OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [net/] [sunlance.c] - Rev 1765

Compare with Previous | Blame | View Log

/* lance.c: Linux/Sparc/Lance driver */
/*
	Written 1995, 1996 by Miguel de Icaza
  Sources:
	The Linux  depca driver
	The Linux  lance driver.
	The Linux  skeleton driver.
        The NetBSD Sparc/Lance driver.
	Theo de Raadt (deraadt@openbsd.org)
	NCR92C990 Lan Controller manual
 
1.4:
	Added support to run with a ledma on the Sun4m
1.5:
        Added multiple card detection.
 
	4/17/97: Burst sizes and tpe selection on sun4m by Christian Dost
	         (ecd@pool.informatik.rwth-aachen.de)
*/
#undef DEBUG_DRIVER
static char *version =
	"sunlance.c:v1.6 19/Apr/96 Miguel de Icaza (miguel@nuclecu.unam.mx)\n";
 
static char *lancestr = "LANCE";
static char *lancedma = "LANCE DMA";
 
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/malloc.h>
#include <linux/string.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/errno.h>
#include <asm/byteorder.h>	/* Used by the checksum routines */
 
/* Used for the temporal inet entries and routing */
#include <linux/socket.h>
#include <linux/route.h>
 
#include <asm/idprom.h>
#include <asm/sbus.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
 
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
 
/* Define: 2^4 Tx buffers and 2^4 Rx buffers */
#ifndef LANCE_LOG_TX_BUFFERS
#define LANCE_LOG_TX_BUFFERS 4
#define LANCE_LOG_RX_BUFFERS 4
#endif
 
#define LE_CSR0 0
#define LE_CSR1 1
#define LE_CSR2 2
#define LE_CSR3 3
 
#define LE_MO_PROM      0x8000  /* Enable promiscuous mode */
 
#define	LE_C0_ERR	0x8000	/* Error: set if BAB, SQE, MISS or ME is set */
#define	LE_C0_BABL	0x4000	/* BAB:  Babble: tx timeout. */
#define	LE_C0_CERR	0x2000	/* SQE:  Signal quality error */
#define	LE_C0_MISS	0x1000	/* MISS: Missed a packet */
#define	LE_C0_MERR	0x0800	/* ME:   Memory error */
#define	LE_C0_RINT	0x0400	/* Received interrupt */
#define	LE_C0_TINT	0x0200	/* Transmitter Interrupt */
#define	LE_C0_IDON	0x0100	/* IFIN: Init finished. */
#define	LE_C0_INTR	0x0080	/* Interrupt or error */
#define	LE_C0_INEA	0x0040	/* Interrupt enable */
#define	LE_C0_RXON	0x0020	/* Receiver on */
#define	LE_C0_TXON	0x0010	/* Transmitter on */
#define	LE_C0_TDMD	0x0008	/* Transmitter demand */
#define	LE_C0_STOP	0x0004	/* Stop the card */
#define	LE_C0_STRT	0x0002	/* Start the card */
#define	LE_C0_INIT	0x0001	/* Init the card */
 
#define	LE_C3_BSWP	0x4     /* SWAP */
#define	LE_C3_ACON	0x2	/* ALE Control */
#define	LE_C3_BCON	0x1	/* Byte control */
 
/* Receive message descriptor 1 */
#define LE_R1_OWN       0x80    /* Who owns the entry */
#define LE_R1_ERR       0x40    /* Error: if FRA, OFL, CRC or BUF is set */
#define LE_R1_FRA       0x20    /* FRA: Frame error */
#define LE_R1_OFL       0x10    /* OFL: Frame overflow */
#define LE_R1_CRC       0x08    /* CRC error */
#define LE_R1_BUF       0x04    /* BUF: Buffer error */
#define LE_R1_SOP       0x02    /* Start of packet */
#define LE_R1_EOP       0x01    /* End of packet */
#define LE_R1_POK       0x03    /* Packet is complete: SOP + EOP */
 
