OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [net/] [3c505.c] - Rev 1765

Compare with Previous | Blame | View Log

/*
 * Linux ethernet device driver for the 3Com Etherlink Plus (3C505)
 *      By Craig Southeren, Juha Laiho and Philip Blundell
 *
 * 3c505.c      This module implements an interface to the 3Com
 *              Etherlink Plus (3c505) ethernet card. Linux device 
 *              driver interface reverse engineered from the Linux 3C509
 *              device drivers. Some 3C505 information gleaned from
 *              the Crynwr packet driver. Still this driver would not
 *              be here without 3C505 technical reference provided by
 *              3Com.
 *
 * $Id: 3c505.c,v 1.1 2005-12-20 10:17:14 jcastillo Exp $
 *
 * Authors:     Linux 3c505 device driver by
 *                      Craig Southeren, <craigs@ineluki.apana.org.au>
 *              Final debugging by
 *                      Andrew Tridgell, <tridge@nimbus.anu.edu.au>
 *              Auto irq/address, tuning, cleanup and v1.1.4+ kernel mods by
 *                      Juha Laiho, <jlaiho@ichaos.nullnet.fi>
 *              Linux 3C509 driver by
 *                      Donald Becker, <becker@super.org>
 *              Crynwr packet driver by
 *                      Krishnan Gopalan and Gregg Stefancik,
 *                      Clemson University Engineering Computer Operations.
 *                      Portions of the code have been adapted from the 3c505
 *                         driver for NCSA Telnet by Bruce Orchard and later
 *                         modified by Warren Van Houten and krus@diku.dk.
 *              3C505 technical information provided by
 *                      Terry Murphy, of 3Com Network Adapter Division
 *              Linux 1.3.0 changes by
 *                      Alan Cox <Alan.Cox@linux.org>
 *              More debugging and DMA version by Philip Blundell
 */
 
/* Theory of operation:
 
 * The 3c505 is quite an intelligent board.  All communication with it is done
 * by means of Primary Command Blocks (PCBs); these are transferred using PIO
 * through the command register.  The card has 256k of on-board RAM, which is
 * used to buffer received packets.  It might seem at first that more buffers
 * are better, but in fact this isn't true.  From my tests, it seems that
 * more than about 10 buffers are unnecessary, and there is a noticeable
 * performance hit in having more active on the card.  So the majority of the
 * card's memory isn't, in fact, used.
 *
 * We keep up to 4 "receive packet" commands active on the board at a time.
 * When a packet comes in, so long as there is a receive command active, the
 * board will send us a "packet received" PCB and then add the data for that
 * packet to the DMA queue.  If a DMA transfer is not already in progress, we
 * set one up to start uploading the data.  We have to maintain a list of
 * backlogged receive packets, because the card may decide to tell us about
 * a newly-arrived packet at any time, and we may not be able to start a DMA
 * transfer immediately (ie one may already be going on).  We can't NAK the
 * PCB, because then it would throw the packet away.
 *
 * Trying to send a PCB to the card at the wrong moment seems to have bad
 * effects.  If we send it a transmit PCB while a receive DMA is happening,
 * it will just NAK the PCB and so we will have wasted our time.  Worse, it
 * sometimes seems to interrupt the transfer.  The majority of the low-level
 * code is protected by one huge semaphore -- "busy" -- which is set whenever
 * it probably isn't safe to do anything to the card.  The receive routine
 * must gain a lock on "busy" before it can start a DMA transfer, and the
 * transmit routine must gain a lock before it sends the first PCB to the card.
 * The send_pcb() routine also has an internal semaphore to protect it against
 * being re-entered (which would be disastrous) -- this is needed because
 * several things can happen asynchronously (re-priming the receiver and
 * asking the card for statistics, for example).  send_pcb() will also refuse
 * to talk to the card at all if a DMA upload is happening.  The higher-level
 * networking code will reschedule a later retry if some part of the driver
 * is blocked.  In practice, this doesn't seem to happen very often.
 */
 
/* This driver will not work with revision 2 hardware, because the host
 * control register is write-only.  It should be fairly easy to arrange to
 * keep our own soft-copy of the intended contents of this register, if
 * somebody has the time.  There may be firmware differences that cause
 * other problems, though, and I don't have an old card to test.
 */
 
/* The driver is a mess.  I took Craig's and Juha's code, and hacked it firstly
 * to make it more reliable, and secondly to add DMA mode.  Many things could
 * probably be done better; the concurrency protection is particularly awful.
 */
 
#include <linux/module.h>
 
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/malloc.h>
#include <linux/ioport.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>
 
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
 
#include "3c505.h"
 
#define ELP_DMA      6		/* DMA channel to use */
#define ELP_RX_PCBS  4
 
/*********************************************************
 *
 *  define debug messages here as common strings to reduce space
 *
 *********************************************************/
 
static const char *filename = __FILE__;
 
static const char *timeout_msg = "*** timeout at %s:%s (line %d) ***\n";
#define TIMEOUT_MSG(lineno) \
	printk(timeout_msg, filename,__FUNCTION__,(lineno))
 
static const char *invalid_pcb_msg =
"*** invalid pcb length %d at %s:%s (line %d) ***\n";
#define INVALID_PCB_MSG(len) \
	printk(invalid_pcb_msg, (len),filename,__FUNCTION__,__LINE__)
 
static const char *search_msg = "%s: Looking for 3c505 adapter at address %#x...";
 
static const char *stilllooking_msg = "still looking...";
 
static const char *found_msg = "found.\n";
 
static const char *notfound_msg = "not found (reason = %d)\n";
 
static const char *couldnot_msg = "%s: 3c505 not found\n";
 
/*********************************************************
 *
 *  various other debug stuff
 *
 *********************************************************/
 
#ifdef ELP_DEBUG
static const int elp_debug = ELP_DEBUG;
#else
static const int elp_debug = 0;
#endif
 
/*
 *  0 = no messages (well, some)
 *  1 = messages when high level commands performed
 *  2 = messages when low level commands performed
 *  3 = messages when interrupts received
 */
 
/*****************************************************************
 *
 * useful macros
 *
 *****************************************************************/
 
#ifndef	TRUE
#define	TRUE	1
#endif
 
#ifndef	FALSE
#define	FALSE	0
#endif
 
 
/*****************************************************************
 *
 * List of I/O-addresses we try to auto-sense
 * Last element MUST BE 0!
 *****************************************************************/
 
const int addr_list[] = {0x300, 0x280, 0x310, 0};
 
