URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [net/] [sunlance.c] - Rev 1777
Go to most recent revision | Compare with Previous | Blame | View Log
/* lance.c: Linux/Sparc/Lance driver */ /* Written 1995, 1996 by Miguel de Icaza Sources: The Linux depca driver The Linux lance driver. The Linux skeleton driver. The NetBSD Sparc/Lance driver. Theo de Raadt (deraadt@openbsd.org) NCR92C990 Lan Controller manual 1.4: Added support to run with a ledma on the Sun4m 1.5: Added multiple card detection. 4/17/97: Burst sizes and tpe selection on sun4m by Christian Dost (ecd@pool.informatik.rwth-aachen.de) */ #undef DEBUG_DRIVER static char *version = "sunlance.c:v1.6 19/Apr/96 Miguel de Icaza (miguel@nuclecu.unam.mx)\n"; static char *lancestr = "LANCE"; static char *lancedma = "LANCE DMA"; #include <linux/kernel.h> #include <linux/sched.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/malloc.h> #include <linux/string.h> #include <asm/system.h> #include <asm/bitops.h> #include <asm/io.h> #include <asm/dma.h> #include <linux/errno.h> #include <asm/byteorder.h> /* Used by the checksum routines */ /* Used for the temporal inet entries and routing */ #include <linux/socket.h> #include <linux/route.h> #include <asm/idprom.h> #include <asm/sbus.h> #include <asm/openprom.h> #include <asm/oplib.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> /* Define: 2^4 Tx buffers and 2^4 Rx buffers */ #ifndef LANCE_LOG_TX_BUFFERS #define LANCE_LOG_TX_BUFFERS 4 #define LANCE_LOG_RX_BUFFERS 4 #endif #define LE_CSR0 0 #define LE_CSR1 1 #define LE_CSR2 2 #define LE_CSR3 3 #define LE_MO_PROM 0x8000 /* Enable promiscuous mode */ #define LE_C0_ERR 0x8000 /* Error: set if BAB, SQE, MISS or ME is set */ #define LE_C0_BABL 0x4000 /* BAB: Babble: tx timeout. */ #define LE_C0_CERR 0x2000 /* SQE: Signal quality error */ #define LE_C0_MISS 0x1000 /* MISS: Missed a packet */ #define LE_C0_MERR 0x0800 /* ME: Memory error */ #define LE_C0_RINT 0x0400 /* Received interrupt */ #define LE_C0_TINT 0x0200 /* Transmitter Interrupt */ #define LE_C0_IDON 0x0100 /* IFIN: Init finished. */ #define LE_C0_INTR 0x0080 /* Interrupt or error */ #define LE_C0_INEA 0x0040 /* Interrupt enable */ #define LE_C0_RXON 0x0020 /* Receiver on */ #define LE_C0_TXON 0x0010 /* Transmitter on */ #define LE_C0_TDMD 0x0008 /* Transmitter demand */ #define LE_C0_STOP 0x0004 /* Stop the card */ #define LE_C0_STRT 0x0002 /* Start the card */ #define LE_C0_INIT 0x0001 /* Init the card */ #define LE_C3_BSWP 0x4 /* SWAP */ #define LE_C3_ACON 0x2 /* ALE Control */ #define LE_C3_BCON 0x1 /* Byte control */ /* Receive message descriptor 1 */ #define LE_R1_OWN 0x80 /* Who owns the entry */ #define LE_R1_ERR 0x40 /* Error: if FRA, OFL, CRC or BUF is set */ #define LE_R1_FRA 0x20 /* FRA: Frame error */ #define LE_R1_OFL 0x10 /* OFL: Frame overflow */ #define LE_R1_CRC 0x08 /* CRC error */ #define LE_R1_BUF 0x04 /* BUF: Buffer error */ #define LE_R1_SOP 0x02 /* Start of packet */ #define LE_R1_EOP 0x01 /* End of packet */ #define LE_R1_POK 0x03 /* Packet is complete: SOP + EOP */ #define LE_T1_OWN 0x80 /* Lance owns the packet */ #define LE_T1_ERR 0x40 /* Error summary */ #define LE_T1_EMORE 0x10 /* Error: more than one retry needed */ #define LE_T1_EONE 0x08 /* Error: one