#define LE_T1_OWN       0x80    /* Lance owns the packet */
#define LE_T1_ERR       0x40    /* Error summary */
#define LE_T1_EMORE     0x10    /* Error: more than one retry needed */
#define LE_T1_EONE      0x08    /* Error: one retry needed */
#define LE_T1_EDEF      0x04    /* Error: deferred */
#define LE_T1_SOP       0x02    /* Start of packet */
#define LE_T1_EOP       0x01    /* End of packet */
#define LE_T1_POK	0x03	/* Packet is complete: SOP + EOP */
 
#define LE_T3_BUF       0x8000  /* Buffer error */
#define LE_T3_UFL       0x4000  /* Error underflow */
#define LE_T3_LCOL      0x1000  /* Error late collision */
#define LE_T3_CLOS      0x0800  /* Error carrier loss */
#define LE_T3_RTY       0x0400  /* Error retry */
#define LE_T3_TDR       0x03ff  /* Time Domain Reflectometry counter */
 
#define TX_RING_SIZE			(1 << (LANCE_LOG_TX_BUFFERS))
#define TX_RING_MOD_MASK		(TX_RING_SIZE - 1)
#define TX_RING_LEN_BITS		((LANCE_LOG_TX_BUFFERS) << 29)
 
#define RX_RING_SIZE			(1 << (LANCE_LOG_RX_BUFFERS))
#define RX_RING_MOD_MASK		(RX_RING_SIZE - 1)
#define RX_RING_LEN_BITS		((LANCE_LOG_RX_BUFFERS) << 29)
 
#define PKT_BUF_SZ		1544
#define RX_BUFF_SIZE            PKT_BUF_SZ
#define TX_BUFF_SIZE            PKT_BUF_SZ
 
struct lance_rx_desc {
	unsigned short rmd0;        /* low address of packet */
	unsigned char  rmd1_bits;   /* descriptor bits */
	unsigned char  rmd1_hadr;   /* high address of packet */
	short    length;    	    /* This length is 2s complement (negative)!
				     * Buffer length
				     */
	unsigned short mblength;    /* This is the actual number of bytes received */
};
 
struct lance_tx_desc {
	unsigned short tmd0;        /* low address of packet */
	unsigned char  tmd1_bits;   /* descriptor bits */
	unsigned char  tmd1_hadr;   /* high address of packet */
	short length;          	    /* Length is 2s complement (negative)! */
	unsigned short misc;
};
 
/* The LANCE initialization block, described in databook. */
/* On the Sparc, this block should be on a DMA region     */
struct lance_init_block {
	unsigned short mode;		/* Pre-set mode (reg. 15) */
	unsigned char phys_addr[6];     /* Physical ethernet address */
	unsigned filter[2];		/* Multicast filter. */
 
	/* Receive and transmit ring base, along with extra bits. */
	unsigned short rx_ptr;		/* receive descriptor addr */
	unsigned short rx_len;		/* receive len and high addr */
	unsigned short tx_ptr;		/* transmit descriptor addr */
	unsigned short tx_len;		/* transmit len and high addr */
 
	/* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
	struct lance_rx_desc brx_ring[RX_RING_SIZE];
	struct lance_tx_desc btx_ring[TX_RING_SIZE];
 
	char   rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
	char   tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
};
 
struct lance_private {
	char *name;
	volatile struct lance_regs *ll;
	volatile struct lance_init_block *init_block;
 
	int rx_new, tx_new;
	int rx_old, tx_old;
 
	struct enet_statistics stats;
	struct Linux_SBus_DMA *ledma; /* if set this points to ledma and arch=4m */
 
	int tpe;		      /* cable-selection is TPE */
	int burst_sizes;	      /* ledma SBus burst sizes */
};
 
#define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
			lp->tx_old+TX_RING_MOD_MASK-lp->tx_new:\
			lp->tx_old - lp->tx_new-1)
 
/* On the sparc, the lance control ports are memory mapped */
struct lance_regs {
	unsigned short rdp;			/* register data port */
	unsigned short rap;			/* register address port */
};
 
int sparc_lance_debug = 2;
 
/* The Lance uses 24 bit addresses */
/* On the Sun4c the DVMA will provide the remaining bytes for us */
/* On the Sun4m we have to instruct the ledma to provide them    */
#define LANCE_ADDR(x) ((int)(x) & ~0xff000000)
 