/* Dma Memory related stuff */
 
/* Pure 2^n version of get_order */
static inline int __get_order(unsigned long size)
{
	int order;
 
	size = (size - 1) >> (PAGE_SHIFT - 1);
	order = -1;
	do {
		size >>= 1;
		order++;
	} while (size);
	return order;
}
 
static unsigned long dma_mem_alloc(int size)
{
	int order = __get_order(size);
 
	return __get_dma_pages(GFP_KERNEL, order);
}
 
 
/*****************************************************************
 *
 * Functions for I/O (note the inline !)
 *
 *****************************************************************/
 
static inline unsigned char inb_status(unsigned int base_addr)
{
	return inb(base_addr + PORT_STATUS);
}
 
static inline unsigned char inb_control(unsigned int base_addr)
{
	return inb(base_addr + PORT_CONTROL);
}
 
static inline int inb_command(unsigned int base_addr)
{
	return inb(base_addr + PORT_COMMAND);
}
 
static inline void outb_control(unsigned char val, unsigned int base_addr)
{
	outb(val, base_addr + PORT_CONTROL);
}
 
static inline void outb_command(unsigned char val, unsigned int base_addr)
{
	outb(val, base_addr + PORT_COMMAND);
}
 
static inline unsigned int inw_data(unsigned int base_addr)
{
	return inw(base_addr + PORT_DATA);
}
 
static inline void outw_data(unsigned int val, unsigned int base_addr)
{
	outw(val, base_addr + PORT_DATA);
}
 
 
/*****************************************************************
 *
 *  structure to hold context information for adapter
 *
 *****************************************************************/
 
#define DMA_BUFFER_SIZE  1600
#define BACKLOG_SIZE      4
 
typedef struct {
	volatile short got[NUM_TRANSMIT_CMDS];	/* flags for command completion */
	pcb_struct tx_pcb;	/* PCB for foreground sending */
	pcb_struct rx_pcb;	/* PCB for foreground receiving */
	pcb_struct itx_pcb;	/* PCB for background sending */
	pcb_struct irx_pcb;	/* PCB for background receiving */
	struct enet_statistics stats;
 
	void *dma_buffer;
 
	struct {
		unsigned int length[BACKLOG_SIZE];
		unsigned int in;
		unsigned int out;
	} rx_backlog;
 
	struct {
		unsigned int direction;
		unsigned int length;
		unsigned int copy_flag;
		struct sk_buff *skb;
		long int start_time;
	} current_dma;
 
	/* flags */
	unsigned long send_pcb_semaphore;
	unsigned int dmaing;
	unsigned long busy;
 
	unsigned int rx_active;  /* number of receive PCBs */
} elp_device;
 
static inline unsigned int backlog_next(unsigned int n)
{
	return (n + 1) % BACKLOG_SIZE;
}
 
/*****************************************************************
 *
 *  useful functions for accessing the adapter
 *
 *****************************************************************/
 
/*
 * use this routine when accessing the ASF bits as they are
 * changed asynchronously by the adapter
 */
 
/* get adapter PCB status */
#define	GET_ASF(addr) \
	(get_status(addr)&ASF_PCB_MASK)
 
static inline int get_status(unsigned int base_addr)
{
	int timeout = jiffies + 10;
	register int stat1;
	do {
		stat1 = inb_status(base_addr);
	} while (stat1 != inb_status(base_addr) && jiffies < timeout);
	if (jiffies >= timeout)
		TIMEOUT_MSG(__LINE__);
	return stat1;
}
 
static inline void set_hsf(unsigned int base_addr, int hsf)
{
	cli();
	outb_control((inb_control(base_addr) & ~HSF_PCB_MASK) | hsf, base_addr);
	sti();
}
 
static int start_receive(struct device *, pcb_struct *);
 
inline static void adapter_reset(struct device *dev)
{
	int timeout;
	unsigned char orig_hcr = inb_control(dev->base_addr);
 
	elp_device *adapter = dev->priv;
 
	outb_control(0, dev->base_addr);
 
	if (inb_status(dev->base_addr) & ACRF) {
		do {
			inb_command(dev->base_addr);
			timeout = jiffies + 2;
			while ((jiffies <= timeout) && !(inb_status(dev->base_addr) & ACRF));
		} while (inb_status(dev->base_addr) & ACRF);
		set_hsf(dev->base_addr, HSF_PCB_NAK);
	}
	outb_control(inb_control(dev->base_addr) | ATTN | DIR, dev->base_addr);
	timeout = jiffies + 1;
	while (jiffies <= timeout);
	outb_control(inb_control(dev->base_addr) & ~ATTN, dev->base_addr);
	timeout = jiffies + 1;
	while (jiffies <= timeout);
	outb_control(inb_control(dev->base_addr) | FLSH, dev->base_addr);
	timeout = jiffies + 1;
	while (jiffies <= timeout);
	outb_control(inb_control(dev->base_addr) & ~FLSH, dev->base_addr);
	timeout = jiffies + 1;
	while (jiffies <= timeout);
 
	outb_control(orig_hcr, dev->base_addr);
	if (!start_receive(dev, &adapter->tx_pcb))
		printk("%s: start receive command failed \n", dev->name);
}
 
/* Check to make sure that a DMA transfer hasn't timed out.  This should never happen
 * in theory, but seems to occur occasionally if the card gets prodded at the wrong
 * time.
 */
static inline void check_dma(struct device *dev)
{
	elp_device *adapter = dev->priv;
	if (adapter->dmaing && (jiffies > (adapter->current_dma.start_time + 10))) {
		unsigned long flags;
		printk("%s: DMA %s timed out, %d bytes left\n", dev->name, adapter->current_dma.direction ? "download" : "upload", get_dma_residue(dev->dma));
		save_flags(flags);
		cli();
		adapter->dmaing = 0;
		adapter->busy = 0;
		disable_dma(dev->dma);
		if (adapter->rx_active)
			adapter->rx_active--;
		outb_control(inb_control(dev->base_addr) & ~(DMAE | TCEN | DIR), dev->base_addr);
		restore_flags(flags);
	}
}
 
/* Primitive functions used by send_pcb() */
static inline unsigned int send_pcb_slow(unsigned int base_addr, unsigned char byte)
{
	unsigned int timeout;
	outb_command(byte, base_addr);
	for (timeout = jiffies + 5; jiffies < timeout;) {
		if (inb_status(base_addr) & HCRE)
			return FALSE;
	}
	printk("3c505: send_pcb_slow timed out\n");
	return TRUE;
}
 
static inline unsigned int send_pcb_fast(unsigned int base_addr, unsigned char byte)
{
	unsigned int timeout;
	outb_command(byte, base_addr);
	for (timeout = 0; timeout < 40000; timeout++) {
		if (inb_status(base_addr) & HCRE)
			return FALSE;
	}
	printk("3c505: send_pcb_fast timed out\n");
	return TRUE;
}
 
/* Check to see if the receiver needs restarting, and kick it if so */
static inline void prime_rx(struct device *dev)
{
	elp_device *adapter = dev->priv;
	while (adapter->rx_active < ELP_RX_PCBS && dev->start) {
		if (!start_receive(dev, &adapter->itx_pcb))
			break;
	}
}
 
/*****************************************************************
 *
 * send_pcb
 *   Send a PCB to the adapter. 
 *
 *	output byte to command reg  --<--+
 *	wait until HCRE is non zero      |
 *	loop until all bytes sent   -->--+
 *	set HSF1 and HSF2 to 1
 *	output pcb length
 *	wait until ASF give ACK or NAK
 *	set HSF1 and HSF2 to 0
 *
 *****************************************************************/
 
