URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [char/] [mcfserial.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * mcfserial.c -- serial driver for ColdFire internal UARTS. * * Copyright (C) 1999 Greg Ungerer (gerg@moreton.com.au) * * Based on code from 68332serial.c which was: * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1998 TSHG */ #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/interrupt.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/config.h> #include <linux/major.h> #include <linux/string.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/kernel.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/system.h> #include <asm/segment.h> #include <asm/bitops.h> #include <asm/delay.h> #include <asm/coldfire.h> #include <asm/mcfsim.h> #include <asm/mcfuart.h> #include <asm/nettel.h> #include "mcfserial.h" /* * Default console port and baud rate... */ #ifndef CONSOLE_PORT #define CONSOLE_PORT 0 #endif #ifndef CONSOLE_BAUD_RATE #define CONSOLE_BAUD_RATE 9600 #endif int mcfrs_console_inited = 0; int mcfrs_console_port = CONSOLE_PORT; int mcfrs_console_baud = CONSOLE_BAUD_RATE; DECLARE_TASK_QUEUE(mcf_tq_serial); /* * Driver data structures. */ struct tty_driver mcfrs_serial_driver, mcfrs_callout_driver; static int mcfrs_serial_refcount; /* serial subtype definitions */ #define SERIAL_TYPE_NORMAL 1 #define SERIAL_TYPE_CALLOUT 2 /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 /* Debugging... */ #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #define _INLINE_ inline #define IRQBASE 224 /* * Configuration table, UARTs to look for at startup. */ static struct mcf_serial mcfrs_table[] = { { 0, (MCF_MBAR+MCFUART_BASE1), IRQBASE, ASYNC_BOOT_AUTOCONF }, /* ttyS0 */ { 0, (MCF_MBAR+MCFUART_BASE2), IRQBASE+1, ASYNC_BOOT_AUTOCONF }, /* ttyS1 */ }; #define NR_PORTS (sizeof(mcfrs_table) / sizeof(struct mcf_serial)) static struct tty_struct *mcfrs_serial_table[NR_PORTS]; static struct termios *mcfrs_serial_termios[NR_PORTS]; static struct termios *mcfrs_serial_termios_locked[NR_PORTS]; /* * This is used to figure out the divisor speeds and the timeouts. */ static int mcfrs_baud_table[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 0 }; #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif #ifdef CONFIG_MAGIC_SYSRQ /* * Magic system request keys. Used for debugging... */ extern int magic_sysrq_key(int ch); #endif /* * tmp_buf is used as a temporary buffer by serial_write. We need to * lock it in case the memcpy_fromfs blocks while swapping in a page, * and some other program tries to do a serial write at the same time. * Since the lock will only come under contention when the system is * swapping and available memory is low, it makes sense to share one * buffer across all the serial ports, since it significantly saves * memory if large numbers of serial ports are open. */ static unsigned char mcfrs_tmp_buf[4096]; /* This is cheating */ static struct semaphore mcfrs_tmp_buf_sem = MUTEX; /* * Forware declarations... */ static void mcfrs_change_speed(struct mcf_serial *info); static inline int serial_paranoia_check(struct mcf_serial *info, dev_t device, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%d, %d) in %s\n"; static const char *badinfo = "Warning: null mcf_serial for (%d, %d) in %s\n"; if (!info) { printk(badinfo, MAJOR(device), MINOR(device), routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, MAJOR(device), MINOR(device), routine); return 1; } #endif return 0; } /* * Sets or clears DTR and RTS on the requested line. */ static void mcfrs_setsignals(struct mcf_serial *info, int dtr, int rts) { volatile unsigned char *uartp; unsigned long flags; #if 0 printk("%s(%d): mcfrs_setsignals(info=%x,dtr=%d,rts=%d)\n", __FILE__, __LINE__, info, dtr, rts); #endif save_flags(flags); cli(); if (dtr >= 0) { #if defined(CONFIG_NETtel) && defined(CONFIG_M5307) if (dtr) { info->sigs |= TIOCM_DTR; ppdata &= ~(info->line ? NETtel_DTR1 : NETtel_DTR0); } else { info->sigs &= ~TIOCM_DTR; ppdata |= (info->line ? NETtel_DTR1 : NETtel_DTR0); } *((volatile unsigned short *) (MCF_MBAR+MCFSIM_PADAT)) = ppdata; #endif } if (rts >= 0) { uartp = (volatile unsigned char *) info->addr; if (rts) { info->sigs |= TIOCM_RTS; uartp[MCFUART_UOP1] = MCFUART_UOP_RTS; } else { info->sigs &= ~TIOCM_RTS; uartp[MCFUART_UOP0] = MCFUART_UOP_RTS; } } restore_flags(flags); return; } /* * Gets values of serial signals. */ static int mcfrs_getsignals(struct mcf_serial *info) { volatile unsigned char *uartp; unsigned long flags; int sigs; #if defined(CONFIG_NETtel) && defined(CONFIG_M5307) unsigned short ppdata; #endif #if 0 printk("%s(%d): mcfrs_getsignals(info=%x)\n", __FILE__, __LINE__); #endif save_flags(flags); cli(); uartp = (volatile unsigned char *) info->addr; sigs = (uartp[MCFUART_UIPR] & MCFUART_UIPR_CTS) ? 