/* Load the CSR registers */
static void load_csrs (struct lance_private *lp)
{
	volatile struct lance_regs *ll = lp->ll;
	volatile struct lance_init_block *ib = lp->init_block;
	int leptr;
 
	leptr = LANCE_ADDR (ib);
	ll->rap = LE_CSR1;
	ll->rdp = (leptr & 0xFFFF);
	ll->rap = LE_CSR2;
	ll->rdp = leptr >> 16;
	ll->rap = LE_CSR3;
	ll->rdp = LE_C3_BSWP | LE_C3_ACON | LE_C3_BCON;
 
	/* Point back to csr0 */
	ll->rap = LE_CSR0;
}
 
#define ZERO 0
 
/* Setup the Lance Rx and Tx rings */
/* Sets dev->tbusy */
static void lance_init_ring (struct device *dev)
{
	struct lance_private *lp = (struct lance_private *) dev->priv;
	volatile struct lance_init_block *ib = lp->init_block;
	int leptr;
	int i;
 
	/* Lock out other processes while setting up hardware */
	dev->tbusy = 1;
	lp->rx_new = lp->tx_new = 0;
	lp->rx_old = lp->tx_old = 0;
 
	ib->mode = 0;
 
	/* Copy the ethernet address to the lance init block
	 * Note that on the sparc you need to swap the ethernet address.
	 */
	ib->phys_addr [0] = dev->dev_addr [1];
	ib->phys_addr [1] = dev->dev_addr [0];
	ib->phys_addr [2] = dev->dev_addr [3];
	ib->phys_addr [3] = dev->dev_addr [2];
	ib->phys_addr [4] = dev->dev_addr [5];
	ib->phys_addr [5] = dev->dev_addr [4];
 
	if (ZERO)
		printk ("TX rings:\n");
 
	/* Setup the Tx ring entries */
	for (i = 0; i <= TX_RING_SIZE; i++) {
		leptr = LANCE_ADDR(&ib->tx_buf[i][0]);
		ib->btx_ring [i].tmd0      = leptr;
		ib->btx_ring [i].tmd1_hadr = leptr >> 16;
		ib->btx_ring [i].tmd1_bits = 0;
		ib->btx_ring [i].length    = 0xf000; /* The ones required by tmd2 */
		ib->btx_ring [i].misc      = 0;
		if (i < 3)
			if (ZERO) printk ("%d: 0x%8.8x\n", i, leptr);
	}
 
	/* Setup the Rx ring entries */
	if (ZERO)
		printk ("RX rings:\n");
	for (i = 0; i < RX_RING_SIZE; i++) {
		leptr = LANCE_ADDR(&ib->rx_buf[i][0]);
 
		ib->brx_ring [i].rmd0      = leptr;
		ib->brx_ring [i].rmd1_hadr = leptr >> 16;
		ib->brx_ring [i].rmd1_bits = LE_R1_OWN;
		ib->brx_ring [i].length    = -RX_BUFF_SIZE | 0xf000;
		ib->brx_ring [i].mblength  = 0;
		if (i < 3 && ZERO)
			printk ("%d: 0x%8.8x\n", i, leptr);
	}
 
	/* Setup the initialization block */
 
	/* Setup rx descriptor pointer */
	leptr = LANCE_ADDR(&ib->brx_ring);
	ib->rx_len = (LANCE_LOG_RX_BUFFERS << 13) | (leptr >> 16);
	ib->rx_ptr = leptr;
	if (ZERO)
		printk ("RX ptr: %8.8x\n", leptr);
 
	/* Setup tx descriptor pointer */
	leptr = LANCE_ADDR(&ib->btx_ring);
	ib->tx_len = (LANCE_LOG_TX_BUFFERS << 13) | (leptr >> 16);
	ib->tx_ptr = leptr;
	if (ZERO)
		printk ("TX ptr: %8.8x\n", leptr);
 