retry needed */ #define LE_T1_EDEF 0x04 /* Error: deferred */ #define LE_T1_SOP 0x02 /* Start of packet */ #define LE_T1_EOP 0x01 /* End of packet */ #define LE_T1_POK 0x03 /* Packet is complete: SOP + EOP */ #define LE_T3_BUF 0x8000 /* Buffer error */ #define LE_T3_UFL 0x4000 /* Error underflow */ #define LE_T3_LCOL 0x1000 /* Error late collision */ #define LE_T3_CLOS 0x0800 /* Error carrier loss */ #define LE_T3_RTY 0x0400 /* Error retry */ #define LE_T3_TDR 0x03ff /* Time Domain Reflectometry counter */ #define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS)) #define TX_RING_MOD_MASK (TX_RING_SIZE - 1) #define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29) #define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS)) #define RX_RING_MOD_MASK (RX_RING_SIZE - 1) #define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29) #define PKT_BUF_SZ 1544 #define RX_BUFF_SIZE PKT_BUF_SZ #define TX_BUFF_SIZE PKT_BUF_SZ struct lance_rx_desc { unsigned short rmd0; /* low address of packet */ unsigned char rmd1_bits; /* descriptor bits */ unsigned char rmd1_hadr; /* high address of packet */ short length; /* This length is 2s complement (negative)! * Buffer length */ unsigned short mblength; /* This is the actual number of bytes received */ }; struct lance_tx_desc { unsigned short tmd0; /* low address of packet */ unsigned char tmd1_bits; /* descriptor bits */ unsigned char tmd1_hadr; /* high address of packet */ short length; /* Length is 2s complement (negative)! */ unsigned short misc; }; /* The LANCE initialization block, described in databook. */ /* On the Sparc, this block should be on a DMA region */ struct lance_init_block { unsigned short mode; /* Pre-set mode (reg. 15) */ unsigned char phys_addr[6]; /* Physical ethernet address */ unsigned filter[2]; /* Multicast filter. */ /* Receive and transmit ring base, along with extra bits. */ unsigned short rx_ptr; /* receive descriptor addr */ unsigned short rx_len; /* receive len and high addr */ unsigned short tx_ptr; /* transmit descriptor addr */ unsigned short tx_len; /* transmit len and high addr */ /* The Tx and Rx ring entries must aligned on 8-byte boundaries. */ struct lance_rx_desc brx_ring[RX_RING_SIZE]; struct lance_tx_desc btx_ring[TX_RING_SIZE]; char rx_buf [RX_RING_SIZE][RX_BUFF_SIZE]; char tx_buf [TX_RING_SIZE][TX_BUFF_SIZE]; }; struct lance_private { char *name; volatile struct lance_regs *ll; volatile struct lance_init_block *init_block; int rx_new, tx_new; int rx_old, tx_old; struct enet_statistics stats; struct Linux_SBus_DMA *ledma; /* if set this points to ledma and arch=4m */ int tpe; /* cable-selection is TPE */ int burst_sizes; /* ledma SBus burst sizes */ }; #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\ lp->tx_old+TX_RING_MOD_MASK-lp->tx_new:\ lp->tx_old - lp->tx_new-1) /* On the sparc, the lance control ports are memory mapped */ struct lance_regs { unsigned short rdp; /* register data port */ unsigned short rap; /* register address port */ }; int sparc_lance_debug = 2; /* The Lance uses 24 bit addresses */ /* On the Sun4c the DVMA will provide the remaining bytes for us */ /* On the Sun4m we have to instruct the ledma to provide them */ #define LANCE_ADDR(x) ((int)(x) & ~0xff000000) /* Load the CSR registers */ static void load_csrs (struct lance_private *lp) { volatile struct lance_regs *ll = lp->ll; volatile struct lance_init_block *ib = lp->init_block; int leptr; leptr = LANCE_ADDR (ib); ll->rap = LE_CSR1; ll->rdp = (leptr & 0xFFFF); ll->rap = LE_CSR2; ll->rdp = leptr >> 16; ll->rap = LE_CSR3; ll->rdp = LE_C3_BSWP | LE_C3_ACON | LE_C3_BCON; /* Point back to csr0 */ ll->rap = LE_CSR0; } #define ZERO 0 /* Setup the Lance Rx and Tx rings */ /* Sets dev->tbusy */ static void lance_init_ring (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; int leptr; int i; /* Lock out other processes while setting up hardware */ dev->tbusy = 1; lp->rx_new = lp->tx_new = 0; lp->rx_old = lp->tx_old = 0; ib->mode = 0; /* Copy the ethernet address to the lance init block * Note that on the sparc you need to swap the ethernet address. */ ib->phys_addr [0] = dev->dev_addr [1]; ib->phys_addr [1] = dev->dev_addr [0]; ib->phys_addr [2] = dev->dev_addr [3]; ib->phys_addr [3] = dev->dev_addr [2]; ib->phys_addr [4] = dev->dev_addr [5]; ib->phys_addr [5] = dev->dev_addr [4]; if (ZERO) printk ("TX rings:\n"); /* Setup the Tx ring entries */ for (i = 0; i <= TX_RING_SIZE; i++) { leptr = LANCE_ADDR(&ib->tx_buf[i][0]); ib->btx_ring [i].tmd0 = leptr; ib->btx_ring [i].tmd1_hadr = leptr >> 16; ib->btx_ring [i].tmd1_bits = 0; ib->btx_ring [i].length = 0xf000; /* The ones required by tmd2 */ ib->btx_ring [i].misc = 0; if (i < 3) if (ZERO) printk ("%d: 0x%8.8x\n", i, leptr); } /* Setup the Rx ring entries */ if (ZERO) printk ("RX rings:\n"); for (i = 0; i < RX_RING_SIZE; i++) { leptr = LANCE_ADDR(&ib->rx_buf[i][0]); ib->brx_ring [i].rmd0 = leptr; ib->brx_ring [i].rmd1_hadr = leptr >> 16; ib->brx_ring [i].rmd1_bits = LE_R1_OWN; ib->brx_ring [i].length = -RX_BUFF_SIZE | 0xf000; ib->brx_ring [i].mblength = 0; if (i < 3 && ZERO) printk ("%d: 0x%8.8x\n", i, leptr); } /* Setup the initialization block */ /* Setup rx descriptor pointer */ leptr = LANCE_ADDR(&ib->brx_ring); ib->rx_len = (LANCE_LOG_RX_BUFFERS << 13) | (leptr >> 16); ib->rx_ptr = leptr; if (ZERO) printk ("RX ptr: %8.8x\n", leptr); /* Setup tx descriptor pointer */ leptr = LANCE_ADDR(&ib->btx_ring); ib->tx_len = (LANCE_LOG_TX_BUFFERS << 13) | (leptr >> 16); ib->tx_ptr = leptr; if (ZERO) printk ("TX ptr: %8.8x\n", leptr); /* Clear the multicast filter */ ib->filter [0] = 0; ib->filter [1] = 0; } static int init_restart_lance (struct lance_private *lp) { volatile struct lance_regs *ll = lp->ll; int i; if (lp->ledma) { struct sparc_dma_registers *dregs = lp->ledma->regs; unsigned long creg; while (dregs->cond_reg & DMA_FIFO_ISDRAIN) /* E-Cache draining */ barrier(); creg = dregs->cond_reg; if (lp->burst_sizes & DMA_BURST32) creg |= DMA_E_BURST8; else creg &= ~DMA_E_BURST8; creg |= (DMA_DSBL_RD_DRN | DMA_DSBL_WR_INV | DMA_FIFO_INV); if (lp->tpe) creg |= DMA_EN_ENETAUI; else creg &= ~DMA_EN_ENETAUI; udelay(20); dregs->cond_reg = creg; udelay(200); } ll->rap = LE_CSR0; ll->rdp = LE_C0_INIT; /* Wait for the lance to complete initialization */ for (i = 0; (i < 100) && !(ll->rdp & (LE_C0_ERR | LE_C0_IDON)); i++) barrier(); if ((i == 100) || (ll->rdp & LE_C0_ERR)) { printk ("LANCE unopened after %d ticks, csr0=%4.4x.