/* This can be quite slow -- the adapter is allowed to take up to 40ms
 * to respond to the initial interrupt.
 *
 * We run initially with interrupts turned on, but with a semaphore set
 * so that nobody tries to re-enter this code.  Once the first byte has
 * gone through, we turn interrupts off and then send the others (the
 * timeout is reduced to 500us).
 */
 
static int send_pcb(struct device *dev, pcb_struct * pcb)
{
	int i;
	int timeout;
	elp_device *adapter = dev->priv;
 
	check_dma(dev);
 
	if (adapter->dmaing && adapter->current_dma.direction == 0)
		return FALSE;
 
	/* Avoid contention */
	if (set_bit(1, &adapter->send_pcb_semaphore)) {
		if (elp_debug >= 3) {
			printk("%s: send_pcb entered while threaded\n", dev->name);
		}
		return FALSE;
	}
	/*
	 * load each byte into the command register and
	 * wait for the HCRE bit to indicate the adapter
	 * had read the byte
	 */
	set_hsf(dev->base_addr, 0);
 
	if (send_pcb_slow(dev->base_addr, pcb->command))
		goto abort;
 
	cli();
 
	if (send_pcb_fast(dev->base_addr, pcb->length))
		goto sti_abort;
 
	for (i = 0; i < pcb->length; i++) {
		if (send_pcb_fast(dev->base_addr, pcb->data.raw[i]))
			goto sti_abort;
	}
 
	outb_control(inb_control(dev->base_addr) | 3, dev->base_addr);	/* signal end of PCB */
	outb_command(2 + pcb->length, dev->base_addr);
 
	/* now wait for the acknowledgement */
	sti();
 
	for (timeout = jiffies + 5; jiffies < timeout;) {
		switch (GET_ASF(dev->base_addr)) {
		case ASF_PCB_ACK:
			adapter->send_pcb_semaphore = 0;
			return TRUE;
			break;
		case ASF_PCB_NAK:
			printk("%s: send_pcb got NAK\n", dev->name);
			goto abort;
			break;
		}
	}
 
	if (elp_debug >= 1)
		printk("%s: timeout waiting for PCB acknowledge (status %02x)\n", dev->name, inb_status(dev->base_addr));
 
      sti_abort:
	sti();
      abort:
	adapter->send_pcb_semaphore = 0;
	return FALSE;
}
 
 
/*****************************************************************
 *
 * receive_pcb
 *   Read a PCB from the adapter
 *
 *	wait for ACRF to be non-zero        ---<---+
 *	input a byte                               |
 *	if ASF1 and ASF2 were not both one         |
 *		before byte was read, loop      --->---+
 *	set HSF1 and HSF2 for ack
 *
 *****************************************************************/
 
static int receive_pcb(struct device *dev, pcb_struct * pcb)
{
	int i, j;
	int total_length;
	int stat;
	int timeout;
 
	elp_device *adapter = dev->priv;
 
	set_hsf(dev->base_addr, 0);
 
	/* get the command code */
	timeout = jiffies + 2;
	while (((stat = get_status(dev->base_addr)) & ACRF) == 0 && jiffies < timeout);
	if (jiffies >= timeout) {
		TIMEOUT_MSG(__LINE__);
		return FALSE;
	}
	pcb->command = inb_command(dev->base_addr);
 
	/* read the data length */
	timeout = jiffies + 3;
	while (((stat = get_status(dev->base_addr)) & ACRF) == 0 && jiffies < timeout);
	if (jiffies >= timeout) {
		TIMEOUT_MSG(__LINE__);
		printk("%s: status %02x\n", dev->name, stat);
		return FALSE;
	}
	pcb->length = inb_command(dev->base_addr);
 
	if (pcb->length > MAX_PCB_DATA) {
		INVALID_PCB_MSG(pcb->length);
		adapter_reset(dev);
		return FALSE;
	}
	/* read the data */
	cli();
	i = 0;
	do {
		j = 0;
		while (((stat = get_status(dev->base_addr)) & ACRF) == 0 && j++ < 20000);
		pcb->data.raw[i++] = inb_command(dev->base_addr);
		if (i > MAX_PCB_DATA)
			INVALID_PCB_MSG(i);
	} while ((stat & ASF_PCB_MASK) != ASF_PCB_END && j < 20000);
	sti();
	if (j >= 20000) {
		TIMEOUT_MSG(__LINE__);
		return FALSE;
	}
	/* woops, the last "data" byte was really the length! */
	total_length = pcb->data.raw[--i];
 
	/* safety check total length vs data length */
	if (total_length != (pcb->length + 2)) {
		if (elp_debug >= 2)
			printk("%s: mangled PCB received\n", dev->name);
		set_hsf(dev->base_addr, HSF_PCB_NAK);
		return FALSE;
	}
 
	if (pcb->command == CMD_RECEIVE_PACKET_COMPLETE) {
		if (set_bit(0, (void *) &adapter->busy)) {
			if (backlog_next(adapter->rx_backlog.in) == adapter->rx_backlog.out) {
				set_hsf(dev->base_addr, HSF_PCB_NAK);
				printk("%s: PCB rejected, transfer in progress and backlog full\n", dev->name);
				pcb->command = 0;
				return TRUE;
			} else {
				pcb->command = 0xff;
			}
		}
	}
	set_hsf(dev->base_addr, HSF_PCB_ACK);
	return TRUE;
}
 
/******************************************************
 *
 *  queue a receive command on the adapter so we will get an
 *  interrupt when a packet is received.
 *
 ******************************************************/
 
static int start_receive(struct device *dev, pcb_struct * tx_pcb)
{
	int status;
	elp_device *adapter = dev->priv;
 
	if (elp_debug >= 3)
		printk("%s: restarting receiver\n", dev->name);
	tx_pcb->command = CMD_RECEIVE_PACKET;
	tx_pcb->length = sizeof(struct Rcv_pkt);
	tx_pcb->data.rcv_pkt.buf_seg
	    = tx_pcb->data.rcv_pkt.buf_ofs = 0;		/* Unused */
	tx_pcb->data.rcv_pkt.buf_len = 1600;
	tx_pcb->data.rcv_pkt.timeout = 0;	/* set timeout to zero */
	status = send_pcb(dev, tx_pcb);
	if (status)
		adapter->rx_active++;
	return status;
}
 
/******************************************************
 *
 * extract a packet from the adapter
 * this routine is only called from within the interrupt
 * service routine, so no cli/sti calls are needed
 * note that the length is always assumed to be even
 *
 ******************************************************/
 
static void receive_packet(struct device *dev, int len)
{
	int rlen;
	elp_device *adapter = dev->priv;
	unsigned long target;
	struct sk_buff *skb;
 
	rlen = (len + 1) & ~1;
	skb = dev_alloc_skb(rlen + 2);
 
	adapter->current_dma.copy_flag = 0;
 
	if (!skb) {
	  printk("%s: memory squeeze, dropping packet\n", dev->name);
	  target = virt_to_bus(adapter->dma_buffer);
	} else {
	  skb_reserve(skb, 2);
	  target = virt_to_bus(skb_put(skb, rlen));
	  if ((target + rlen) >= MAX_DMA_ADDRESS) {
	    target = virt_to_bus(adapter->dma_buffer);
	    adapter->current_dma.copy_flag = 1;
	  }
	}
	/* if this happens, we die */
	if (set_bit(0, (void *) &adapter->dmaing))
		printk("%s: rx blocked, DMA in progress, dir %d\n", dev->name, adapter->current_dma.direction);
 
	adapter->current_dma.direction = 0;
	adapter->current_dma.length = rlen;
	adapter->current_dma.skb = skb;
	adapter->current_dma.start_time = jiffies;
 
	outb_control(inb_control(dev->base_addr) | DIR | TCEN | DMAE, dev->base_addr);
 
	disable_dma(dev->dma);
	clear_dma_ff(dev->dma);
	set_dma_mode(dev->dma, 0x04);	/* dma read */
	set_dma_addr(dev->dma, target);
	set_dma_count(dev->dma, rlen);
	enable_dma(dev->dma);
 
	if (elp_debug >= 3) {
		printk("%s: rx DMA transfer started\n", dev->name);
	}
	if (adapter->rx_active)
		adapter->rx_active--;
 
	if (!adapter->busy)
		printk("%s: receive_packet called, busy not set.\n", dev->name);
}
 