0 : TIOCM_CTS; sigs |= (info->sigs & TIOCM_RTS); #if defined(CONFIG_NETtel) && defined(CONFIG_M5307) ppdata = *((volatile unsigned short *) (MCF_MBAR+MCFSIM_PADAT)); if (info->line == 0) { sigs |= (ppdata & NETtel_DCD0) ? 0 : TIOCM_CD; sigs |= (ppdata & NETtel_DTR0) ? 0 : TIOCM_DTR; } else if (info->line == 1) { sigs |= (ppdata & NETtel_DCD1) ? 0 : TIOCM_CD; sigs |= (ppdata & NETtel_DTR1) ? 0 : TIOCM_DTR; } #endif restore_flags(flags); return(sigs); } /* * ------------------------------------------------------------ * mcfrs_stop() and mcfrs_start() * * This routines are called before setting or resetting tty->stopped. * They enable or disable transmitter interrupts, as necessary. * ------------------------------------------------------------ */ static void mcfrs_stop(struct tty_struct *tty) { volatile unsigned char *uartp; struct mcf_serial *info = (struct mcf_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "mcfrs_stop")) return; save_flags(flags); cli(); uartp = (volatile unsigned char *) info->addr; info->imr &= ~MCFUART_UIR_TXREADY; uartp[MCFUART_UIMR] = info->imr; restore_flags(flags); } static void mcfrs_start(struct tty_struct *tty) { volatile unsigned char *uartp; struct mcf_serial *info = (struct mcf_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "mcfrs_start")) return; save_flags(flags); cli(); if (info->xmit_cnt && info->xmit_buf) { uartp = (volatile unsigned char *) info->addr; info->imr |= MCFUART_UIR_TXREADY; uartp[MCFUART_UIMR] = info->imr; } restore_flags(flags); } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * mcfrs_interrupt(). They were separated out for readability's sake. * * Note: mcfrs_interrupt() is a "fast" interrupt, which means that it * runs with interrupts turned off. People who may want to modify * mcfrs_interrupt() should try to keep the interrupt handler as fast as * possible. After you are done making modifications, it is not a bad * idea to do: * * gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c * * and look at the resulting assemble code in serial.s. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static _INLINE_ void mcfrs_sched_event(struct mcf_serial *info, int event) { info->event |= 1 << event; queue_task_irq_off(&info->tqueue, &mcf_tq_serial); mark_bh(SERIAL_BH); } static _INLINE_ void receive_chars(struct mcf_serial *info, struct pt_regs *regs, unsigned short rx) { volatile unsigned char *uartp; struct tty_struct *tty = info->tty; unsigned char status, ch; if (!tty) return; #if defined(CONFIG_NETtel) && defined(CONFIG_M5307) setled(info->line ? NETtel_LEDRX2 : NETtel_LEDRX1); #endif uartp = (volatile unsigned char *) info->addr; while ((status = uartp[MCFUART_USR]) & MCFUART_USR_RXREADY) { if (tty->flip.count >= TTY_FLIPBUF_SIZE) break; ch = uartp[MCFUART_URB]; info->stats.rx++; #ifdef CONFIG_MAGIC_SYSRQ if (mcfrs_console_inited && (info->line == mcfrs_console_port)) { if (magic_sysrq_key(ch)) continue; } #endif tty->flip.count++; if (status & MCFUART_USR_RXERR) uartp[MCFUART_UCR] = MCFUART_UCR_CMDRESETERR; if (status & MCFUART_USR_RXBREAK) { info->stats.rxbreak++; *tty->flip.flag_buf_ptr++ = TTY_BREAK; } else if (status & MCFUART_USR_RXPARITY) { info->stats.rxparity++; *tty->flip.flag_buf_ptr++ = TTY_PARITY; } else if (status & MCFUART_USR_RXOVERRUN) { info->stats.rxoverrun++; *tty->flip.flag_buf_ptr++ = TTY_OVERRUN; } else if (status & MCFUART_USR_RXFRAMING) { info->stats.rxframing++; *tty->flip.flag_buf_ptr++ = TTY_FRAME; } else { *tty->flip.flag_buf_ptr++ = 0; } *tty->flip.char_buf_ptr++ = ch; } queue_task_irq_off(&tty->flip.tqueue, &tq_timer); return; } static _INLINE_ void transmit_chars(struct mcf_serial *info) { volatile unsigned char *uartp; #if defined(CONFIG_NETtel) && defined(CONFIG_M5307) setled(info->line ? NETtel_LEDTX2 : NETtel_LEDTX1); #endif uartp = (volatile unsigned char *) info->addr; if (info->x_char) { /* Send special char - probably flow control */ uartp[MCFUART_UTB] = info->x_char; #if 0 printk("%s(%d): sending flow=%x\n", __FILE__, __LINE__, info->x_char); #endif info->x_char = 0; info->stats.tx++; } if ((info->xmit_cnt <= 0) || info->tty->stopped) { info->imr &= ~MCFUART_UIR_TXREADY; uartp[MCFUART_UIMR] = info->imr; return; } while (uartp[MCFUART_USR] & MCFUART_USR_TXREADY) { uartp[MCFUART_UTB] = info->xmit_buf[info->xmit_tail++]; info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->stats.tx++; if (--info->xmit_cnt <= 0) break; } if (info->xmit_cnt < WAKEUP_CHARS) mcfrs_sched_event(info, RS_EVENT_WRITE_WAKEUP); return; } /* * This is the serial driver's generic interrupt routine */ void mcfrs_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct mcf_serial *info; unsigned char isr; info = &mcfrs_table[(irq - IRQBASE)]; isr = (((volatile unsigned char *)info->addr)[MCFUART_UISR]) & info->imr; if (isr & MCFUART_UIR_RXREADY) receive_chars(info, regs, isr); if (isr & MCFUART_UIR_TXREADY) transmit_chars(info); #if 0 if (isr & MCFUART_UIR_DELTABREAK) { printk("%s(%d): delta break!