\n", i, ll->rdp); if (lp->ledma) printk ("dcsr=%8.8x\n", (unsigned int) lp->ledma->regs->cond_reg); return -1; } /* Clear IDON by writing a "1", enable interrupts and start lance */ ll->rdp = LE_C0_IDON; ll->rdp = LE_C0_INEA | LE_C0_STRT; if (lp->ledma) lp->ledma->regs->cond_reg |= DMA_INT_ENAB; return 0; } static int lance_rx (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_regs *ll = lp->ll; volatile struct lance_rx_desc *rd; unsigned char bits; #ifdef TEST_HITS printk ("["); for (i = 0; i < RX_RING_SIZE; i++) { if (i == lp->rx_new) printk ("%s", ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "_" : "X"); else printk ("%s", ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "." : "1"); } printk ("]"); #endif ll->rdp = LE_C0_RINT|LE_C0_INEA; for (rd = &ib->brx_ring [lp->rx_new]; !((bits = rd->rmd1_bits) & LE_R1_OWN); rd = &ib->brx_ring [lp->rx_new]) { int pkt_len; struct sk_buff *skb; /* We got an incomplete frame? */ if ((bits & LE_R1_POK) != LE_R1_POK) { lp->stats.rx_over_errors++; lp->stats.rx_errors++; continue; } else if (bits & LE_R1_ERR) { /* Count only the end frame as a tx error, not the beginning */ if (bits & LE_R1_BUF) lp->stats.rx_fifo_errors++; if (bits & LE_R1_CRC) lp->stats.rx_crc_errors++; if (bits & LE_R1_OFL) lp->stats.rx_over_errors++; if (bits & LE_R1_FRA) lp->stats.rx_frame_errors++; if (bits & LE_R1_EOP) lp->stats.rx_errors++; } else { pkt_len = rd->mblength; skb = dev_alloc_skb (pkt_len+2); if (skb == NULL) { printk ("%s: Memory squeeze, deferring packet.\n", dev->name); lp->stats.rx_dropped++; rd->mblength = 0; rd->rmd1_bits = LE_R1_OWN; lp->rx_new = (lp->rx_new + 1) & RX_RING_MOD_MASK; return 0; } skb->dev = dev; skb_reserve (skb, 2); /* 16 byte align */ skb_put (skb, pkt_len); /* make room */ eth_copy_and_sum(skb, (unsigned char *)&(ib->rx_buf [lp->rx_new][0]), pkt_len, 0); skb->protocol = eth_type_trans (skb,dev); netif_rx (skb); lp->stats.rx_packets++; } /* Return the packet to the pool */ rd->mblength = 0; rd->rmd1_bits = LE_R1_OWN; lp->rx_new = (lp->rx_new + 1) & RX_RING_MOD_MASK; } return 0; } static int lance_tx (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_regs *ll = lp->ll; volatile struct lance_tx_desc *td; int i, j; int status; /* csr0 is 2f3 */ ll->rdp = LE_C0_TINT | LE_C0_INEA; /* csr0 is 73 */ j = lp->tx_old; for (i = 0; i < TX_RING_SIZE; i++) { td = &ib->btx_ring [j]; if (td->tmd1_bits & LE_T1_ERR) { status = td->misc; lp->stats.tx_errors++; if (status & LE_T3_RTY) lp->stats.tx_aborted_errors++; if (status & LE_T3_CLOS) lp->stats.tx_carrier_errors++; if (status & LE_T3_LCOL) lp->stats.tx_window_errors++; /* buffer errors and underflows turn off the transmitter */ /* Restart the adapter */ if (status & (LE_T3_BUF|LE_T3_UFL)) { lp->stats.tx_fifo_errors++; printk ("%s: Tx: ERR_BUF|ERR_UFL, restarting\n", dev->name); /* Stop the lance */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; lance_init_ring (dev); load_csrs (lp); init_restart_lance (lp); return 0; } } else if ((td->tmd1_bits & LE_T1_POK) == LE_T1_POK) { /* * So we don't count the packet more than once. */ td->tmd1_bits &= ~(LE_T1_POK); /* One collision before packet was sent. */ if (td->tmd1_bits & LE_T1_EONE) lp->stats.collisions++; /* More than one collision, be optimistic. */ if (td->tmd1_bits & LE_T1_EMORE) lp->stats.collisions += 2; /* What to