/******************************************************
 *
 * interrupt handler
 *
 ******************************************************/
 
static void elp_interrupt(int irq, void *dev_id, struct pt_regs *reg_ptr)
{
	int len;
	int dlen;
	int icount = 0;
	struct device *dev;
	elp_device *adapter;
	int timeout;
 
	if (irq < 0 || irq > 15) {
		printk("elp_interrupt(): illegal IRQ number found in interrupt routine (%i)\n", irq);
		return;
	}
	dev = irq2dev_map[irq];
 
	if (dev == NULL) {
		printk("elp_interrupt(): irq %d for unknown device.\n", irq);
		return;
	}
	adapter = (elp_device *) dev->priv;
 
	if (dev->interrupt) {
		printk("%s: re-entering the interrupt handler!\n", dev->name);
		return;
	}
	dev->interrupt = 1;
 
	do {
		/*
		 * has a DMA transfer finished?
		 */
		if (inb_status(dev->base_addr) & DONE) {
			if (!adapter->dmaing) {
				printk("%s: phantom DMA completed\n", dev->name);
			}
			if (elp_debug >= 3) {
				printk("%s: %s DMA complete, status %02x\n", dev->name, adapter->current_dma.direction ? "tx" : "rx", inb_status(dev->base_addr));
			}
 
			outb_control(inb_control(dev->base_addr) & ~(DMAE | TCEN | DIR), dev->base_addr);
			if (adapter->current_dma.direction) {
				dev_kfree_skb(adapter->current_dma.skb, FREE_WRITE);
			} else {
				struct sk_buff *skb = adapter->current_dma.skb;
				if (skb) {
				  skb->dev = dev;
				  if (adapter->current_dma.copy_flag) {
				    memcpy(skb_put(skb, adapter->current_dma.length), adapter->dma_buffer, adapter->current_dma.length);
				  }
				  skb->protocol = eth_type_trans(skb,dev);
				  netif_rx(skb);
				}
			}
			adapter->dmaing = 0;
			if (adapter->rx_backlog.in != adapter->rx_backlog.out) {
				int t = adapter->rx_backlog.length[adapter->rx_backlog.out];
				adapter->rx_backlog.out = backlog_next(adapter->rx_backlog.out);
				if (elp_debug >= 2)
					printk("%s: receiving backlogged packet (%d)\n", dev->name, t);
				receive_packet(dev, t);
			} else {
				adapter->busy = 0;
			}
		} else {
			/* has one timed out? */
			check_dma(dev);
		}
 
		sti();
 
		/*
		 * receive a PCB from the adapter
		 */
		timeout = jiffies + 3;
		while ((inb_status(dev->base_addr) & ACRF) != 0 && jiffies < timeout) {
			if (receive_pcb(dev, &adapter->irx_pcb)) {
				switch (adapter->irx_pcb.command) {
				case 0:
					break;
					/*
					 * received a packet - this must be handled fast
					 */
				case 0xff:
				case CMD_RECEIVE_PACKET_COMPLETE:
					/* if the device isn't open, don't pass packets up the stack */
					if (dev->start == 0)
						break;
					cli();
					len = adapter->irx_pcb.data.rcv_resp.pkt_len;
					dlen = adapter->irx_pcb.data.rcv_resp.buf_len;
					if (adapter->irx_pcb.data.rcv_resp.timeout != 0) {
						printk("%s: interrupt - packet not received correctly\n", dev->name);
						sti();
					} else {
						if (elp_debug >= 3) {
							sti();
							printk("%s: interrupt - packet received of length %i (%i)\n", dev->name, len, dlen);
							cli();
						}
						if (adapter->irx_pcb.command == 0xff) {
							if (elp_debug >= 2)
								printk("%s: adding packet to backlog (len = %d)\n", dev->name, dlen);
							adapter->rx_backlog.length[adapter->rx_backlog.in] = dlen;
							adapter->rx_backlog.in = backlog_next(adapter->rx_backlog.in);
						} else {
							receive_packet(dev, dlen);
						}
						sti();
						if (elp_debug >= 3)
							printk("%s: packet received\n", dev->name);
					}
					break;
 
					/*
					 * 82586 configured correctly
					 */
				case CMD_CONFIGURE_82586_RESPONSE:
					adapter->got[CMD_CONFIGURE_82586] = 1;
					if (elp_debug >= 3)
						printk("%s: interrupt - configure response received\n", dev->name);
					break;
 
					/*
					 * Adapter memory configuration
					 */
				case CMD_CONFIGURE_ADAPTER_RESPONSE:
					adapter->got[CMD_CONFIGURE_ADAPTER_MEMORY] = 1;
					if (elp_debug >= 3)
						printk("%s: Adapter memory configuration %s.\n", dev->name,
						       adapter->irx_pcb.data.failed ? "failed" : "succeeded");
					break;
 
					/*
					 * Multicast list loading
					 */
				case CMD_LOAD_MULTICAST_RESPONSE:
					adapter->got[CMD_LOAD_MULTICAST_LIST] = 1;
					if (elp_debug >= 3)
						printk("%s: Multicast address list loading %s.\n", dev->name,
						       adapter->irx_pcb.data.failed ? "failed" : "succeeded");
					break;
 
					/*
					 * Station address setting
					 */
				case CMD_SET_ADDRESS_RESPONSE:
					adapter->got[CMD_SET_STATION_ADDRESS] = 1;
					if (elp_debug >= 3)
						printk("%s: Ethernet address setting %s.\n", dev->name,
						       adapter->irx_pcb.data.failed ? "failed" : "succeeded");
					break;
 
 
					/*
					 * received board statistics
					 */
				case CMD_NETWORK_STATISTICS_RESPONSE:
					adapter->stats.rx_packets += adapter->irx_pcb.data.netstat.tot_recv;
					adapter->stats.tx_packets += adapter->irx_pcb.data.netstat.tot_xmit;
					adapter->stats.rx_crc_errors += adapter->irx_pcb.data.netstat.err_CRC;
					adapter->stats.rx_frame_errors += adapter->irx_pcb.data.netstat.err_align;
					adapter->stats.rx_fifo_errors += adapter->irx_pcb.data.netstat.err_ovrrun;
					adapter->stats.rx_over_errors += adapter->irx_pcb.data.netstat.err_res;
					adapter->got[CMD_NETWORK_STATISTICS] = 1;
					if (elp_debug >= 3)
						printk("%s: interrupt - statistics response received\n", dev->name);
					break;
 
