URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [net/] [tlan.c] - Rev 1772
Go to most recent revision | Compare with Previous | Blame | View Log
/******************************************************************** * * Linux ThunderLAN Driver * * tlan.c * by James Banks * * (C) 1997-1998 Caldera, Inc. * (C) 1998 James Banks * * This software may be used and distributed according to the terms * of the GNU Public License, incorporated herein by reference. * ** This file is best viewed/edited with columns>=132. * ** Useful (if not required) reading: * * Texas Instruments, ThunderLAN Programmer's Guide, * TI Literature Number SPWU013A * available in PDF format from www.ti.com * Level One, LXT901 and LXT970 Data Sheets * available in PDF format from www.level1.com * National Semiconductor, DP83840A Data Sheet * available in PDF format from www.national.com * Microchip Technology, 24C01A/02A/04A Data Sheet * available in PDF format from www.microchip.com * ********************************************************************/ #include <linux/module.h> #include "tlan.h" #include <linux/bios32.h> #include <linux/ioport.h> #include <linux/pci.h> #include <linux/etherdevice.h> #include <linux/delay.h> typedef u32 (TLanIntVectorFunc)( struct device *, u16 ); #ifdef MODULE static struct device *TLanDevices = NULL; static int TLanDevicesInstalled = 0; #endif static int debug = 0; static int aui = 0; static int sa_int = 0; static int bbuf = 0; static int duplex = 0; static int speed = 0; static u8 *TLanPadBuffer; static char TLanSignature[] = "TLAN"; static int TLanVersionMajor = 1; static int TLanVersionMinor = 0; static TLanAdapterEntry TLanAdapterList[] = { { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10, "Compaq Netelligent 10 T PCI UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10_100, "Compaq Netelligent 10/100 TX PCI UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETFLEX_3P_INTEGRATED, "Compaq Integrated NetFlex-3/P", TLAN_ADAPTER_NONE, 0x83 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETFLEX_3P, "Compaq NetFlex-3/P", TLAN_ADAPTER_UNMANAGED_PHY | TLAN_ADAPTER_BIT_RATE_PHY, 0x83 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETFLEX_3P_BNC, "Compaq NetFlex-3/P", TLAN_ADAPTER_NONE, 0x83 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10_100_PROLIANT, "Compaq Netelligent Integrated 10/100 TX UTP", TLAN_ADAPTER_NONE, 0x83 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10_100_DUAL, "Compaq Netelligent Dual 10/100 TX PCI UTP", TLAN_ADAPTER_NONE, 0x83 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_DESKPRO_4000_5233MMX, "Compaq Netelligent 10/100 TX Embedded UTP", TLAN_ADAPTER_NONE, 0x83 }, { PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2183, "Olicom OC-2183/2185", TLAN_ADAPTER_USE_INTERN_10, 0xF8 }, { PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2325, "Olicom OC-2325", TLAN_ADAPTER_UNMANAGED_PHY, 0xF8 }, { PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2326, "Olicom OC-2326", TLAN_ADAPTER_USE_INTERN_10, 0xF8 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10_100_WS_5100, "Compaq Netelligent 10/100 TX UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10_T2, "Compaq Netelligent 10 T/2 PCI UTP/Coax", TLAN_ADAPTER_NONE, 0x83 }, { 0, 0, NULL, 0, 0 } /* End of List */ }; static int TLan_PciProbe( u8 *, u8 *, u8 *, u8 *, u32 *, u32 * ); static int TLan_Init( struct device * ); static int TLan_Open(struct device *dev); static int TLan_StartTx(struct sk_buff *, struct device *); static void TLan_HandleInterrupt(int, void *, struct pt_regs *); static int TLan_Close(struct device *); static struct net_device_stats *TLan_GetStats( struct device * ); static void TLan_SetMulticastList( struct device * ); static