	/* Clear the multicast filter */
	ib->filter [0] = 0;
	ib->filter [1] = 0;
}
 
static int init_restart_lance (struct lance_private *lp)
{
	volatile struct lance_regs *ll = lp->ll;
	int i;
 
	if (lp->ledma) {
		struct sparc_dma_registers *dregs = lp->ledma->regs;
		unsigned long creg;
 
		while (dregs->cond_reg & DMA_FIFO_ISDRAIN) /* E-Cache draining */
			barrier();
 
		creg = dregs->cond_reg;
		if (lp->burst_sizes & DMA_BURST32)
			creg |= DMA_E_BURST8;
		else
			creg &= ~DMA_E_BURST8;
 
		creg |= (DMA_DSBL_RD_DRN | DMA_DSBL_WR_INV | DMA_FIFO_INV);
 
		if (lp->tpe)
			creg |= DMA_EN_ENETAUI;
		else
			creg &= ~DMA_EN_ENETAUI;
		udelay(20);
		dregs->cond_reg = creg;
		udelay(200);
	}
 
	ll->rap = LE_CSR0;
	ll->rdp = LE_C0_INIT;
 
	/* Wait for the lance to complete initialization */
	for (i = 0; (i < 100) && !(ll->rdp & (LE_C0_ERR | LE_C0_IDON)); i++)
		barrier();
	if ((i == 100) || (ll->rdp & LE_C0_ERR)) {
		printk ("LANCE unopened after %d ticks, csr0=%4.4x.\n", i, ll->rdp);
		if (lp->ledma)
			printk ("dcsr=%8.8x\n",
				(unsigned int) lp->ledma->regs->cond_reg);
		return -1;
	}
 
	/* Clear IDON by writing a "1", enable interrupts and start lance */
	ll->rdp = LE_C0_IDON;
	ll->rdp = LE_C0_INEA | LE_C0_STRT;
 
	if (lp->ledma)
		lp->ledma->regs->cond_reg |= DMA_INT_ENAB;
 
	return 0;
}
 
static int lance_rx (struct device *dev)
{
	struct lance_private *lp = (struct lance_private *) dev->priv;
	volatile struct lance_init_block *ib = lp->init_block;
	volatile struct lance_regs *ll = lp->ll;
	volatile struct lance_rx_desc *rd;
	unsigned char bits;
 
#ifdef TEST_HITS
	printk ("[");
	for (i = 0; i < RX_RING_SIZE; i++) {
		if (i == lp->rx_new)
			printk ("%s",
				ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "_" : "X");
		else
			printk ("%s",
				ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "." : "1");
	}
	printk ("]");
#endif
 
	ll->rdp = LE_C0_RINT|LE_C0_INEA;
	for (rd = &ib->brx_ring [lp->rx_new];
	     !((bits = rd->rmd1_bits) & LE_R1_OWN);
	     rd = &ib->brx_ring [lp->rx_new]) {
		int pkt_len;
		struct sk_buff *skb;
 
		/* We got an incomplete frame? */
		if ((bits & LE_R1_POK) != LE_R1_POK) {
			lp->stats.rx_over_errors++;
			lp->stats.rx_errors++;
			continue;
		} else if (bits & LE_R1_ERR) {
			/* Count only the end frame as a tx error, not the beginning */
			if (bits & LE_R1_BUF) lp->stats.rx_fifo_errors++;
			if (bits & LE_R1_CRC) lp->stats.rx_crc_errors++;
			if (bits & LE_R1_OFL) lp->stats.rx_over_errors++;
			if (bits & LE_R1_FRA) lp->stats.rx_frame_errors++;
			if (bits & LE_R1_EOP) lp->stats.rx_errors++;
		} else {
			pkt_len = rd->mblength;
			skb = dev_alloc_skb (pkt_len+2);
			if (skb == NULL) {
				printk ("%s: Memory squeeze, deferring packet.\n",
					dev->name);
				lp->stats.rx_dropped++;
				rd->mblength = 0;
				rd->rmd1_bits = LE_R1_OWN;
				lp->rx_new = (lp->rx_new + 1) & RX_RING_MOD_MASK;
				return 0;
			}
 
			skb->dev = dev;
			skb_reserve (skb, 2);               /* 16 byte align */
			skb_put (skb, pkt_len);             /* make room */
			eth_copy_and_sum(skb,
					 (unsigned char *)&(ib->rx_buf [lp->rx_new][0]),
					 pkt_len, 0);
			skb->protocol = eth_type_trans (skb,dev);
			netif_rx (skb);
			lp->stats.rx_packets++;
		}
 