\n", __FILE__, __LINE__); receive_chars(info, regs, isr); } #endif return; } /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * mcfrs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using mcfrs_sched_event(), and they get done here. */ static void do_serial_bh(void) { run_task_queue(&mcf_tq_serial); } static void do_softint(void *private_) { struct mcf_serial *info = (struct mcf_serial *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); wake_up_interruptible(&tty->write_wait); } } /* * Change of state on a DCD line. */ void mcfrs_modem_change(struct mcf_serial *info, int dcd) { if (info->count == 0) return; if (info->flags & ASYNC_CHECK_CD) { if (dcd) { wake_up_interruptible(&info->open_wait); } else if (!((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_CALLOUT_NOHUP))) { queue_task_irq_off(&info->tqueue_hangup, &tq_scheduler); } } } #if defined(CONFIG_NETtel) && defined(CONFIG_M5307) unsigned short mcfrs_ppstatus; /* * This subroutine is called when the RS_TIMER goes off. It is used * to monitor the state of the DCD lines - since they have no edge * sensors and interrupt generators. */ static void mcfrs_timer(void) { unsigned short ppstatus, dcdval; int i; ppstatus = *((volatile unsigned short *) (MCF_MBAR + MCFSIM_PADAT)) & (NETtel_DCD0 | NETtel_DCD1); if (ppstatus != mcfrs_ppstatus) { for (i = 0; (i < 2); i++) { dcdval = (i ? NETtel_DCD1 : NETtel_DCD0); if ((ppstatus & dcdval) != (mcfrs_ppstatus & dcdval)) { mcfrs_modem_change(&mcfrs_table[i], ((ppstatus & dcdval) ? 0 : 1)); } } } mcfrs_ppstatus = ppstatus; /* Re-arm timer */ timer_table[RS_TIMER].expires = jiffies + HZ/25; timer_active |= 1 << RS_TIMER; /* Re-set the serial activity LEDs */ unsetled((NETtel_LEDRX1|NETtel_LEDRX2|NETtel_LEDTX1|NETtel_LEDTX2)); } #endif /* CONFIG_NETtel */ /* * This routine is called from the scheduler tqueue when the interrupt * routine has signalled that a hangup has occurred. The path of * hangup processing is: * * serial interrupt routine -> (scheduler tqueue) -> * do_serial_hangup() -> tty->hangup() -> mcfrs_hangup() * */ static void do_serial_hangup(void *private_) { struct mcf_serial *info = (struct mcf_serial *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; tty_hangup(tty); } static int startup(struct mcf_serial * info) { volatile unsigned char *uartp; unsigned long flags; if (info->flags & ASYNC_INITIALIZED) return 0; if (!info->xmit_buf) { info->xmit_buf = (unsigned char *) get_free_page(GFP_KERNEL); if (!info->xmit_buf) return -ENOMEM; } save_flags(flags); cli(); #if defined(CONFIG_NETtel) && defined(CONFIG_M5307) /* * Set up poll timer. It is used to check DCD status. */ if ((timer_active & (1 << RS_TIMER)) == 0) { timer_table[RS_TIMER].expires = jiffies + HZ/25; timer_active |= 1 << RS_TIMER; } #endif #ifdef SERIAL_DEBUG_OPEN printk("starting up ttyS%d (irq %d)...\n", info->line, info->irq); #endif /* * Reset UART, get it into known state... */ uartp = (volatile unsigned char *) info->addr; uartp[MCFUART_UCR] = MCFUART_UCR_CMDRESETRX; /* reset RX */ uartp[MCFUART_UCR] = MCFUART_UCR_CMDRESETTX; /* reset TX */ mcfrs_setsignals(info, 1, 1); if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; /* * and set the speed of the serial port */ mcfrs_change_speed(info); /* * Lastly enable the UART transmitter and receiver, and * interrupt enables. */ info->imr = MCFUART_UIR_RXREADY; uartp[MCFUART_UCR] = MCFUART_UCR_RXENABLE | MCFUART_UCR_TXENABLE; uartp[MCFUART_UIMR] = info->imr; info->flags |= ASYNC_INITIALIZED; restore_flags(flags); return 0; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(struct mcf_serial * info) { volatile unsigned char *uartp; unsigned long flags; if (!(info->flags & ASYNC_INITIALIZED)) return; #ifdef SERIAL_DEBUG_OPEN printk("Shutting down serial port %d (irq %d)....\n", info->line, info->irq); #endif save_flags(flags); cli(); /* Disable interrupts */ uartp = (volatile unsigned char *) info->addr; uartp[MCFUART_UIMR] = 0; /* mask all interrupts */ uartp[MCFUART_UCR] = MCFUART_UCR_CMDRESETRX; /* reset RX */ uartp[MCFUART_UCR] = MCFUART_UCR_CMDRESETTX; /* reset TX */ if (!info->tty || (info->tty->termios->c_cflag & HUPCL)) mcfrs_setsignals(info, 0, 0); if (info->xmit_buf) { free_page((unsigned long) info->xmit_buf); info->xmit_buf = 0; } if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); info->flags &= ~ASYNC_INITIALIZED; restore_flags(flags); } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void mcfrs_change_speed(struct mcf_serial *info) { volatile unsigned char *uartp; unsigned int baudclk, cflag; unsigned long flags; unsigned char mr1, mr2; int i; if (!info->tty || !info->tty->termios) return; cflag = info->tty->termios->c_cflag; if (info->addr == 0) return; #if 0 printk("%s(%d): mcfrs_change_speed()\n", __FILE__, __LINE__); #endif i = cflag & CBAUD; if (i & CBAUDEX) { i &= ~CBAUDEX; if (i < 1 || i > 4) info->tty->termios->c_cflag &= ~CBAUDEX; else i += 15; } if (i == 0) { mcfrs_setsignals(info, 0, -1); return; } baudclk = ((MCF_CLK / 32) / mcfrs_baud_table[i]); info->baud = mcfrs_baud_table[i]; mr1 = MCFUART_MR1_RXIRQRDY | MCFUART_MR1_RXERRCHAR; mr2 = 0; switch (cflag & CSIZE) { case CS5: mr1 |= MCFUART_MR1_CS5; break; case CS6: mr1 |= MCFUART_MR1_CS6; break; case CS7: mr1 |= MCFUART_MR1_CS7; break; case CS8: default: mr1 |= MCFUART_MR1_CS8; break; } if (cflag & PARENB) { if (cflag & PARODD) mr1 |= MCFUART_MR1_PARITYODD; else mr1 |= MCFUART_MR1_PARITYEVEN; } else { mr1 |= MCFUART_MR1_PARITYNONE; } if (cflag & CSTOPB) mr2 |= MCFUART_MR2_STOP2; else mr2 |= MCFUART_MR2_STOP1; if (cflag & CRTSCTS) { mr1 |= MCFUART_MR1_RXRTS; mr2 |= MCFUART_MR2_TXCTS; } if (cflag & CLOCAL) info->flags &= ~ASYNC_CHECK_CD; else info->flags |= ASYNC_CHECK_CD; uartp = (volatile unsigned char *) info->addr; save_flags(flags); cli(); #if 0 printk("%s(%d): mr1=%x mr2=%x baudclk=%x\n", __FILE__, __LINE__, mr1, mr2, baudclk); #endif /* Note: pg 12-16 of MCF5206e User's Manual states that a software reset should be performed prior to changing UMR1,2, UCSR, UACR, bit 7 */ uartp[MCFUART_UCR] = MCFUART_UCR_CMDRESETRX; /* reset RX */ uartp[MCFUART_UCR] = MCFUART_UCR_CMDRESETTX; /* reset TX */ uartp[MCFUART_UCR] = MCFUART_UCR_CMDRESETMRPTR; /* reset MR pointer */ uartp[MCFUART_UMR] = mr1; uartp[MCFUART_UMR] = mr2; uartp[MCFUART_UBG1] = (baudclk & 0xff00) >> 8; /* set msb byte */ uartp[MCFUART_UBG2] = (baudclk & 0xff); /* set lsb byte */ uartp[MCFUART_UCSR] = MCFUART_UCSR_RXCLKTIMER | MCFUART_UCSR_TXCLKTIMER; uartp[MCFUART_UCR] = MCFUART_UCR_RXENABLE | MCFUART_UCR_TXENABLE; mcfrs_setsignals(info, 1, -1); restore_flags(flags); return; } static void mcfrs_flush_chars(struct tty_struct *tty) { volatile unsigned char *uartp; struct mcf_serial *info = (struct mcf_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "mcfrs_flush_chars")) return; if (info->xmit_cnt <= 0 || tty->stopped || tty->hw_stopped || !info->xmit_buf) return; /* Enable transmitter */ save_flags(flags); cli(); uartp = (volatile unsigned char *) info->addr; info->imr |= MCFUART_UIR_TXREADY; uartp[MCFUART_UIMR] = info->imr; restore_flags(flags); } static int mcfrs_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) { volatile unsigned char *uartp; struct mcf_serial *info = (struct mcf_serial *)tty->driver_data; unsigned long flags; int c, total = 0; #if 0 printk("%s(%d): mcfrs_write(tty=%x,from_user=%d,buf=%x,count=%d)\n", __FILE__, __LINE__, tty, from_user, buf, count); #endif if (serial_paranoia_check(info, tty->device, "mcfrs_write")) return 0; if (!tty || !info->xmit_buf) return 0; save_flags(flags); while (1) { cli(); c = MIN(count, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) { restore_flags(flags); break; } if (from_user) { down(&mcfrs_tmp_buf_sem); memcpy_fromfs(mcfrs_tmp_buf, buf, c); restore_flags(flags); cli(); c = MIN(c, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); memcpy(info->xmit_buf + info->xmit_head, mcfrs_tmp_buf, c); up(&mcfrs_tmp_buf_sem); } else memcpy(info->xmit_buf + info->xmit_head, buf, c); info->xmit_head = (info->xmit_head + c) & (SERIAL_XMIT_SIZE-1); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; total += c; } cli(); uartp = (volatile unsigned char *) info->addr; info->imr |= MCFUART_UIR_TXREADY; uartp[MCFUART_UIMR] = info->imr; restore_flags(flags); return total; } static int mcfrs_write_room(struct tty_struct *tty) { struct mcf_serial *info = (struct mcf_serial *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->device, "mcfrs_write_room")) return 0; ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1; if (ret < 0) ret = 0; return ret; } static int mcfrs_chars_in_buffer(struct tty_struct *tty) { struct mcf_serial *info = (struct mcf_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "mcfrs_chars_in_buffer")) return 0; return info->xmit_cnt; } static void mcfrs_flush_buffer(struct tty_struct *tty) { struct mcf_serial *info = (struct mcf_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "mcfrs_flush_buffer")) return; save_flags(flags); cli(); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; restore_flags(flags); wake_up_interruptible(&tty->write_wait); if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); } /* * ------------------------------------------------------------ * mcfrs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void mcfrs_throttle(struct tty_struct * tty) { struct mcf_serial *info = (struct mcf_serial *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "mcfrs_throttle")) return; if (I_IXOFF(tty)) info->x_char = STOP_CHAR(tty); /* Turn off RTS line (do this atomic) */ } static void mcfrs_unthrottle(struct tty_struct * tty) { struct mcf_serial *info = (struct mcf_serial *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "mcfrs_unthrottle")) return; if (I_IXOFF(tty)) { if (info->x_char) info->x_char = 0; else info->x_char = START_CHAR(tty); } /* Assert RTS line (do this atomic) */ } /* * ------------------------------------------------------------ * mcfrs_ioctl() and friends * ------------------------------------------------------------ */ static int get_serial_info(struct mcf_serial * info, struct serial_struct * retinfo) { struct serial_struct tmp; if (!retinfo) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.type = info->type; tmp.line = info->line; tmp.port = info->addr; tmp.irq = info->irq; tmp.flags = info->flags; tmp.baud_base = info->baud_base; tmp.close_delay = info->close_delay; tmp.closing_wait = info->closing_wait; tmp.custom_divisor = info->custom_divisor; memcpy_tofs(retinfo,&tmp,sizeof(*retinfo)); return 0; } static int set_serial_info(struct mcf_serial * info, struct serial_struct * new_info) { struct serial_struct new_serial; struct mcf_serial old_info; int retval = 0; if (!new_info) return -EFAULT; memcpy_fromfs(&new_serial,new_info,sizeof(new_serial)); old_info = *info; if (!suser()) { if ((new_serial.baud_base != info->baud_base) || (new_serial.type != info->type) || (new_serial.close_delay != info->close_delay) || ((new_serial.flags & ~ASYNC_USR_MASK) != (info->flags & ~ASYNC_USR_MASK))) return -EPERM; info->flags = ((info->flags & ~ASYNC_USR_MASK) | (new_serial.flags & ASYNC_USR_MASK)); info->custom_divisor = new_serial.custom_divisor; goto check_and_exit; } if (info->count > 1) return -EBUSY; /* * OK, past this point, all the error checking has been done. * At this point, we start making changes..... */ info->baud_base = new_serial.baud_base; info->flags = ((info->flags & ~ASYNC_FLAGS) | (new_serial.flags & ASYNC_FLAGS)); info->type = new_serial.type; info->close_delay = new_serial.close_delay; info->closing_wait = new_serial.closing_wait; check_and_exit: retval = startup(info); return retval; } /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct mcf_serial * info, unsigned int *value) { volatile unsigned char *uartp; unsigned long flags; unsigned char status; save_flags(flags); cli(); uartp = (volatile unsigned char *) info->addr; status = (uartp[MCFUART_USR] & MCFUART_USR_TXEMPTY) ? TIOCSER_TEMT : 0; restore_flags(flags); put_user(status,value); return 0; } /* * This routine sends a break character out the serial port. */ static void send_break( struct mcf_serial * info, int duration) { volatile unsigned char *uartp; unsigned long flags; if (!info->addr) return; current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + duration; uartp = (volatile unsigned char *) info->addr; save_flags(flags); cli(); uartp[MCFUART_UCR] = MCFUART_UCR_CMDBREAKSTART; schedule(); uartp[MCFUART_UCR] = MCFUART_UCR_CMDBREAKSTOP; restore_flags(flags); } static int mcfrs_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int error; struct mcf_serial * info = (struct mcf_serial *)tty->driver_data; int retval; if (serial_paranoia_check(info, tty->device, "mcfrs_ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGWILD) && (cmd != TIOCSERSWILD) && (cmd != TIOCSERGSTRUCT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TCSBRK: /* SVID version: non-zero arg --> no break */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); if (!arg) send_break(info, HZ/4); /* 1/4 second */ return 0; case TCSBRKP: /* support for POSIX tcsendbreak() */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); send_break(info, arg ? arg*(HZ/10) : HZ/4); return 0; case TIOCGSOFTCAR: error = verify_area(VERIFY_WRITE, (void *) arg,sizeof(long)); if (error) return error; put_fs_long(C_CLOCAL(tty) ? 1 : 0, (unsigned long *) arg); return 0; case TIOCSSOFTCAR: arg = get_fs_long((unsigned long *) arg); tty->termios->c_cflag = ((tty->termios->c_cflag & ~CLOCAL) | (arg ? CLOCAL : 0)); return 0; case TIOCGSERIAL: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct serial_struct)); if (error) return error; return get_serial_info(info, (struct serial_struct *) arg); case TIOCSSERIAL: return set_serial_info(info, (struct serial_struct *) arg); case TIOCSERGETLSR: /* Get line status register */ error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned int)); if (error) return error; else return get_lsr_info(info, (unsigned int *) arg); case TIOCSERGSTRUCT: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct mcf_serial)); if (error) return error; memcpy_tofs((struct mcf_serial *) arg, info, sizeof(struct mcf_serial)); return 0; default: return -ENOIOCTLCMD; } return 