u32 TLan_HandleInvalid( struct device *, u16 ); static u32 TLan_HandleTxEOF( struct device *, u16 ); static u32 TLan_HandleStatOverflow( struct device *, u16 ); static u32 TLan_HandleRxEOF( struct device *, u16 ); static u32 TLan_HandleDummy( struct device *, u16 ); static u32 TLan_HandleTxEOC( struct device *, u16 ); static u32 TLan_HandleStatusCheck( struct device *, u16 ); static u32 TLan_HandleRxEOC( struct device *, u16 ); static void TLan_Timer( unsigned long ); static void TLan_ResetLists( struct device * ); static void TLan_FreeLists( struct device * ); static void TLan_PrintDio( u16 ); static void TLan_PrintList( TLanList *, char *, int ); static void TLan_ReadAndClearStats( struct device *, int ); static void TLan_ResetAdapter( struct device * ); static void TLan_FinishReset( struct device * ); static void TLan_SetMac( struct device *, int areg, char *mac ); static void TLan_PhyPrint( struct device * ); static void TLan_PhyDetect( struct device * ); static void TLan_PhyPowerDown( struct device * ); static void TLan_PhyPowerUp( struct device * ); static void TLan_PhyReset( struct device * ); static void TLan_PhyStartLink( struct device * ); static void TLan_PhyFinishAutoNeg( struct device * ); /* static int TLan_PhyNop( struct device * ); static int TLan_PhyInternalCheck( struct device * ); static int TLan_PhyInternalService( struct device * ); static int TLan_PhyDp83840aCheck( struct device * ); */ static int TLan_MiiReadReg( struct device *, u16, u16, u16 * ); static void TLan_MiiSendData( u16, u32, unsigned ); static void TLan_MiiSync( u16 ); static void TLan_MiiWriteReg( struct device *, u16, u16, u16 ); static void TLan_EeSendStart( u16 ); static int TLan_EeSendByte( u16, u8, int ); static void TLan_EeReceiveByte( u16, u8 *, int ); static int TLan_EeReadByte( struct device *, u8, u8 * ); static TLanIntVectorFunc *TLanIntVector[TLAN_INT_NUMBER_OF_INTS] = { TLan_HandleInvalid, TLan_HandleTxEOF, TLan_HandleStatOverflow, TLan_HandleRxEOF, TLan_HandleDummy, TLan_HandleTxEOC, TLan_HandleStatusCheck, TLan_HandleRxEOC }; static inline void TLan_SetTimer( struct device *dev, u32 ticks, u32 type ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; cli(); if ( priv->timer.function != NULL ) { return; } priv->timer.function = &TLan_Timer; sti(); priv->timer.data = (unsigned long) dev; priv->timer.expires = jiffies + ticks; priv->timerSetAt = jiffies; priv->timerType = type; add_timer( &priv->timer ); } /* TLan_SetTimer */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver Primary Functions These functions are more or less common to all Linux network drivers. ****************************************************************************** *****************************************************************************/ #ifdef MODULE /*************************************************************** * init_module * * Returns: * 0 if module installed ok, non-zero if not. * Parms: * None * * This function begins the setup of the driver creating a * pad buffer, finding all TLAN devices (matching * TLanAdapterList entries), and creating and initializing a * device structure for each adapter. * **************************************************************/ extern int init_module(void) { TLanPrivateInfo *priv; u8 bus; struct device *dev; size_t dev_size; u8 dfn; u32 index; int failed; int found; u32 io_base; u8 irq; u8 rev; printk( "TLAN driver, v%d.%d, (C) 1997-8 Caldera, Inc.\n", TLanVersionMajor, TLanVersionMinor ); TLanPadBuffer = (u8 *) kmalloc( TLAN_MIN_FRAME_SIZE, ( GFP_KERNEL | GFP_DMA ) ); if ( TLanPadBuffer == NULL ) { printk( "TLAN: Could not allocate memory for pad buffer.