		/* Return the packet to the pool */
		rd->mblength = 0;
		rd->rmd1_bits = LE_R1_OWN;
		lp->rx_new = (lp->rx_new + 1) & RX_RING_MOD_MASK;
	}
	return 0;
}
 
static int lance_tx (struct device *dev)
{
	struct lance_private *lp = (struct lance_private *) dev->priv;
	volatile struct lance_init_block *ib = lp->init_block;
	volatile struct lance_regs *ll = lp->ll;
	volatile struct lance_tx_desc *td;
	int i, j;
	int status;
 
	/* csr0 is 2f3 */
	ll->rdp = LE_C0_TINT | LE_C0_INEA;
	/* csr0 is 73 */
	j = lp->tx_old;
	for (i = 0; i < TX_RING_SIZE; i++) {
		td = &ib->btx_ring [j];
 
		if (td->tmd1_bits & LE_T1_ERR) {
			status = td->misc;
 
			lp->stats.tx_errors++;
			if (status & LE_T3_RTY)  lp->stats.tx_aborted_errors++;
			if (status & LE_T3_CLOS) lp->stats.tx_carrier_errors++;
			if (status & LE_T3_LCOL) lp->stats.tx_window_errors++;
 
			/* buffer errors and underflows turn off the transmitter */
			/* Restart the adapter */
			if (status & (LE_T3_BUF|LE_T3_UFL)) {
				lp->stats.tx_fifo_errors++;
 
				printk ("%s: Tx: ERR_BUF|ERR_UFL, restarting\n",
					dev->name);
				/* Stop the lance */
				ll->rap = LE_CSR0;
				ll->rdp = LE_C0_STOP;
				lance_init_ring (dev);
				load_csrs (lp);
				init_restart_lance (lp);
				return 0;
			}
		} else if ((td->tmd1_bits & LE_T1_POK) == LE_T1_POK) {
			/*
			 * So we don't count the packet more than once.
			 */
			td->tmd1_bits &= ~(LE_T1_POK);
 
			/* One collision before packet was sent. */
			if (td->tmd1_bits & LE_T1_EONE)
				lp->stats.collisions++;
 
			/* More than one collision, be optimistic. */
			if (td->tmd1_bits & LE_T1_EMORE)
				lp->stats.collisions += 2;
 
			/* What to set here? */
			if (td->tmd1_bits & LE_T1_EDEF)
				/* EMPTY */ ;
 
			lp->stats.tx_packets++;
		}
 
		j = (j + 1) & TX_RING_MOD_MASK;
	}
	lp->tx_old = (lp->tx_old+1) & TX_RING_MOD_MASK;
 
	ll->rdp = LE_C0_TINT | LE_C0_INEA;
	return 0;
}
 
static void lance_interrupt (int irq, void *dev_id, struct pt_regs *regs)
{
	struct device *dev;
	struct lance_private *lp;
	volatile struct lance_regs *ll;
	int csr0;
 
#ifdef OLD_STYLE_IRQ
	dev = (struct device *) (irq2dev_map [irq]);
#else
	dev = (struct device *) dev_id;
#endif
 
	lp = (struct lance_private *) dev->priv;
	ll = lp->ll;
 
	if (lp->ledma) {
		if (lp->ledma->regs->cond_reg & DMA_HNDL_ERROR) {
			printk ("%s: should reset my ledma (dmacsr=%8.8x, csr=%4.4x\n",
				dev->name, (unsigned int) lp->ledma->regs->cond_reg,
				ll->rdp); 
			printk ("send mail to miguel@nuclecu.unam.mx\n");
		}
	}
	if (dev->interrupt)
		printk ("%s: again", dev->name);
 
	dev->interrupt = 1;
 
	csr0 = ll->rdp;
 