0; } static void mcfrs_set_termios(struct tty_struct *tty, struct termios *old_termios) { struct mcf_serial *info = (struct mcf_serial *)tty->driver_data; if (tty->termios->c_cflag == old_termios->c_cflag) return; mcfrs_change_speed(info); if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) { tty->hw_stopped = 0; mcfrs_setsignals(info, -1, 1); mcfrs_start(tty); } } /* * ------------------------------------------------------------ * mcfrs_close() * * This routine is called when the serial port gets closed. First, we * wait for the last remaining data to be sent. Then, we unlink its * S structure from the interrupt chain if necessary, and we free * that IRQ if nothing is left in the chain. * ------------------------------------------------------------ */ static void mcfrs_close(struct tty_struct *tty, struct file * filp) { volatile unsigned char *uartp; struct mcf_serial *info = (struct mcf_serial *)tty->driver_data; unsigned long flags; if (!info || serial_paranoia_check(info, tty->device, "mcfrs_close")) return; save_flags(flags); cli(); if (tty_hung_up_p(filp)) { restore_flags(flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("mcfrs_close ttyS%d, count = %d\n", info->line, info->count); #endif if ((tty->count == 1) && (info->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. Info->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("mcfrs_close: bad serial port count; tty->count is 1, " "info->count is %d\n", info->count); info->count = 1; } if (--info->count < 0) { printk("mcfrs_close: bad serial port count for ttyS%d: %d\n", info->line, info->count); info->count = 0; } if (info->count) { restore_flags(flags); return; } info->flags |= ASYNC_CLOSING; /* * Save the termios structure, since this port may have * separate termios for callout and dialin. */ if (info->flags & ASYNC_NORMAL_ACTIVE) info->normal_termios = *tty->termios; if (info->flags & ASYNC_CALLOUT_ACTIVE) info->callout_termios = *tty->termios; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (info->closing_wait != ASYNC_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receive line status interrupts, and tell the * interrupt driver to stop checking the data ready bit in the * line status register. */ info->imr &= ~MCFUART_UIR_RXREADY; uartp = (volatile unsigned char *) info->addr; uartp[MCFUART_UIMR] = info->imr; shutdown(info); if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (tty->ldisc.num != ldiscs[N_TTY].num) { if (tty->ldisc.close) (tty->ldisc.close)(tty); tty->ldisc = ldiscs[N_TTY]; tty->termios->c_line = N_TTY; if (tty->ldisc.open) (tty->ldisc.open)(tty); } if (info->blocked_open) { if (info->close_delay) { current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + info->close_delay; schedule(); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE| ASYNC_CLOSING); wake_up_interruptible(&info->close_wait); restore_flags(flags); } /* * mcfrs_hangup() --- called by tty_hangup() when a hangup is signaled. */ void mcfrs_hangup(struct tty_struct *tty) { struct mcf_serial * info = (struct mcf_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "mcfrs_hangup")) return; mcfrs_flush_buffer(tty); shutdown(info); info->event = 0; info->count = 0; info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE); info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * mcfrs_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, struct mcf_serial *info) { struct wait_queue wait = { current, NULL }; int retval; int do_clocal = 0; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (info->flags & ASYNC_CLOSING) { interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) return -EAGAIN; else return -ERESTARTSYS; #else return -EAGAIN; #endif } /* * If this is a callout device, then just make sure the normal * device isn't being used. */ if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) { if (info->flags & ASYNC_NORMAL_ACTIVE) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_SESSION_LOCKOUT) && (info->session != current->session)) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_PGRP_LOCKOUT) && (info->pgrp != current->pgrp)) return -EBUSY; info->flags |= ASYNC_CALLOUT_ACTIVE; return 0; } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { if (info->flags & ASYNC_CALLOUT_ACTIVE) return -EBUSY; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } if (info->flags & ASYNC_CALLOUT_ACTIVE) { if (info->normal_termios.c_cflag & CLOCAL) do_clocal = 1; } else { if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; } /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, info->count is dropped by one, so that * mcfrs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttyS%d, count = %d\n", info->line, info->count); #endif info->count--; info->blocked_open++; while (1) { cli(); if (!