->sector); set_bit(BH_MD, &bh->b_state); set_bit(BH_Lock, &bh->b_state); bh->personality = &raid5_personality; bh->private_bh = (void *) sh; bh->b_rdev = raid_conf->disks[dd_idx].dev; bh->b_rsector = sh->sector; if (sh->phase == PHASE_COMPLETE && sh->cmd == STRIPE_NONE) { sh->phase = PHASE_BEGIN; sh->cmd = (rw == READ) ? STRIPE_READ : STRIPE_WRITE; nr_pending_stripes++; atomic_inc(&raid_conf->nr_handle); } sh->bh_new[dd_idx] = bh; sh->cmd_new[dd_idx] = rw; sh->new[dd_idx] = 1; } static void complete_stripe(struct stripe_head *sh) { struct raid5_data *raid_conf = sh->raid_conf; int disks = raid_conf->raid_disks; int i, new = 0; PRINTK(("complete_stripe %lu\n", sh->sector)); for (i = 0; i < disks; i++) { if (sh->cmd == STRIPE_WRITE && i == sh->pd_idx) raid5_update_old_bh(sh, i); if (sh->bh_new[i]) { if (!sh->new[i]) { #if 0 if (sh->cmd == STRIPE_WRITE) { if (memcmp(sh->bh_new[i]->b_data, sh->bh_copy[i]->b_data, sh->size)) { printk("copy differs, %s, sector %lu ", test_bit(BH_Dirty, &sh->bh_new[i]->b_state) ? "dirty" : "clean", sh->sector); } else if (test_bit(BH_Dirty, &sh->bh_new[i]->b_state)) printk("sector %lu dirty\n", sh->sector); } #endif if (sh->cmd == STRIPE_WRITE) raid5_update_old_bh(sh, i); raid5_end_buffer_io(sh, i, 1); continue; } else new++; } if (new && sh->cmd == STRIPE_WRITE) printk("raid5: bug, completed STRIPE_WRITE with new == %d\n", new); } if (!new) finish_stripe(sh); else { PRINTK(("stripe %lu, new == %d\n", sh->sector, new)); sh->phase = PHASE_BEGIN; } } /* * handle_stripe() is our main logic routine. Note that: * * 1. lock_stripe() should be used whenever we can't accept additonal * buffers, either during short sleeping in handle_stripe() or * during io operations. * * 2. We should be careful to set sh->nr_pending whenever we sleep, * to prevent re-entry of handle_stripe() for the same sh. * * 3. raid_conf->failed_disks and disk->operational can be changed * from an interrupt. This complicates things a bit, but it allows * us to stop issuing requests for a failed drive as soon as possible. */ static void handle_stripe(struct stripe_head *sh) { struct raid5_data *raid_conf = sh->raid_conf; struct md_dev *mddev = raid_conf->mddev; int minor = (int) (mddev - md_dev); struct buffer_head *bh; int disks = raid_conf->raid_disks; int i, nr = 0, nr_read = 0, nr_write = 0; int nr_cache = 0, nr_cache_other = 0, nr_cache_overwrite = 0, parity = 0; int nr_failed_other = 0, nr_failed_overwrite = 0, parity_failed = 0; int reading = 0, nr_writing = 0; int method1 = INT_MAX, method2 = INT_MAX; int block; unsigned long flags; int operational[MD_SB_DISKS], failed_disks = raid_conf->failed_disks; PRINTK(("handle_stripe(), stripe %lu\n", sh->sector)); if (sh->nr_pending) { printk("handle_stripe(), stripe %lu, io still pending\n", sh->sector); return; } if (sh->phase == PHASE_COMPLETE) { printk("handle_stripe(), stripe %lu, already complete\n", sh->sector); return; } atomic_dec(&raid_conf->nr_handle); if (clear_bit(STRIPE_ERROR, &sh->state)) { printk("raid5: restarting stripe %lu\n", sh->sector); sh->phase = PHASE_BEGIN; } if ((sh->cmd == STRIPE_WRITE && sh->phase == PHASE_WRITE) || (sh->cmd == STRIPE_READ && sh->phase == PHASE_READ)) { /* * Completed */ complete_stripe(sh); if (sh->phase == PHASE_COMPLETE) return; } save_flags(flags); cli(); for (i = 0; i < disks; i++) operational[i] = raid_conf->disks[i].operational; failed_disks = raid_conf->failed_disks; restore_flags(flags); if (failed_disks > 1) { for (i = 0; i < disks; i++) { if (sh->bh_new[i]) { raid5_end_buffer_io(sh, i, 0); continue; } } finish_stripe(sh); return; } for (i = 0; i < disks; i++) { if (sh->bh_old[i]) nr_cache++; if (i == sh->pd_idx) { if (sh->bh_old[i]) parity = 1; else if(!operational[i]) parity_failed = 1; continue; } if (!sh->bh_new[i]) { if (sh->bh_old[i]) nr_cache_other++; else if (!operational[i]) nr_failed_other++; continue; } sh->new[i] = 0; nr++; if (sh->cmd_new[i] == READ) nr_read++; if (sh->cmd_new[i] == WRITE) nr_write++; if (sh->bh_old[i]) nr_cache_overwrite++; else if (!operational[i]) nr_failed_overwrite++; } if (nr_write && nr_read) printk("raid5: bug, nr_write == %d, nr_read == %d, sh->cmd == %d\n", nr_write, nr_read, sh->cmd); if (nr_write) { /* * Attempt to add entries :-) */ if (nr_write != disks - 1) { for (i = 0; i < disks; i++) { if (i == sh->pd_idx) continue; if (sh->bh_new[i]) continue; block = (int) compute_blocknr(sh, i); bh = efind_buffer(MKDEV(MD_MAJOR, minor), block, sh->size); if (bh && bh->b_count == 0 && buffer_dirty(bh) && !buffer_locked(bh)) { PRINTK(("Whee.. sector %lu, index %d (%d) found in the buffer cache!\n", sh->sector, i, block)); add_stripe_bh(sh, bh, i, WRITE); sh->new[i] = 0; nr++; nr_write++; if (sh->bh_old[i]) { nr_cache_overwrite++; nr_cache_other--; } else if (!operational[i]) { nr_failed_overwrite++; nr_failed_other--; } } } } PRINTK(("handle_stripe() -- begin writing, stripe %lu\n", sh->sector)); /* * Writing, need to update parity buffer. * * Compute the number of I/O requests in the "reconstruct * write" and "read modify write" methods. */ if (!nr_failed_other) method1 = (disks - 1) - (nr_write + nr_cache_other); if (!nr_failed_overwrite && !parity_failed) method2 = nr_write - nr_cache_overwrite + (1 - parity); if (method1 == INT_MAX && method2 == INT_MAX) printk("raid5: bug: method1 == method2 == INT_MAX\n"); PRINTK(("handle_stripe(), sector %lu, nr_write %d, method1 %d, method2 %d\n", sh->sector, nr_write, method1, method2)); if (!method1 || !method2) { lock_stripe(sh); sh->nr_pending++; sh->phase = PHASE_WRITE; compute_parity(sh, method1 <= method2 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE); for (i = 0; i < disks; i++) { if (!operational[i]) continue; if (i == sh->pd_idx || sh->bh_new[i]) nr_writing++; } sh->nr_pending = nr_writing; PRINTK(("handle_stripe() %lu, writing back %d\n", sh->sector, sh->nr_pending)); for (i = 0; i < disks; i++) { if (!operational[i]) continue; bh = sh->bh_copy[i]; if (i != sh->pd_idx && ((bh == NULL) ^ (sh->bh_new[i] == NULL))) printk("raid5: bug: bh == %p, bh_new[%d] == %p\n", bh, i, sh->bh_new[i]); if (i == sh->pd_idx && !bh) printk("raid5: bug: bh == NULL, i == pd_idx == %d\n", i); if (bh) { bh->b_state |= (1<<BH_Dirty); PRINTK(("making request for buffer %d\n", i)); clear_bit(BH_Lock, &bh->b_state); make_request(MAJOR(raid_conf->disks[i].dev), WRITE, bh); } } return; } lock_stripe(sh); sh->nr_pending++; if (method1 < method2) { sh->write_method = RECONSTRUCT_WRITE; for (i = 0; i < disks; i++) { if (i == sh->pd_idx) continue; if (sh->bh_new[i] || sh->bh_old[i]) continue; sh->bh_old[i] = raid5_kmalloc_bh(sh, sh->size); raid5_build_block(sh, sh->bh_old[i], i); reading++; } } else { sh->write_method = READ_MODIFY_WRITE; for (i = 0; i < disks; i++) { if (sh->bh_old[i]) continue; if (!sh->bh_new[i] && i != sh->pd_idx) continue; sh->bh_old[i] = raid5_kmalloc_bh(sh, sh->size); raid5_build_block(sh, sh->bh_old[i], i); reading++; } } sh->phase = PHASE_READ_OLD; sh->nr_pending = reading; PRINTK(("handle_stripe() %lu, reading %d old buffers\n", sh->sector, sh->nr_pending)); for (i = 0; i < disks; i++) { if (!sh->bh_old[i]) continue; if (buffer_uptodate(sh->bh_old[i])) continue; clear_bit(BH_Lock, &sh->bh_old[i]->b_state); make_request(MAJOR(raid_conf->disks[i].dev), READ, sh->bh_old[i]); } } else { /* * Reading */ method1 = nr_read - nr_cache_overwrite; lock_stripe(sh); sh->nr_pending++; PRINTK(("handle_stripe(), sector %lu, nr_read %d, nr_cache %d, method1 %d\n", sh->sector, nr_read, nr_cache, method1)); if (!method1 || (method1 == 1 && nr_cache == disks - 1)) { PRINTK(("read %lu completed from cache\n", sh->sector)); for (i = 0; i < disks; i++) { if (!sh->bh_new[i]) continue; if (!sh->bh_old[i]) compute_block(sh, i); memcpy(sh->bh_new[i]->b_data, sh->bh_old[i]->b_data, sh->size); } sh->nr_pending--; complete_stripe(sh); return; } if (nr_failed_overwrite) { sh->phase = PHASE_READ_OLD; sh->nr_pending = (disks - 1) - nr_cache; PRINTK(("handle_stripe() %lu, phase READ_OLD, pending %d\n", sh->sector, sh->nr_pending)); for (i = 0; i < disks; i++) { if (sh->bh_old[i]) continue; if (!operational[i]) continue; sh->bh_old[i] = raid5_kmalloc_bh(sh, sh->size); raid5_build_block(sh, sh->bh_old[i], i); clear_bit(BH_Lock, &sh->bh_old[i]->b_state); make_request(MAJOR(raid_conf->disks[i].dev), READ, sh->bh_old[i]); } } else { sh->phase = PHASE_READ; sh->nr_pending = nr_read - nr_cache_overwrite; PRINTK(("handle_stripe() %lu, phase READ, pending %d\n", sh->sector, sh->nr_pending)); for (i = 0; i < disks; i++) { if (!sh->bh_new[i]) continue; if (sh->bh_old[i]) { memcpy(sh->bh_new[i]->b_data, sh->bh_old[i]->b_data, sh->size); continue; } clear_bit(BH_Lock, &sh->bh_new[i]->b_state); make_request(MAJOR(raid_conf->disks[i].dev), READ, sh->bh_new[i]); } } } } static int raid5_make_request (struct md_dev *mddev, int rw, struct buffer_head * bh) { struct raid5_data *raid_conf = (struct raid5_data *) mddev->private; const unsigned int raid_disks = raid_conf->raid_disks; const unsigned int data_disks = raid_disks - 1; unsigned int dd_idx, pd_idx; unsigned long new_sector; struct stripe_head *sh; if (rw == READA) rw = READ; if (rw == WRITEA) rw = WRITE; new_sector = raid5_compute_sector(bh->b_rsector, raid_disks, data_disks, &dd_idx, &pd_idx, raid_conf); PRINTK(("raid5_make_request, sector %lu\n", new_sector)); sh = get_stripe(raid_conf, new_sector, bh->b_size); if ((rw == READ && sh->cmd == STRIPE_WRITE) || (rw == WRITE && sh->cmd == STRIPE_READ)) { printk("raid5: lock contention, rw == %d, sh->cmd == %d\n", rw, sh->cmd); lock_stripe(sh); if (!sh->nr_pending) handle_stripe(sh); wait_on_stripe(sh); } sh->pd_idx = pd_idx; if (sh->phase != PHASE_COMPLETE && sh->phase != PHASE_BEGIN) PRINTK(("stripe %lu catching the bus!\n", sh->sector)); add_stripe_bh(sh, bh, dd_idx, rw); md_wakeup_thread(raid_conf->thread); return 0; } /* * This is our raid5 kernel thread. * * We scan the hash table for stripes which can be handled now. * During the scan, completed stripes are saved for us by the interrupt * handler, so that they will not have to wait for our next wakeup. */ static void raid5d (void *data) { struct stripe_head *sh; struct raid5_data *raid_conf = data; struct md_dev *mddev = raid_conf->mddev; int i, handled = 0, unplug = 0; unsigned long flags; PRINTK(("+++ raid5d active\n")); if (mddev->sb_dirty) { mddev->sb_dirty = 0; md_update_sb((int) (mddev - md_dev)); } save_flags(flags); cli(); stripe_handle_list = stripe_handle_tail = NULL; restore_flags(flags); for (i = 0; i < NR_HASH; i++) { repeat: sh = stripe_hashtbl[i]; for (; sh; sh = sh->hash_next) { if (sh->raid_conf != raid_conf) continue; if (sh->phase == PHASE_COMPLETE) continue; if (sh->nr_pending) continue; if (sh->sector == raid_conf->next_sector) { raid_conf->sector_count += (sh->size >> 9); if (raid_conf->sector_count >= 128) unplug = 1; } else unplug = 1; if (unplug) { PRINTK(("unplugging devices, sector == %lu, count == %d\n", sh->sector, raid_conf->sector_count)); unplug_devices(sh); unplug = 0; raid_conf->sector_count = 0; } raid_conf->next_sector = sh->sector + (sh->size >> 9); handled++; handle_stripe(sh); goto repeat; } } if (raid_conf) { PRINTK(("%d stripes handled, nr_handle %d\n", handled, raid_conf->nr_handle)); save_flags(flags); cli(); if (!raid_conf->nr_handle) clear_bit(THREAD_WAKEUP, &raid_conf->thread->flags); } PRINTK(("--- raid5d inactive\n")); } static int raid5_run (int minor, struct md_dev *mddev) { struct raid5_data *raid_conf; int i, j, raid_disk; md_superblock_t *sb = mddev->sb; md_descriptor_t *descriptor; struct real_dev *realdev; MOD_INC_USE_COUNT; if (sb->level != 5 && sb->level != 4) { printk("raid5: %s: raid level not set to 4/5 (%d)\n", kdevname(MKDEV(MD_MAJOR, minor)), sb->level); MOD_DEC_USE_COUNT; return -EIO; } mddev->private = kmalloc (sizeof (struct raid5_data), GFP_KERNEL); raid_conf = mddev->private; memset (raid_conf, 0, sizeof (*raid_conf)); raid_conf->mddev = mddev; PRINTK(("raid5_run(%d) called.\n", minor)); for (i = 0; i < mddev->nb_dev; i++) { realdev = &mddev->devices[i]; if (!realdev->sb) { printk(KERN_ERR "raid5: disabled device %s (couldn't access raid superblock)\n", kdevname(realdev->dev)); continue; } /* * This is important -- we are using the descriptor on * the disk only to get a pointer to the descriptor on * the main superblock, which might be more recent. */ descriptor = &sb->disks[realdev->sb->descriptor.number]; if (descriptor->state & (1 << MD_FAULTY_DEVICE)) { printk(KERN_ERR "raid5: disabled device %s (errors detected)\n", kdevname(realdev->dev)); continue; } if (descriptor->state & (1 << MD_ACTIVE_DEVICE)) { if (!(descriptor->state & (1 << MD_SYNC_DEVICE))) { printk(KERN_ERR "raid5: disabled device %s (not in sync)\n", kdevname(realdev->dev)); continue; } raid_disk = descriptor->raid_disk; if (descriptor->number > sb->nr_disks || raid_disk > sb->raid_disks) { printk(KERN_ERR "raid5: disabled device %s (inconsistent descriptor)\n", kdevname(realdev->dev)); continue; } if (raid_conf->disks[raid_disk].operational) { printk(KERN_ERR "raid5: disabled device %s (device %d already operational)\n", kdevname(realdev->dev), raid_disk); continue; } printk(KERN_INFO "raid5: device %s operational as raid disk %d\n", kdevname(realdev->dev), raid_disk); raid_conf->disks[raid_disk].number = descriptor->number; raid_conf->disks[raid_disk].raid_disk = raid_disk; raid_conf->disks[raid_disk].dev = mddev->devices[i].dev; raid_conf->disks[raid_disk].operational = 1; raid_conf->working_disks++; } } raid_conf->raid_disks = sb->raid_disks; raid_conf->failed_disks = raid_conf->raid_disks - raid_conf->working_disks; raid_conf->mddev = mddev; raid_conf->chunk_size = sb->chunk_size; raid_conf->level = sb->level; raid_conf->algorithm = sb->parity_algorithm; if (!raid_conf->chunk_size || raid_conf->chunk_size % 4) { printk(KERN_ERR "raid5: invalid chunk size %d for %s\n", raid_conf->chunk_size, kdevname(MKDEV(MD_MAJOR, minor))); goto abort; } if (raid_conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { printk(KERN_ERR "raid5: unsupported parity algorithm %d for %s\n", raid_conf->algorithm, kdevname(MKDEV(MD_MAJOR, minor))); goto abort; } if (raid_conf->failed_disks > 1) { printk(KERN_ERR "raid5: not enough operational devices for %s (%d/%d failed)\n", kdevname(MKDEV(MD_MAJOR, minor)), raid_conf->failed_disks, raid_conf->raid_disks); goto abort; } #if 0 if (check_consistenty(mddev)) { printk(KERN_ERR "raid5: detected raid-5 xor inconsistenty -- run ckraid\n"); sb->state |= 1 << MD_SB_ERRORS; goto abort; } #endif if ((raid_conf->thread = md_register_thread(raid5d, raid_conf)) == NULL) { printk(KERN_ERR "raid5: couldn't allocate thread for %s\n", kdevname(MKDEV(MD_MAJOR, minor))); goto abort; } /* * Regenerate the "device is in sync with the raid set" bit for * each device. */ for (i = 0; i < sb->nr_disks ; i++) { sb->disks[i].state &= ~(1 << MD_SYNC_DEVICE); for (j = 0; j < sb->raid_disks; j++) { if (!raid_conf->disks[j].operational) continue; if (sb->disks[i].number == raid_conf->disks[j].number) sb->disks[i].state |= 1 << MD_SYNC_DEVICE; } } sb->active_disks = raid_conf->working_disks; if (sb->active_disks == sb->raid_disks) printk("raid5: raid level %d set %s active with %d out of %d devices, algorithm %d\n", raid_conf->level, kdevname(MKDEV(MD_MAJOR, minor)), sb->active_disks, sb->raid_disks, raid_conf->algorithm); else printk(KERN_ALERT "raid5: raid level %d set %s active with %d out of %d devices, algorithm %d\n", raid_conf->level, kdevname(MKDEV(MD_MAJOR, minor)), sb->active_disks, sb->raid_disks, raid_conf->algorithm); /* Ok, everything is just fine now */ return (0); abort: if (raid_conf) kfree(raid_conf); mddev->private = NULL; printk(KERN_ALERT "raid5: failed to run raid set %s\n", kdevname(MKDEV(MD_MAJOR, minor))); MOD_DEC_USE_COUNT; return -EIO; } static int raid5_stop (int minor, struct md_dev *mddev) { struct raid5_data *raid_conf = (struct raid5_data *) mddev->private; md_unregister_thread(raid_conf->thread); kfree (raid_conf); shrink_stripe_cache(RAID5_STRIPE_POOL_SIZE); shrink_buffers(RAID5_POOL_SIZE); MOD_DEC_USE_COUNT; return 0; } static int raid5_status (char *page, int minor, struct md_dev *mddev) { struct raid5_data *raid_conf = (struct raid5_data *) mddev->private; md_superblock_t *sb = mddev->sb; int sz = 0, i; sz += sprintf (page+sz, " level %d, %dk chunk, algorithm %d", sb->level, sb->chunk_size >> 10, sb->parity_algorithm); sz += sprintf (page+sz, " [%d/%d] [", raid_conf->raid_disks, raid_conf->working_disks); for (i = 0; i < raid_conf->raid_disks; i++) sz += sprintf (page+sz, "%s", raid_conf->disks[i].operational ? "U" : "_"); sz += sprintf (page+sz, "]"); return sz; } static struct md_personality raid5_personality= { "raid5", raid5_map, raid5_make_request, raid5_end_request, raid5_run, raid5_stop, raid5_status, NULL, /* no ioctls */ 0, raid5_error }; int raid5_init (void) { if ((stripe_hashtbl = (struct stripe_head **) __get_free_pages(GFP_ATOMIC, HASH_PAGES_ORDER, 0)) == NULL) return -ENOMEM; memset(stripe_hashtbl, 0, HASH_PAGES * PAGE_SIZE); return register_md_personality (RAID5, &raid5_personality); } #ifdef MODULE int init_module (void) { return raid5_init(); } void cleanup_module (void) { free_pages((unsigned long) stripe_hashtbl, HASH_PAGES_ORDER); shrink_stripe_cache(RAID5_STRIPE_POOL_SIZE); shrink_buffers(RAID5_POOL_SIZE); unregister_md_personality (RAID5); } #endif
Go to most recent revision | Compare with Previous | Blame | View Log