	/* Acknowledge all the interrupt sources ASAP */
	ll->rdp = csr0 & 0x004f;
 
	if ((csr0 & LE_C0_ERR)) {
		/* Clear the error condition */
		ll->rdp = LE_C0_BABL|LE_C0_ERR|LE_C0_MISS|LE_C0_INEA;
	}
 
	if (csr0 & LE_C0_RINT)
		lance_rx (dev);
 
	if (csr0 & LE_C0_TINT)
		lance_tx (dev);
 
	if ((TX_BUFFS_AVAIL >= 0) && dev->tbusy) {
		dev->tbusy = 0;
		mark_bh (NET_BH);
	}
	ll->rap = LE_CSR0;
	ll->rdp = 0x7940;
 
	dev->interrupt = 0;
}
 
struct device *last_dev = 0;
 
static int lance_open (struct device *dev)
{
	struct lance_private *lp = (struct lance_private *)dev->priv;
	volatile struct lance_regs *ll = lp->ll;
	int status = 0;
 
	last_dev = dev;
 
	if (request_irq (dev->irq, &lance_interrupt, 0, lancestr, (void *) dev)) {
		printk ("Lance: Can't get irq %d\n", dev->irq);
		return -EAGAIN;
	}
 
	/* Stop the Lance */
	ll->rap = LE_CSR0;
	ll->rdp = LE_C0_STOP;
 
#ifdef OLD_STYLE_IRQ
	irq2dev_map [dev->irq] = dev;
#endif
 
	/* On the 4m, setup the ledma to provide the upper bits for buffers */
	if (lp->ledma)
		lp->ledma->regs->dma_test = ((unsigned int) lp->init_block) & 0xff000000;
 
	lance_init_ring (dev);
	load_csrs (lp);
 
	dev->tbusy = 0;
	dev->interrupt = 0;
	dev->start = 1;
 
	status = init_restart_lance (lp);
#if 0
	/* To emulate SunOS, we add a route to the local network */
	rt_add (RTF_UP,
		dev->pa_addr & ip_get_mask (dev->pa_addr),
		ip_get_mask (dev->pa_addr),
		0, dev, dev->mtu, 0, 0);
#endif
	return status;
}
 
static int lance_close (struct device *dev)
{
	struct lance_private *lp = (struct lance_private *) dev->priv;
	volatile struct lance_regs *ll = lp->ll;
 
	dev->start = 0;
	dev->tbusy = 1;
 
	/* Stop the card */
	ll->rap = LE_CSR0;
	ll->rdp = LE_C0_STOP;
 
	free_irq (dev->irq, NULL);
#ifdef OLD_STYLE_IRQ
	irq2dev_map [dev->irq] = NULL;
#endif
 
	return 0;
}
 
static inline int lance_reset (struct device *dev)
{
	struct lance_private *lp = (struct lance_private *)dev->priv;
	volatile struct lance_regs *ll = lp->ll;
	int status;
 
	/* Stop the lance */
	ll->rap = LE_CSR0;
	ll->rdp = LE_C0_STOP;
 
	/* On the 4m, reset the dma too */
	if (lp->ledma) {
		printk ("resetting ledma\n");
		lp->ledma->regs->cond_reg |= DMA_RST_ENET;
		udelay (200);
		lp->ledma->regs->cond_reg &= ~DMA_RST_ENET;
		lp->ledma->regs->dma_test = ((unsigned int) lp->init_block) & 0xff000000;
	}
	lance_init_ring (dev);
	load_csrs (lp);
	dev->trans_start = jiffies;
	dev->interrupt = 0;
	dev->start = 1;
	dev->tbusy = 0;
	status = init_restart_lance (lp);
#ifdef DEBUG_DRIVER
	printk ("Lance restart=%d\n", status);
#endif
	return status;
}
 
static int lance_start_xmit (struct sk_buff *skb, struct device *dev)
{
	struct lance_private *lp = (struct lance_private *)dev->priv;
	volatile struct lance_regs *ll = lp->ll;
	volatile struct lance_init_block *ib = lp->init_block;
	volatile unsigned long flush;
	int entry, skblen, len;
	int status = 0;
	static int outs;
 
	/* Transmitter timeout, serious problems */
	if (dev->tbusy) {
		int tickssofar = jiffies - dev->trans_start;
 
		if (tickssofar < 100) {
			status = -1;
		} else {
			printk ("%s: transmit timed out, status %04x, resetting\n",
				dev->name, ll->rdp);
			lance_reset (dev);
		}
		return status;
	}
 
	if (skb == NULL) {
		dev_tint (dev);
		printk ("skb is NULL\n");
		return 0;
	}
 
	if (skb->len <= 0) {
		printk ("skb len is %ld\n", skb->len);
		return 0;
	}
	/* Block a timer-based transmit from overlapping. */
#ifdef OLD_METHOD
	dev->tbusy = 1;
#else
	if (set_bit (0, (void *) &dev->tbusy) != 0) {
		printk ("Transmitter access conflict.\n");
		return -1;
	}
#endif
	skblen = skb->len;
 
	if (!TX_BUFFS_AVAIL)
		return -1;
 