					/*
					 * sent a packet
					 */
				case CMD_TRANSMIT_PACKET_COMPLETE:
					if (elp_debug >= 3)
						printk("%s: interrupt - packet sent\n", dev->name);
					if (dev->start == 0)
						break;
					switch (adapter->irx_pcb.data.xmit_resp.c_stat) {
					case 0xffff:
						adapter->stats.tx_aborted_errors++;
						printk(KERN_INFO "%s: transmit timed out, network cable problem?\n", dev->name);
						break;
					case 0xfffe:
						adapter->stats.tx_fifo_errors++;
						printk(KERN_INFO "%s: transmit timed out, FIFO underrun\n", dev->name);
						break;
					}
					dev->tbusy = 0;
					mark_bh(NET_BH);
					break;
 
					/*
					 * some unknown PCB
					 */
				default:
					printk(KERN_DEBUG "%s: unknown PCB received - %2.2x\n", dev->name, adapter->irx_pcb.command);
					break;
				}
			} else {
				printk("%s: failed to read PCB on interrupt\n", dev->name);
				adapter_reset(dev);
			}
		}
 
	} while (icount++ < 5 && (inb_status(dev->base_addr) & (ACRF | DONE)));
 
	prime_rx(dev);
 
	/*
	 * indicate no longer in interrupt routine
	 */
	dev->interrupt = 0;
}
 
 
/******************************************************
 *
 * open the board
 *
 ******************************************************/
 
static int elp_open(struct device *dev)
{
	elp_device *adapter;
 
	adapter = dev->priv;
 
	if (elp_debug >= 3)
		printk("%s: request to open device\n", dev->name);
 
	/*
	 * make sure we actually found the device
	 */
	if (adapter == NULL) {
		printk("%s: Opening a non-existent physical device\n", dev->name);
		return -EAGAIN;
	}
	/*
	 * disable interrupts on the board
	 */
	outb_control(0x00, dev->base_addr);
 
	/*
	 * clear any pending interrupts
	 */
	inb_command(dev->base_addr);
	adapter_reset(dev);
 
	/*
	 * interrupt routine not entered
	 */
	dev->interrupt = 0;
 
	/*
	 *  transmitter not busy 
	 */
	dev->tbusy = 0;
 
	/*
	 * no receive PCBs active
	 */
	adapter->rx_active = 0;
 
	adapter->busy = 0;
	adapter->send_pcb_semaphore = 0;
	adapter->rx_backlog.in = 0;
	adapter->rx_backlog.out = 0;
 
	/*
	 * make sure we can find the device header given the interrupt number
	 */
	irq2dev_map[dev->irq] = dev;
 
	/*
	 * install our interrupt service routine
	 */
	if (request_irq(dev->irq, &elp_interrupt, 0, "3c505", NULL)) {
		irq2dev_map[dev->irq] = NULL;
		return -EAGAIN;
	}
	if (request_dma(dev->dma, "3c505")) {
		printk("%s: could not allocate DMA channel\n", dev->name);
		return -EAGAIN;
	}
	adapter->dma_buffer = (void *) dma_mem_alloc(DMA_BUFFER_SIZE);
	if (!adapter->dma_buffer) {
		printk("Could not allocate DMA buffer\n");
	}
	adapter->dmaing = 0;
 
	/*
	 * enable interrupts on the board
	 */
	outb_control(CMDE, dev->base_addr);
 
	/*
	 * device is now officially open!
	 */
	dev->start = 1;
 
	/*
	 * configure adapter memory: we need 10 multicast addresses, default==0
	 */
	if (elp_debug >= 3)
		printk("%s: sending 3c505 memory configuration command\n", dev->name);
	adapter->tx_pcb.command = CMD_CONFIGURE_ADAPTER_MEMORY;
	adapter->tx_pcb.data.memconf.cmd_q = 10;
	adapter->tx_pcb.data.memconf.rcv_q = 20;
	adapter->tx_pcb.data.memconf.mcast = 10;
	adapter->tx_pcb.data.memconf.frame = 20;
	adapter->tx_pcb.data.memconf.rcv_b = 20;
	adapter->tx_pcb.data.memconf.progs = 0;
	adapter->tx_pcb.length = sizeof(struct Memconf);
	adapter->got[CMD_CONFIGURE_ADAPTER_MEMORY] = 0;
	if (!send_pcb(dev, &adapter->tx_pcb))
		printk("%s: couldn't send memory configuration command\n", dev->name);
	else {
		int timeout = jiffies + TIMEOUT;
		while (adapter->got[CMD_CONFIGURE_ADAPTER_MEMORY] == 0 && jiffies < timeout);
		if (jiffies >= timeout)
			TIMEOUT_MSG(__LINE__);
	}
 
 
	/*
	 * configure adapter to receive broadcast messages and wait for response
	 */
	if (elp_debug >= 3)
		printk("%s: sending 82586 configure command\n", dev->name);
	adapter->tx_pcb.command = CMD_CONFIGURE_82586;
	adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_BROAD;
	adapter->tx_pcb.length = 2;
	adapter->got[CMD_CONFIGURE_82586] = 0;
	if (!send_pcb(dev, &adapter->tx_pcb))
		printk("%s: couldn't send 82586 configure command\n", dev->name);
	else {
		int timeout = jiffies + TIMEOUT;
		while (adapter->got[CMD_CONFIGURE_82586] == 0 && jiffies < timeout);
		if (jiffies >= timeout)
			TIMEOUT_MSG(__LINE__);
	}
 
	/* enable burst-mode DMA */
	outb(0x1, dev->base_addr + PORT_AUXDMA);
 
	/*
	 * queue receive commands to provide buffering
	 */
	prime_rx(dev);
	if (elp_debug >= 3)
		printk("%s: %d receive PCBs active\n", dev->name, adapter->rx_active);
 
	MOD_INC_USE_COUNT;
 
	return 0;		/* Always succeed */
}
 
 
/******************************************************
 *
 * send a packet to the adapter
 *
 ******************************************************/
 
static int send_packet(struct device *dev, struct sk_buff *skb)
{
	elp_device *adapter = dev->priv;
	unsigned long target;
 
	/*
	 * make sure the length is even and no shorter than 60 bytes
	 */
	unsigned int nlen = (((skb->len < 60) ? 60 : skb->len) + 1) & (~1);
 
	if (set_bit(0, (void *) &adapter->busy)) {
		if (elp_debug >= 2)
			printk("%s: transmit blocked\n", dev->name);
		return FALSE;
	}
	adapter = dev->priv;
 