set here? */ if (td->tmd1_bits & LE_T1_EDEF) /* EMPTY */ ; lp->stats.tx_packets++; } j = (j + 1) & TX_RING_MOD_MASK; } lp->tx_old = (lp->tx_old+1) & TX_RING_MOD_MASK; ll->rdp = LE_C0_TINT | LE_C0_INEA; return 0; } static void lance_interrupt (int irq, void *dev_id, struct pt_regs *regs) { struct device *dev; struct lance_private *lp; volatile struct lance_regs *ll; int csr0; #ifdef OLD_STYLE_IRQ dev = (struct device *) (irq2dev_map [irq]); #else dev = (struct device *) dev_id; #endif lp = (struct lance_private *) dev->priv; ll = lp->ll; if (lp->ledma) { if (lp->ledma->regs->cond_reg & DMA_HNDL_ERROR) { printk ("%s: should reset my ledma (dmacsr=%8.8x, csr=%4.4x\n", dev->name, (unsigned int) lp->ledma->regs->cond_reg, ll->rdp); printk ("send mail to miguel@nuclecu.unam.mx\n"); } } if (dev->interrupt) printk ("%s: again", dev->name); dev->interrupt = 1; csr0 = ll->rdp; /* Acknowledge all the interrupt sources ASAP */ ll->rdp = csr0 & 0x004f; if ((csr0 & LE_C0_ERR)) { /* Clear the error condition */ ll->rdp = LE_C0_BABL|LE_C0_ERR|LE_C0_MISS|LE_C0_INEA; } if (csr0 & LE_C0_RINT) lance_rx (dev); if (csr0 & LE_C0_TINT) lance_tx (dev); if ((TX_BUFFS_AVAIL >= 0) && dev->tbusy) { dev->tbusy = 0; mark_bh (NET_BH); } ll->rap = LE_CSR0; ll->rdp = 0x7940; dev->interrupt = 0; } struct device *last_dev = 0; static int lance_open (struct device *dev) { struct lance_private *lp = (struct lance_private *)dev->priv; volatile struct lance_regs *ll = lp->ll; int status = 0; last_dev = dev; if (request_irq (dev->irq, &lance_interrupt, 0, lancestr, (void *) dev)) { printk ("Lance: Can't get irq %d\n", dev->irq); return -EAGAIN; } /* Stop the Lance */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; #ifdef OLD_STYLE_IRQ irq2dev_map [dev->irq] = dev; #endif /* On the 4m, setup the ledma to provide the upper bits for buffers */ if (lp->ledma) lp->ledma->regs->dma_test = ((unsigned int) lp->init_block) & 0xff000000; lance_init_ring (dev); load_csrs (lp); dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; status = init_restart_lance (lp); #if 0 /* To emulate SunOS, we add a route to the local network */ rt_add (RTF_UP, dev->pa_addr & ip_get_mask (dev->pa_addr), ip_get_mask (dev->pa_addr), 0, dev, dev->mtu, 0, 0); #endif return status; } static int lance_close (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_regs *ll = lp->ll; dev->start = 0; dev->tbusy = 1; /* Stop the card */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; free_irq (dev->irq, NULL); #ifdef OLD_STYLE_IRQ irq2dev_map [dev->irq] = NULL; #endif return 0; } static inline int lance_reset (struct device *dev) { struct lance_private *lp = (struct lance_private *)dev->priv; volatile struct lance_regs *ll = lp->ll; int status; /* Stop the lance */ ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; /* On the 4m, reset the dma too */ if (lp->ledma) { printk ("resetting ledma\n"); lp->ledma->regs->cond_reg |= DMA_RST_ENET; udelay (200); lp->ledma->regs->cond_reg &= ~DMA_RST_ENET; lp->ledma->regs->dma_test = ((unsigned int) lp->init_block) & 0xff000000; } lance_init_ring (dev); load_csrs (lp); dev->trans_start = jiffies; dev->interrupt = 0; dev->start = 1; dev->tbusy = 0; status = init_restart_lance (lp); #ifdef DEBUG_DRIVER printk ("Lance