#ifdef DEBUG_DRIVER
	/* dump the packet */
	{
		int i;
 
		for (i = 0; i < 64; i++) {
			if ((i % 16) == 0)
				printk ("\n");
			printk ("%2.2x ", skb->data [i]);
		}
	}
#endif
	len = (skblen <= ETH_ZLEN) ? ETH_ZLEN : skblen;
	entry = lp->tx_new & TX_RING_MOD_MASK;
	ib->btx_ring [entry].length = (-len) | 0xf000;
	ib->btx_ring [entry].misc = 0;
 
	memcpy ((char *)&ib->tx_buf [entry][0], skb->data, skblen);
 
	/* Clear the slack of the packet, do I need this? */
	if (len != skblen)
		memset ((char *) &ib->tx_buf [entry][skblen], 0, len - skblen);
 
	/* Now, give the packet to the lance */
	ib->btx_ring [entry].tmd1_bits = (LE_T1_POK|LE_T1_OWN);
	lp->tx_new = (lp->tx_new+1) & TX_RING_MOD_MASK;
 
	outs++;
	/* Kick the lance: transmit now */
	ll->rdp = LE_C0_INEA | LE_C0_TDMD;
	dev->trans_start = jiffies;
	dev_kfree_skb (skb, FREE_WRITE);
 
	if (TX_BUFFS_AVAIL)
		dev->tbusy = 0;
 
	/* Read back CSR to invalidate the E-Cache.
	 * This is needed, because DMA_DSBL_WR_INV is set. */
	if (lp->ledma)
		flush = ll->rdp;
 
	return status;
}
 
static struct enet_statistics *lance_get_stats (struct device *dev)
{
	struct lance_private *lp = (struct lance_private *) dev->priv;
 
	return &lp->stats;
}
 
static void lance_set_multicast (struct device *dev)
{
#ifdef NOT_YET
	struct lance_private *lp = (struct lance_private *) dev->priv;
	volatile struct lance_init_block *ib = lp->init_block;
	volatile struct lance_regs *ll = lp->ll;
 
	ll->rap = LE_CSR0;
	ll->rdp = LE_C0_STOP;
	lance_init_ring (dev);
	ib->mode |= LE_MO_PROM;
	lance_init_ring (dev);
	load_csrs (lp);
	init_restart_lance (lp);
	dev->tbusy = 0;
#endif
}
 
int sparc_lance_init (struct device *dev, struct linux_sbus_device *sdev,
		      struct Linux_SBus_DMA *ledma,
		      struct linux_sbus_device *lebuffer)
{
	static unsigned version_printed = 0;
	int    i;
	struct lance_private *lp;
	volatile struct lance_regs *ll;
 
	if (dev == NULL) {
		dev = init_etherdev (0, sizeof (struct lance_private));
	} else {
		dev->priv = kmalloc (sizeof (struct lance_private), GFP_KERNEL);
		if (dev->priv == NULL)
			return -ENOMEM;
	}
	if (sparc_lance_debug && version_printed++ == 0)
		printk (version);
 
	printk ("%s: LANCE ", dev->name);
	/* Fill the dev fields */
	dev->base_addr = (long) sdev;
 
	/* Copy the IDPROM ethernet address to the device structure, later we
	 * will copy the address in the device structure to the lance initialization
	 * block
	 */
	for (i = 0; i < 6; i++)
		printk ("%2.2x%c",
			dev->dev_addr [i] = idprom->id_eaddr [i], i == 5 ? ' ': ':');
	printk("\n");
 
	/* Get the IO region */
	prom_apply_sbus_ranges (&sdev->reg_addrs [0], sdev->num_registers);
	ll = sparc_alloc_io (sdev->reg_addrs [0].phys_addr, 0,
			     sizeof (struct lance_regs), lancestr,
			     sdev->reg_addrs[0].which_io, 0x0);
 