	/*
	 * send the adapter a transmit packet command. Ignore segment and offset
	 * and make sure the length is even
	 */
	adapter->tx_pcb.command = CMD_TRANSMIT_PACKET;
	adapter->tx_pcb.length = sizeof(struct Xmit_pkt);
	adapter->tx_pcb.data.xmit_pkt.buf_ofs
	    = adapter->tx_pcb.data.xmit_pkt.buf_seg = 0;	/* Unused */
	adapter->tx_pcb.data.xmit_pkt.pkt_len = nlen;
 
	if (!send_pcb(dev, &adapter->tx_pcb)) {
		adapter->busy = 0;
		return FALSE;
	}
	/* if this happens, we die */
	if (set_bit(0, (void *) &adapter->dmaing))
		printk("%s: tx: DMA %d in progress\n", dev->name, adapter->current_dma.direction);
 
	adapter->current_dma.direction = 1;
	adapter->current_dma.start_time = jiffies;
 
	target = virt_to_bus(skb->data);
	if ((target + nlen) >= MAX_DMA_ADDRESS) {
		memcpy(adapter->dma_buffer, skb->data, nlen);
		target = virt_to_bus(adapter->dma_buffer);
	}
	adapter->current_dma.skb = skb;
	cli();
	disable_dma(dev->dma);
	clear_dma_ff(dev->dma);
	set_dma_mode(dev->dma, 0x08);	/* dma memory -> io */
	set_dma_addr(dev->dma, target);
	set_dma_count(dev->dma, nlen);
	enable_dma(dev->dma);
	outb_control(inb_control(dev->base_addr) | DMAE | TCEN, dev->base_addr);
	if (elp_debug >= 3)
		printk("%s: DMA transfer started\n", dev->name);
 
	return TRUE;
}
 
/******************************************************
 *
 * start the transmitter
 *    return 0 if sent OK, else return 1
 *
 ******************************************************/
 
static int elp_start_xmit(struct sk_buff *skb, struct device *dev)
{
	if (dev->interrupt) {
		printk("%s: start_xmit aborted (in irq)\n", dev->name);
		return 1;
	}
 
	check_dma(dev);
 
	/*
	 * if the transmitter is still busy, we have a transmit timeout...
	 */
	if (dev->tbusy) {
		elp_device *adapter = dev->priv;
       		int tickssofar = jiffies - dev->trans_start;
		int stat;
 
		if (tickssofar < 1000)
			return 1;
 
		stat = inb_status(dev->base_addr);
		printk("%s: transmit timed out, lost %s?\n", dev->name, (stat & ACRF) ? "interrupt" : "command");
		if (elp_debug >= 1)
			printk("%s: status %#02x\n", dev->name, stat);
		dev->trans_start = jiffies;
		dev->tbusy = 0;
		adapter->stats.tx_dropped++;
	}
 
	/* Some upper layer thinks we've missed a tx-done interrupt */
	if (skb == NULL) {
		dev_tint(dev);
		return 0;
	}
 
	if (skb->len <= 0)
		return 0;
 
	if (elp_debug >= 3)
		printk("%s: request to send packet of length %d\n", dev->name, (int) skb->len);
 
	if (set_bit(0, (void *) &dev->tbusy)) {
		printk("%s: transmitter access conflict\n", dev->name);
		return 1;
	}
	/*
	 * send the packet at skb->data for skb->len
	 */
	if (!send_packet(dev, skb)) {
		if (elp_debug >= 2) {
			printk("%s: failed to transmit packet\n", dev->name);
		}
		dev->tbusy = 0;
		return 1;
	}
	if (elp_debug >= 3)
		printk("%s: packet of length %d sent\n", dev->name, (int) skb->len);
 
	/*
	 * start the transmit timeout
	 */
	dev->trans_start = jiffies;
 
	prime_rx(dev);
 
	return 0;
}
 
/******************************************************
 *
 * return statistics on the board
 *
 ******************************************************/
 
static struct enet_statistics *elp_get_stats(struct device *dev)
{
	elp_device *adapter = (elp_device *) dev->priv;
 
	if (elp_debug >= 3)
		printk("%s: request for stats\n", dev->name);
 
	/* If the device is closed, just return the latest stats we have,
	   - we cannot ask from the adapter without interrupts */
	if (!dev->start)
		return &adapter->stats;
 
	/* send a get statistics command to the board */
	adapter->tx_pcb.command = CMD_NETWORK_STATISTICS;
	adapter->tx_pcb.length = 0;
	adapter->got[CMD_NETWORK_STATISTICS] = 0;
	if (!send_pcb(dev, &adapter->tx_pcb))
		printk("%s: couldn't send get statistics command\n", dev->name);
	else {
		int timeout = jiffies + TIMEOUT;
		while (adapter->got[CMD_NETWORK_STATISTICS] == 0 && jiffies < timeout);
		if (jiffies >= timeout) {
			TIMEOUT_MSG(__LINE__);
			return &adapter->stats;
		}
	}
 
	/* statistics are now up to date */
	return &adapter->stats;
}
 
/******************************************************
 *
 * close the board
 *
 ******************************************************/
 
static int elp_close(struct device *dev)
{
	elp_device *adapter;
 
	adapter = dev->priv;
 
	if (elp_debug >= 3)
		printk("%s: request to close device\n", dev->name);
 
	/* Someone may request the device statistic information even when
	 * the interface is closed. The following will update the statistics
	 * structure in the driver, so we'll be able to give current statistics.
	 */
	(void) elp_get_stats(dev);
 
	/*
	 * disable interrupts on the board
	 */
	outb_control(0x00, dev->base_addr);
 
	/*
	 *  flag transmitter as busy (i.e. not available)
	 */
	dev->tbusy = 1;
 
	/*
	 *  indicate device is closed
	 */
	dev->start = 0;
 
	/*
	 * release the IRQ
	 */
	free_irq(dev->irq, NULL);
 
	/*
	 * and we no longer have to map irq to dev either
	 */
	irq2dev_map[dev->irq] = 0;
 
	free_dma(dev->dma);
	free_pages((unsigned long) adapter->dma_buffer, __get_order(DMA_BUFFER_SIZE));
 
	MOD_DEC_USE_COUNT;
 
	return 0;
}
 
 
/************************************************************
 *
 * Set multicast list
 * num_addrs==0: clear mc_list
 * num_addrs==-1: set promiscuous mode
 * num_addrs>0: set mc_list
 *
 ************************************************************/
 
static void elp_set_mc_list(struct device *dev)
{
	elp_device *adapter = (elp_device *) dev->priv;
	struct dev_mc_list *dmi = dev->mc_list;
	int i;
 
	if (elp_debug >= 3)
		printk("%s: request to set multicast list\n", dev->name);
 
	if (!(dev->flags & (IFF_PROMISC | IFF_ALLMULTI))) {
		/* send a "load multicast list" command to the board, max 10 addrs/cmd */
		/* if num_addrs==0 the list will be cleared */
		adapter->tx_pcb.command = CMD_LOAD_MULTICAST_LIST;
		adapter->tx_pcb.length = 6 * dev->mc_count;
		for (i = 0; i < dev->mc_count; i++) {
			memcpy(adapter->tx_pcb.data.multicast[i], dmi->dmi_addr, 6);
			dmi = dmi->next;
		}
		adapter->got[CMD_LOAD_MULTICAST_LIST] = 0;
		if (!send_pcb(dev, &adapter->tx_pcb))
			printk("%s: couldn't send set_multicast command\n", dev->name);
		else {
			int timeout = jiffies + TIMEOUT;
			while (adapter->got[CMD_LOAD_MULTICAST_LIST] == 0 && jiffies < timeout);
			if (jiffies >= timeout) {
				TIMEOUT_MSG(__LINE__);
			}
		}
		if (dev->mc_count)
			adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_BROAD | RECV_MULTI;
		else		/* num_addrs == 0 */
			adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_BROAD;
	} else
		adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_PROMISC;
	/*
	 * configure adapter to receive messages (as specified above)
	 * and wait for response
	 */
	if (elp_debug >= 3)
		printk("%s: sending 82586 configure command\n", dev->name);
	adapter->tx_pcb.command = CMD_CONFIGURE_82586;
	adapter->tx_pcb.length = 2;
	adapter->got[CMD_CONFIGURE_82586] = 0;
	if (!send_pcb(dev, &adapter->tx_pcb))
		printk("%s: couldn't send 82586 configure command\n", dev->name);
	else {
		int timeout = jiffies + TIMEOUT;
		while (adapter->got[CMD_CONFIGURE_82586] == 0 && jiffies < timeout);
		if (jiffies >= timeout)
			TIMEOUT_MSG(__LINE__);
	}
}
 