(info->flags & ASYNC_CALLOUT_ACTIVE)) mcfrs_setsignals(info, 1, 1); sti(); current->state = TASK_INTERRUPTIBLE; if (tty_hung_up_p(filp) || !(info->flags & ASYNC_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } if (!(info->flags & ASYNC_CALLOUT_ACTIVE) && !(info->flags & ASYNC_CLOSING) && do_clocal) break; if (current->signal & ~current->blocked) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttyS%d, count = %d\n", info->line, info->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (!tty_hung_up_p(filp)) info->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttyS%d, count = %d\n", info->line, info->count); #endif if (retval) return retval; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ int mcfrs_open(struct tty_struct *tty, struct file * filp) { struct mcf_serial *info; int retval, line; line = MINOR(tty->device) - tty->driver.minor_start; if ((line < 0) || (line >= NR_PORTS)) return -ENODEV; info = mcfrs_table + line; if (serial_paranoia_check(info, tty->device, "mcfrs_open")) return -ENODEV; #ifdef SERIAL_DEBUG_OPEN printk("mcfrs_open %s%d, count = %d\n", tty->driver.name, info->line, info->count); #endif info->count++; tty->driver_data = info; info->tty = tty; /* * Start up serial port */ retval = startup(info); if (retval) return retval; retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("mcfrs_open returning after block_til_ready with %d\n", retval); #endif return retval; } if ((info->count == 1) && (info->flags & ASYNC_SPLIT_TERMIOS)) { if (tty->driver.subtype == SERIAL_TYPE_NORMAL) *tty->termios = info->normal_termios; else *tty->termios = info->callout_termios; mcfrs_change_speed(info); } info->session = current->session; info->pgrp = current->pgrp; #ifdef SERIAL_DEBUG_OPEN printk("mcfrs_open ttyS%d successful...\n", info->line); #endif return 0; } /* * Based on the line number set up the internal interrupt stuff. */ static void mcfrs_irqinit(struct mcf_serial *info) { volatile unsigned char *icrp, *uartp; #if 0 printk("%s(%d): setting interrupt for line=%d\n", __FILE__, __LINE__, info->line); #endif switch (info->line) { case 0: icrp = (volatile unsigned char *) (MCF_MBAR + MCFSIM_UART1ICR); *icrp = /*MCFSIM_ICR_AUTOVEC |*/ MCFSIM_ICR_LEVEL6 | MCFSIM_ICR_PRI1; mcf_setimr(mcf_getimr() & ~MCFSIM_IMR_UART1); break; case 1: icrp = (volatile unsigned char *) (MCF_MBAR + MCFSIM_UART2ICR); *icrp = /*MCFSIM_ICR_AUTOVEC |*/ MCFSIM_ICR_LEVEL6 | MCFSIM_ICR_PRI2; mcf_setimr(mcf_getimr() & ~MCFSIM_IMR_UART2); break; default: printk("SERIAL: don't know how to handle UART %d interrupt?\n", info->line); return; } uartp = (volatile unsigned char *) info->addr; uartp[MCFUART_UIVR] = info->irq; if (request_irq(info->irq, mcfrs_interrupt, SA_INTERRUPT, "ColdFire UART", NULL)) { printk("SERIAL: Unable to attach ColdFire UART %d interrupt " "vector=%d\n", info->line, info->irq); } return; } char *mcfrs_drivername = "ColdFire internal UART serial driver version 1.00\n"; /* * Serial stats reporting... */ int mcfrs_readproc(char *buffer) { struct mcf_serial *info; char str[20]; int len, sigs, i; len = sprintf(buffer, mcfrs_drivername); for (i = 0; (i < NR_PORTS); i++) { info = &mcfrs_table[i]; len += sprintf((buffer + len), "%d: port:%x irq=%d baud:%d ", i, info->addr, info->irq, info->baud); if (info->stats.rx || info->stats.tx) len += sprintf((buffer + len), "tx:%d rx:%d ", info->stats.tx, info->stats.rx); if (info->stats.rxframing) len += sprintf((buffer + len), "fe:%d ", info->stats.rxframing); if (info->stats.rxparity) len += sprintf((buffer + len), "pe:%d ", info->stats.rxparity); if (info->stats.rxbreak) len += sprintf((buffer + len), "brk:%d ", info->stats.rxbreak); if (info->stats.rxoverrun) len += sprintf((buffer + len), "oe:%d ", info->stats.rxoverrun); str[0] = str[1] = 0; if ((sigs = mcfrs_getsignals(info))) { if (sigs & TIOCM_RTS) strcat(str, "|RTS"); if (sigs & TIOCM_CTS) strcat(str, "|CTS"); if (sigs & TIOCM_DTR) strcat(str, "|DTR"); if (sigs & TIOCM_CD) strcat(str, "|CD"); } len += sprintf((buffer + len), "%s\n", &str[1]); } return(len); } /* Finally, routines used to initialize the serial driver. */ static void show_serial_version(void) { printk(mcfrs_drivername); } /* mcfrs_init inits the driver */ int mcfrs_init(void) { struct mcf_serial *info; unsigned long flags; int i; /* Setup base handler, and timer table. */ init_bh(SERIAL_BH, do_serial_bh); #if defined(CONFIG_NETtel) && defined(CONFIG_M5307) timer_table[RS_TIMER].fn = mcfrs_timer; timer_table[RS_TIMER].expires = 0; #endif show_serial_version(); /* Initialize the tty_driver structure */ memset(&mcfrs_serial_driver, 0, sizeof(struct tty_driver)); mcfrs_serial_driver.magic = TTY_DRIVER_MAGIC; mcfrs_serial_driver.name = "ttyS"; mcfrs_serial_driver.major = TTY_MAJOR; mcfrs_serial_driver.minor_start = 64; mcfrs_serial_driver.num = NR_PORTS; mcfrs_serial_driver.type = TTY_DRIVER_TYPE_SERIAL; mcfrs_serial_driver.subtype = SERIAL_TYPE_NORMAL; mcfrs_serial_driver.init_termios = tty_std_termios; mcfrs_serial_driver.init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; mcfrs_serial_driver.flags = TTY_DRIVER_REAL_RAW; mcfrs_serial_driver.refcount = &mcfrs_serial_refcount; mcfrs_serial_driver.table = mcfrs_serial_table; mcfrs_serial_driver.termios = mcfrs_serial_termios; mcfrs_serial_driver.termios_locked = mcfrs_serial_termios_locked; mcfrs_serial_driver.open = mcfrs_open; mcfrs_serial_driver.close = mcfrs_close; mcfrs_serial_driver.write = mcfrs_write; mcfrs_serial_driver.flush_chars = mcfrs_flush_chars; mcfrs_serial_driver.write_room = mcfrs_write_room; mcfrs_serial_driver.chars_in_buffer = mcfrs_chars_in_buffer; mcfrs_serial_driver.flush_buffer = mcfrs_flush_buffer; mcfrs_serial_driver.ioctl = mcfrs_ioctl; mcfrs_serial_driver.throttle = mcfrs_throttle; mcfrs_serial_driver.unthrottle = mcfrs_unthrottle; mcfrs_serial_driver.set_termios = mcfrs_set_termios; mcfrs_serial_driver.stop = mcfrs_stop; mcfrs_serial_driver.start = mcfrs_start; mcfrs_serial_driver.hangup = mcfrs_hangup; /* * The callout device is just like normal device except for * major number and the subtype code. */ mcfrs_callout_driver = mcfrs_serial_driver; mcfrs_callout_driver.name = "cua"; mcfrs_callout_driver.major = TTYAUX_MAJOR; mcfrs_callout_driver.subtype = SERIAL_TYPE_CALLOUT; if (tty_register_driver(&mcfrs_serial_driver)) panic("Couldn't register serial driver\n"); if (tty_register_driver(&mcfrs_callout_driver)) panic("Couldn't register callout driver\n"); save_flags(flags); cli(); /* * Configure all the attached serial ports. */ for (i = 0, info = mcfrs_table; (i < NR_PORTS); i++, info++) { info->magic = SERIAL_MAGIC; info->line = i; info->tty = 0; info->custom_divisor = 16; info->close_delay = 50; info->closing_wait = 3000; info->x_char = 0; info->event = 0; info->count = 0; info->blocked_open = 0; info->tqueue.routine = do_softint; info->tqueue.data = info; info->tqueue_hangup.routine = do_serial_hangup; info->tqueue_hangup.data = info; info->callout_termios = mcfrs_callout_driver.init_termios; info->normal_termios = mcfrs_serial_driver.init_termios; info->open_wait = 0; info->close_wait = 0; mcfrs_setsignals(info, 0, 0); mcfrs_irqinit(info); printk("%s%d at 0x%04x (irq = %d)", mcfrs_serial_driver.name, info->line, info->addr, info->irq); printk(" is a builtin ColdFire UART\n"); } restore_flags(flags); return 0; } /****************************************************************************/ /* Serial Console */ /****************************************************************************/ /* * Quick and dirty UART initialization, for console output. */ void rs_console_init(void) { volatile unsigned char *uartp; unsigned int clk; /* * Reset UART, get it into known state... */ uartp = (volatile unsigned char *) (MCF_MBAR + (mcfrs_console_port ? MCFUART_BASE2 : MCFUART_BASE1)); uartp[MCFUART_UCR] = MCFUART_UCR_CMDRESETRX; /* reset RX */ uartp[MCFUART_UCR] = MCFUART_UCR_CMDRESETTX; /* reset TX */ uartp[MCFUART_UCR] = MCFUART_UCR_CMDRESETMRPTR; /* reset MR pointer */ /* * Set port for defined baud , 8 data bits, 1 stop bit, no parity. */ uartp[MCFUART_UMR] = MCFUART_MR1_PARITYNONE | MCFUART_MR1_CS8; uartp[MCFUART_UMR] = MCFUART_MR2_STOP1; clk = ((MCF_CLK / 32) / mcfrs_console_baud); /* Set baud above */ uartp[MCFUART_UBG1] = (clk & 0xff00) >> 8; /* set msb baud */ uartp[MCFUART_UBG2] = (clk & 0xff); /* set lsb baud */ uartp[MCFUART_UCSR] = MCFUART_UCSR_RXCLKTIMER | MCFUART_UCSR_TXCLKTIMER; uartp[MCFUART_UCR] = MCFUART_UCR_RXENABLE | MCFUART_UCR_TXENABLE; mcfrs_console_inited++; return; } /* * Setup for console. Argument comes from the boot command line. */ int rs_console_setup(char *arg) { int rc = 0; if (!strncmp(arg, "/dev/ttyS", 9)) { mcfrs_console_port = arg[9] - '0'; arg += 10; rc = 1; } else if (!strncmp(arg, "/dev/cua", 8)) { mcfrs_console_port = arg[8] - '0'; arg += 9; rc = 1; } if (*arg == ',') mcfrs_console_baud = simple_strtoul(arg+1,NULL,0); return(rc); } /* * Output a single character, using UART polled mode. * This is ised for console output. */ void rs_put_char(char ch) { volatile unsigned char *uartp; unsigned long flags; int i; uartp = (volatile unsigned char *) (MCF_MBAR + (mcfrs_console_port ? MCFUART_BASE2 : MCFUART_BASE1)); save_flags(flags); cli(); for (i = 0; (i < 0x10000); i++) { if (uartp[MCFUART_USR] & MCFUART_USR_TXREADY) break; } uartp[MCFUART_UTB] = ch; restore_flags(flags); return; } /* * rs_console_print is registered for printk output. */ void rs_console_print(const char *p) { char c; while ((c = *(p++)) != 0) { if(c == '\n') rs_put_char('\r'); rs_put_char(c); } return; } /****************************************************************************/