restart=%d\n", status); #endif return status; } static int lance_start_xmit (struct sk_buff *skb, struct device *dev) { struct lance_private *lp = (struct lance_private *)dev->priv; volatile struct lance_regs *ll = lp->ll; volatile struct lance_init_block *ib = lp->init_block; volatile unsigned long flush; int entry, skblen, len; int status = 0; static int outs; /* Transmitter timeout, serious problems */ if (dev->tbusy) { int tickssofar = jiffies - dev->trans_start; if (tickssofar < 100) { status = -1; } else { printk ("%s: transmit timed out, status %04x, resetting\n", dev->name, ll->rdp); lance_reset (dev); } return status; } if (skb == NULL) { dev_tint (dev); printk ("skb is NULL\n"); return 0; } if (skb->len <= 0) { printk ("skb len is %ld\n", skb->len); return 0; } /* Block a timer-based transmit from overlapping. */ #ifdef OLD_METHOD dev->tbusy = 1; #else if (set_bit (0, (void *) &dev->tbusy) != 0) { printk ("Transmitter access conflict.\n"); return -1; } #endif skblen = skb->len; if (!TX_BUFFS_AVAIL) return -1; #ifdef DEBUG_DRIVER /* dump the packet */ { int i; for (i = 0; i < 64; i++) { if ((i % 16) == 0) printk ("\n"); printk ("%2.2x ", skb->data [i]); } } #endif len = (skblen <= ETH_ZLEN) ? ETH_ZLEN : skblen; entry = lp->tx_new & TX_RING_MOD_MASK; ib->btx_ring [entry].length = (-len) | 0xf000; ib->btx_ring [entry].misc = 0; memcpy ((char *)&ib->tx_buf [entry][0], skb->data, skblen); /* Clear the slack of the packet, do I need this? */ if (len != skblen) memset ((char *) &ib->tx_buf [entry][skblen], 0, len - skblen); /* Now, give the packet to the lance */ ib->btx_ring [entry].tmd1_bits = (LE_T1_POK|LE_T1_OWN); lp->tx_new = (lp->tx_new+1) & TX_RING_MOD_MASK; outs++; /* Kick the lance: transmit now */ ll->rdp = LE_C0_INEA | LE_C0_TDMD; dev->trans_start = jiffies; dev_kfree_skb (skb, FREE_WRITE); if (TX_BUFFS_AVAIL) dev->tbusy = 0; /* Read back CSR to invalidate the E-Cache. * This is needed, because DMA_DSBL_WR_INV is set. */ if (lp->ledma) flush = ll->rdp; return status; } static struct enet_statistics *lance_get_stats (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; return &lp->stats; } static void lance_set_multicast (struct device *dev) { #ifdef NOT_YET struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_regs *ll = lp->ll; ll->rap = LE_CSR0; ll->rdp = LE_C0_STOP; lance_init_ring (dev); ib->mode |= LE_MO_PROM; lance_init_ring (dev); load_csrs (lp); init_restart_lance (lp); dev->tbusy = 0; #endif } int sparc_lance_init (struct device *dev, struct linux_sbus_device *sdev, struct Linux_SBus_DMA *ledma, struct linux_sbus_device *lebuffer) { static unsigned version_printed = 0; int i; struct lance_private *lp; volatile struct lance_regs *ll; if (dev == NULL) { dev = init_etherdev (0, sizeof (struct lance_private)); } else { dev->priv = kmalloc (sizeof (struct lance_private), GFP_KERNEL); if (dev->priv == NULL) return -ENOMEM; } if (sparc_lance_debug && version_printed++ == 0) printk (version); printk ("%s: LANCE ", dev->name); /* Fill the dev fields */ dev->base_addr = (long) sdev; /* Copy the IDPROM ethernet address to the device structure, later we * will copy the address in the device structure to the lance initialization * block */ for (i = 0; i < 6; i++) printk ("%2.2x%c", dev->dev_addr [i] = idprom->id_eaddr [i], i == 5 ? ' ': ':'); printk("\n"); /* Get the IO region */ prom_apply_sbus_ranges (&sdev->reg_addrs [0], sdev->num_registers); ll = sparc_alloc_io (sdev->reg_addrs [0].phys_addr, 0, sizeof (struct lance_regs), lancestr, sdev->reg_addrs[0].which_io, 0x0); /* Make certain the data structures used by the LANCE are aligned. */ dev->priv = (void *)(((int)dev->priv + 7) & ~7); lp = (struct lance_private *) dev->priv; memset ((char *)dev->priv, 0, sizeof (struct lance_private)); if (lebuffer){ prom_apply_sbus_ranges (&sdev->reg_addrs [0], sdev->num_registers); lp->init_block = (void *) sparc_alloc_io (lebuffer->reg_addrs [0].phys_addr, 0, sizeof (struct lance_init_block), "lebuffer", lebuffer->reg_addrs [0].which_io, 0); } else { lp->init_block = (void *) sparc_dvma_malloc (sizeof (struct lance_init_block), lancedma); } lp->ll = ll; lp->name = lancestr; lp->ledma = ledma; lp->burst_sizes = 0; if (lp->ledma) { char cable_prop[4]; unsigned int sbmask; /* Find burst-size property for ledma */ lp->burst_sizes = prom_getintdefault(ledma->SBus_dev->prom_node, "burst-sizes", 0); /* ledma may be capable of fast bursts, but sbus may not. */ sbmask = prom_getintdefault(ledma->SBus_dev->my_bus->prom_node, "burst-sizes", DMA_BURSTBITS); lp->burst_sizes &= sbmask; /* Get the cable-selection property */ prom_getstring(ledma->SBus_dev->prom_node, "cable-selection", cable_prop, sizeof(cable_prop)); if (!strcmp(cable_prop, "aui")) lp->tpe = 0; else lp->tpe = 1; /* Reset ledma */ lp->ledma->regs->cond_reg |= DMA_RST_ENET; udelay (200); lp->ledma->regs->cond_reg &= ~DMA_RST_ENET; } /* This should never happen. */ if ((int)(lp->init_block->brx_ring) & 0x07) { printk(" **ERROR** LANCE Rx and Tx rings not on even boundary.\n"); return ENODEV; } dev->open = &lance_open; dev->stop = &lance_close; dev->hard_start_xmit = &lance_start_xmit; dev->get_stats = &lance_get_stats; dev->set_multicast_list = &lance_set_multicast; dev->irq = (unsigned char) sdev->irqs [0].pri; dev->dma = 0; ether_setup (dev); return 0; } /* On 4m, find the associated dma for the lance chip */ static struct Linux_SBus_DMA * find_ledma (struct linux_sbus_device *dev) { struct Linux_SBus_DMA *p; for (p = dma_chain; p; p = p->next) if (p->SBus_dev == dev) return p; return 0; } /* Find all the lance cards on the system and initialize them */ int sparc_lance_probe (struct device *dev) { struct linux_sbus *bus; struct linux_sbus_device *sdev = 0; struct Linux_SBus_DMA *ledma = 0; int cards = 0, v; for_each_sbus (bus) { for_each_sbusdev (sdev, bus) { if (cards) dev = NULL; if (strcmp (sdev->prom_name, "le") == 0) { cards++; if ((v = sparc_lance_init(dev, sdev, ledma,0))) return v; } if (strcmp (sdev->prom_name, "ledma") == 0) { cards++; ledma = find_ledma (sdev); sdev = sdev->child; if ((v = sparc_lance_init(dev, sdev, ledma,0))) return v; break; } if (strcmp (sdev->prom_name, "lebuffer") == 0){ struct linux_sbus_device *le = sdev->child; cards++; if ((v = sparc_lance_init(dev, le, ledma,sdev))) return v; break; } } /* for each sbusdev */ } /* for each sbus */ if (!cards) return ENODEV; return 0; } /* * Local variables: * version-control: t * kept-new-versions: 5 * End: */
Go to most recent revision | Compare with Previous | Blame | View Log