/******************************************************
 *
 * initialise Etherlink Plus board
 *
 ******************************************************/
 
static void elp_init(struct device *dev)
{
	elp_device *adapter = dev->priv;
 
	/*
	 * set ptrs to various functions
	 */
	dev->open = elp_open;	/* local */
	dev->stop = elp_close;	/* local */
	dev->get_stats = elp_get_stats;		/* local */
	dev->hard_start_xmit = elp_start_xmit;	/* local */
	dev->set_multicast_list = elp_set_mc_list;	/* local */
 
	/* Setup the generic properties */
	ether_setup(dev);
 
	/*
	 * setup ptr to adapter specific information
	 */
	memset(&(adapter->stats), 0, sizeof(struct enet_statistics));
 
	/*
	 * memory information
	 */
	dev->mem_start = dev->mem_end = dev->rmem_end = dev->rmem_start = 0;
}
 
/************************************************************
 *
 * A couple of tests to see if there's 3C505 or not
 * Called only by elp_autodetect
 ************************************************************/
 
static int elp_sense(struct device *dev)
{
	int timeout;
	int addr = dev->base_addr;
	const char *name = dev->name;
	long flags;
	byte orig_HCR, orig_HSR;
 
	if (check_region(addr, 0xf))
		return -1;
 
	orig_HCR = inb_control(addr);
	orig_HSR = inb_status(addr);
 
	if (elp_debug > 0)
		printk(search_msg, name, addr);
 
	if (((orig_HCR == 0xff) && (orig_HSR == 0xff)) ||
	    ((orig_HCR & DIR) != (orig_HSR & DIR))) {
		if (elp_debug > 0)
			printk(notfound_msg, 1);
		return -1;	/* It can't be 3c505 if HCR.DIR != HSR.DIR */
	}
	/* Enable interrupts - we need timers! */
	save_flags(flags);
	sti();
 
	/* Wait for a while; the adapter may still be booting up */
	if (elp_debug > 0)
		printk(stilllooking_msg);
	if (orig_HCR & DIR) {
		/* If HCR.DIR is up, we pull it down. HSR.DIR should follow. */
		outb_control(orig_HCR & ~DIR, addr);
		timeout = jiffies + 30;
		while (jiffies < timeout);
		restore_flags(flags);
		if (inb_status(addr) & DIR) {
			outb_control(orig_HCR, addr);
			if (elp_debug > 0)
				printk(notfound_msg, 2);
			return -1;
		}
	} else {
		/* If HCR.DIR is down, we pull it up. HSR.DIR should follow. */
		outb_control(orig_HCR | DIR, addr);
		timeout = jiffies + 30;
		while (jiffies < timeout);
		restore_flags(flags);
		if (!(inb_status(addr) & DIR)) {
			outb_control(orig_HCR, addr);
			if (elp_debug > 0)
				printk(notfound_msg, 3);
			return -1;
		}
	}
	/*
	 * It certainly looks like a 3c505. If it has DMA enabled, it needs
	 * a hard reset. Also, do a hard reset if selected at the compile time.
	 */
	if (elp_debug > 0)
		printk(found_msg);
 
	return 0;
}
 
/*************************************************************
 *
 * Search through addr_list[] and try to find a 3C505
 * Called only by eplus_probe
 *************************************************************/
 
static int elp_autodetect(struct device *dev)
{
	int idx = 0;
 
	/* if base address set, then only check that address
	   otherwise, run through the table */
	if (dev->base_addr != 0) {	/* dev->base_addr == 0 ==> plain autodetect */
		if (elp_sense(dev) == 0)
			return dev->base_addr;
	} else
		while ((dev->base_addr = addr_list[idx++])) {
			if (elp_sense(dev) == 0)
				return dev->base_addr;
		}
 
	/* could not find an adapter */
	if (elp_debug > 0)
		printk(couldnot_msg, dev->name);
 
	return 0;		/* Because of this, the layer above will return -ENODEV */
}
 
 
/******************************************************
 *
 * probe for an Etherlink Plus board at the specified address
 *
 ******************************************************/
 
/* There are three situations we need to be able to detect here:
 
 *  a) the card is idle
 *  b) the card is still booting up
 *  c) the card is stuck in a strange state (some DOS drivers do this)
 *
 * In case (a), all is well.  In case (b), we wait 10 seconds to see if the
 * card finishes booting, and carry on if so.  In case (c), we do a hard reset,
 * loop round, and hope for the best.
 *
 * This is all very unpleasant, but hopefully avoids the problems with the old
 * probe code (which had a 15-second delay if the card was idle, and didn't
 * work at all if it was in a weird state).
 */
 
int elplus_probe(struct device *dev)
{
	elp_device *adapter;
	int i, tries, tries1, timeout, okay;
 
	/*
	 *  setup adapter structure
	 */
 
	dev->base_addr = elp_autodetect(dev);
	if (!(dev->base_addr))
		return -ENODEV;
 
	/*
	 * setup ptr to adapter specific information
	 */
	adapter = (elp_device *) (dev->priv = kmalloc(sizeof(elp_device), GFP_KERNEL));
	if (adapter == NULL) {
		printk("%s: out of memory\n", dev->name);
		return -ENODEV;
        }
 
	for (tries1 = 0; tries1 < 3; tries1++) {
		outb_control((inb_control(dev->base_addr) | CMDE) & ~DIR, dev->base_addr);
		/* First try to write just one byte, to see if the card is
		 * responding at all normally.
		 */
		timeout = jiffies + 5;
		okay = 0;
		while (jiffies < timeout && !(inb_status(dev->base_addr) & HCRE));
		if ((inb_status(dev->base_addr) & HCRE)) {
			outb_command(0, dev->base_addr);	/* send a spurious byte */
			timeout = jiffies + 5;
			while (jiffies < timeout && !(inb_status(dev->base_addr) & HCRE));
			if (inb_status(dev->base_addr) & HCRE)
				okay = 1;
		}
		if (!okay) {
			/* Nope, it's ignoring the command register.  This means that
			 * either it's still booting up, or it's died.
			 */
			printk("%s: command register wouldn't drain, ", dev->name);
			if ((inb_status(dev->base_addr) & 7) == 3) {
				/* If the adapter status is 3, it *could* still be booting.
				 * Give it the benefit of the doubt for 10 seconds.
				 */
				printk("assuming 3c505 still starting\n");
				timeout = jiffies + 10 * HZ;
				while (jiffies < timeout && (inb_status(dev->base_addr) & 7));
				if (inb_status(dev->base_addr) & 7) {
					printk("%s: 3c505 failed to start\n", dev->name);
				} else {
					okay = 1;  /* It started */
				}
			} else {
				/* Otherwise, it must just be in a strange state.  We probably
				 * need to kick it.
				 */
				printk("3c505 is sulking\n");
			}
		}
		for (tries = 0; tries < 5 && okay; tries++) {
 