	/* Make certain the data structures used by the LANCE are aligned. */
	dev->priv = (void *)(((int)dev->priv + 7) & ~7);
	lp = (struct lance_private *) dev->priv;
	memset ((char *)dev->priv, 0, sizeof (struct lance_private));
 
	if (lebuffer){
		prom_apply_sbus_ranges (&sdev->reg_addrs [0], sdev->num_registers);
		lp->init_block = (void *)
			sparc_alloc_io (lebuffer->reg_addrs [0].phys_addr, 0,
				sizeof (struct lance_init_block), "lebuffer", 
				lebuffer->reg_addrs [0].which_io, 0);
	} else {
		lp->init_block = (void *)
			sparc_dvma_malloc (sizeof (struct lance_init_block),
				   lancedma);
	}
 
	lp->ll = ll;
	lp->name = lancestr;
	lp->ledma = ledma;
 
	lp->burst_sizes = 0;
	if (lp->ledma) {
		char cable_prop[4];
		unsigned int sbmask;
 
		/* Find burst-size property for ledma */
		lp->burst_sizes = prom_getintdefault(ledma->SBus_dev->prom_node,
						     "burst-sizes", 0);
 
		/* ledma may be capable of fast bursts, but sbus may not. */
		sbmask = prom_getintdefault(ledma->SBus_dev->my_bus->prom_node,
					    "burst-sizes", DMA_BURSTBITS);
		lp->burst_sizes &= sbmask;
 
		/* Get the cable-selection property */
		prom_getstring(ledma->SBus_dev->prom_node, "cable-selection",
			       cable_prop, sizeof(cable_prop));
		if (!strcmp(cable_prop, "aui"))
			lp->tpe = 0;
		else
			lp->tpe = 1;
 
		/* Reset ledma */
		lp->ledma->regs->cond_reg |= DMA_RST_ENET;
		udelay (200);
		lp->ledma->regs->cond_reg &= ~DMA_RST_ENET;
	}
 
	/* This should never happen. */
	if ((int)(lp->init_block->brx_ring) & 0x07) {
		printk(" **ERROR** LANCE Rx and Tx rings not on even boundary.\n");
		return ENODEV;
	}
 
	dev->open = &lance_open;
	dev->stop = &lance_close;
	dev->hard_start_xmit = &lance_start_xmit;
	dev->get_stats = &lance_get_stats;
	dev->set_multicast_list = &lance_set_multicast;
 
	dev->irq = (unsigned char) sdev->irqs [0].pri;
	dev->dma = 0;
	ether_setup (dev);
 
	return 0;
}
 
/* On 4m, find the associated dma for the lance chip */
static struct Linux_SBus_DMA *
find_ledma (struct linux_sbus_device *dev)
{
	struct Linux_SBus_DMA *p;
 
	for (p = dma_chain; p; p = p->next)
		if (p->SBus_dev == dev)
			return p;
	return 0;
}
 
/* Find all the lance cards on the system and initialize them */
int sparc_lance_probe (struct device *dev)
{
	struct linux_sbus *bus;
	struct linux_sbus_device *sdev = 0;
	struct Linux_SBus_DMA *ledma = 0;
	int cards = 0, v;
 
	for_each_sbus (bus) {
		for_each_sbusdev (sdev, bus) {
			if (cards) dev = NULL;
			if (strcmp (sdev->prom_name, "le") == 0) {
				cards++;
				if ((v = sparc_lance_init(dev, sdev, ledma,0)))
					return v;
			}
			if (strcmp (sdev->prom_name, "ledma") == 0) {
				cards++;
				ledma = find_ledma (sdev);
				sdev = sdev->child;
				if ((v = sparc_lance_init(dev, sdev, ledma,0)))
					return v;
				break;
			}
			if (strcmp (sdev->prom_name, "lebuffer") == 0){
				struct linux_sbus_device *le = sdev->child;
				cards++;
				if ((v = sparc_lance_init(dev, le, ledma,sdev)))
					return v;
				break;
			}
		} /* for each sbusdev */
	} /* for each sbus */
	if (!cards)
		return ENODEV;
	return 0;
}
 
/*
 * Local variables:
 *  version-control: t
 *  kept-new-versions: 5
 * End:
 */
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.