			/*
			 * Try to set the Ethernet address, to make sure that the board
			 * is working.
			 */
			adapter->tx_pcb.command = CMD_STATION_ADDRESS;
			adapter->tx_pcb.length = 0;
			autoirq_setup(0);
			if (!send_pcb(dev, &adapter->tx_pcb)) {
				printk("%s: could not send first PCB\n", dev->name);
				autoirq_report(0);
				continue;
			}
			if (!receive_pcb(dev, &adapter->rx_pcb)) {
				printk("%s: could not read first PCB\n", dev->name);
				autoirq_report(0);
				continue;
			}
			if ((adapter->rx_pcb.command != CMD_ADDRESS_RESPONSE) ||
			    (adapter->rx_pcb.length != 6)) {
				printk("%s: first PCB wrong (%d, %d)\n", dev->name, adapter->rx_pcb.command, adapter->rx_pcb.length);
				autoirq_report(0);
				continue;
			}
			goto okay;
		}
		/* It's broken.  Do a hard reset to re-initialise the board,
		 * and try again.
		 */
		printk(KERN_INFO "%s: resetting adapter\n", dev->name);
		outb_control(inb_control(dev->base_addr) | FLSH | ATTN, dev->base_addr);
		outb_control(inb_control(dev->base_addr) & ~(FLSH | ATTN), dev->base_addr);
	}
	printk("%s: failed to initialise 3c505\n", dev->name);
	return -ENODEV;
 
      okay:
	if (dev->irq) {		/* Is there a preset IRQ? */
		int rpt = autoirq_report(0);
		if (dev->irq != rpt) {
			printk("%s: warning, irq %d configured but %d detected\n", dev->name, dev->irq, rpt);
			return -ENODEV;
		}
		/* if dev->irq == autoirq_report(0), all is well */
	} else			/* No preset IRQ; just use what we can detect */
		dev->irq = autoirq_report(0);
	switch (dev->irq) {	/* Legal, sane? */
	case 0:
		printk("%s: No IRQ reported by autoirq_report().\n", dev->name);
		printk("%s: Check the jumpers of your 3c505 board.\n", dev->name);
		return -ENODEV;
	case 1:
	case 6:
	case 8:
	case 13:
		printk("%s: Impossible IRQ %d reported by autoirq_report().\n",
		       dev->name, dev->irq);
		return -ENODEV;
	}
	/*
	 *  Now we have the IRQ number so we can disable the interrupts from
	 *  the board until the board is opened.
	 */
	outb_control(inb_control(dev->base_addr) & ~CMDE, dev->base_addr);
 
	/*
	 * copy ethernet address into structure
	 */
	for (i = 0; i < 6; i++)
		dev->dev_addr[i] = adapter->rx_pcb.data.eth_addr[i];
 
	/* set up the DMA channel */
	dev->dma = ELP_DMA;
 
	/*
	 * print remainder of startup message
	 */
	printk("%s: 3c505 at %#lx, irq %d, dma %d, ",
	       dev->name, dev->base_addr, dev->irq, dev->dma);
	printk("addr %02x:%02x:%02x:%02x:%02x:%02x, ",
	       dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
	       dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
 
	/*
	 * read more information from the adapter
	 */
 
	adapter->tx_pcb.command = CMD_ADAPTER_INFO;
	adapter->tx_pcb.length = 0;
	if (!send_pcb(dev, &adapter->tx_pcb) ||
	    !receive_pcb(dev, &adapter->rx_pcb) ||
	    (adapter->rx_pcb.command != CMD_ADAPTER_INFO_RESPONSE) ||
	    (adapter->rx_pcb.length != 10)) {
		printk("%s: not responding to second PCB\n", dev->name);
	}
	printk("rev %d.%d, %dk\n", adapter->rx_pcb.data.info.major_vers, adapter->rx_pcb.data.info.minor_vers, adapter->rx_pcb.data.info.RAM_sz);
 
	/*
	 * reconfigure the adapter memory to better suit our purposes
	 */
	adapter->tx_pcb.command = CMD_CONFIGURE_ADAPTER_MEMORY;
	adapter->tx_pcb.length = 12;
	adapter->tx_pcb.data.memconf.cmd_q = 8;
	adapter->tx_pcb.data.memconf.rcv_q = 8;
	adapter->tx_pcb.data.memconf.mcast = 10;
	adapter->tx_pcb.data.memconf.frame = 10;
	adapter->tx_pcb.data.memconf.rcv_b = 10;
	adapter->tx_pcb.data.memconf.progs = 0;
	if (!send_pcb(dev, &adapter->tx_pcb) ||
	    !receive_pcb(dev, &adapter->rx_pcb) ||
	    (adapter->rx_pcb.command != CMD_CONFIGURE_ADAPTER_RESPONSE) ||
	    (adapter->rx_pcb.length != 2)) {
		printk("%s: could not configure adapter memory\n", dev->name);
	}
	if (adapter->rx_pcb.data.configure) {
		printk("%s: adapter configuration failed\n", dev->name);
	}
	/*
	 * and reserve the address region
	 */
	request_region(dev->base_addr, ELP_IO_EXTENT, "3c505");
 
	/*
	 * initialise the device
	 */
	elp_init(dev);
 
	return 0;
}
 
#ifdef MODULE
static char devicename[9] = {0,};
static struct device dev_3c505 =
{
	devicename,		/* device name is inserted by linux/drivers/net/net_init.c */
	0, 0, 0, 0,
	0, 0,
	0, 0, 0, NULL, elplus_probe};
 
int io = 0x300;
int irq = 0;
 
int init_module(void)
{
	if (io == 0)
		printk("3c505: You should not use auto-probing with insmod!\n");
	dev_3c505.base_addr = io;
	dev_3c505.irq = irq;
	if (register_netdev(&dev_3c505) != 0) {
		return -EIO;
	}
	return 0;
}
 
void cleanup_module(void)
{
	unregister_netdev(&dev_3c505);
	kfree(dev_3c505.priv);
	dev_3c505.priv = NULL;
 
	/* If we don't do this, we can't re-insmod it later. */
	release_region(dev_3c505.base_addr, ELP_IO_EXTENT);
}
 
#endif				/* MODULE */
 
 
/*
 * Local Variables:
 *  c-file-style: "linux"
 *  tab-width: 8
 *  compile-command: "gcc -D__KERNEL__ -I/discs/bibble/src/linux-1.3.69/include  -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -fno-strength-reduce -pipe -m486 -DCPU=486 -DMODULE  -c 3c505.c"
 * End:
 */
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.