\n" ); return -ENOMEM; } memset( TLanPadBuffer, 0, TLAN_MIN_FRAME_SIZE ); dev_size = sizeof(struct device) + sizeof(TLanPrivateInfo); while ( ( found = TLan_PciProbe( &bus, &dfn, &irq, &rev, &io_base, &index ) ) ) { dev = (struct device *) kmalloc( dev_size, GFP_KERNEL ); if ( dev == NULL ) { printk( "TLAN: Could not allocate memory for device.\n" ); continue; } memset( dev, 0, dev_size ); dev->priv = priv = ( (void *) dev ) + sizeof(struct device); dev->name = priv->devName; strcpy( priv->devName, " " ); dev->base_addr = io_base; dev->irq = irq; dev->init = TLan_Init; priv->adapter = &TLanAdapterList[index]; priv->adapterRev = rev; priv->aui = aui; if ( ( duplex != 1 ) && ( duplex != 2 ) ) { duplex = 0; } priv->duplex = duplex; if ( ( speed != 10 ) && ( speed != 100 ) ) { speed = 0; } priv->speed = speed; priv->sa_int = sa_int; priv->debug = debug; ether_setup( dev ); failed = register_netdev( dev ); if ( failed ) { printk( "TLAN: Could not register device.\n" ); kfree( dev ); } else { priv->nextDevice = TLanDevices; TLanDevices = dev; TLanDevicesInstalled++; printk("TLAN: %s irq=%2d io=%04x, %s, Rev. %d\n", dev->name, (int) dev->irq, (int) dev->base_addr, priv->adapter->deviceLabel, priv->adapterRev ); } } /* printk( "TLAN: Found %d device(s).\n", TLanDevicesInstalled ); */ return ( ( TLanDevicesInstalled >= 0 ) ? 0 : -ENODEV ); } /* init_module */ /*************************************************************** * cleanup_module * * Returns: * Nothing * Parms: * None * * Goes through the TLanDevices list and frees the device * structs and memory associated with each device (lists * and buffers). It also ureserves the IO port regions * associated with this device. * **************************************************************/ extern void cleanup_module(void) { struct device *dev; TLanPrivateInfo *priv; while ( TLanDevicesInstalled ) { dev = TLanDevices; priv = (TLanPrivateInfo *) dev->priv; if ( priv->dmaStorage ) { kfree( priv->dmaStorage ); } release_region( dev->base_addr, 0x10 ); unregister_netdev( dev ); TLanDevices = priv->nextDevice; kfree( dev ); TLanDevicesInstalled--; } kfree( TLanPadBuffer ); } /* cleanup_module */ #else /* MODULE */ /*************************************************************** * tlan_probe * * Returns: * 0 on success, error code on error * Parms: * dev device struct to use if adapter is * found. * * The name is lower case to fit in with all the rest of * the netcard_probe names. This function looks for a/ * another TLan based adapter, setting it up with the * provided device struct if one is found. * **************************************************************/ extern int tlan_probe( struct device *dev ) { TLanPrivateInfo *priv; static int pad_allocated = 0; int found; u8 bus, dfn, irq, rev; u32 io_base, index; found = TLan_PciProbe( &bus, &dfn, &irq, &rev, &io_base, &index ); if ( ! found ) { return -ENODEV; } dev->priv = kmalloc( sizeof(TLanPrivateInfo), GFP_KERNEL ); if ( dev->priv == NULL ) { printk( "TLAN: Could not allocate memory for device.\n" ); return -ENOMEM; } memset( dev->priv, 0, sizeof(TLanPrivateInfo) ); if ( ! pad_allocated ) { TLanPadBuffer = (u8 *) kmalloc( TLAN_MIN_FRAME_SIZE, // ( GFP_KERNEL | GFP_DMA ) ( GFP_KERNEL ) ); if ( TLanPadBuffer == NULL ) { printk( "TLAN: Could not allocate memory for padding.\n" ); kfree( dev->priv ); return -ENOMEM; } else { pad_allocated = 1; memset( TLanPadBuffer, 0, TLAN_MIN_FRAME_SIZE ); } } priv = (TLanPrivateInfo *) dev->priv; dev->name = priv->devName; strcpy( priv->devName, " " ); dev = init_etherdev( dev, sizeof(TLanPrivateInfo) ); dev->base_addr = io_base; dev->irq = irq; priv->adapter = &TLanAdapterList[index]; priv->adapterRev = rev; priv->aui = dev->mem_start & 0x01; priv->duplex = ( ( dev->mem_start & 0x0C ) == 0x0C ) ? 0 : ( dev->mem_start & 0x0C ) >> 2; priv->speed = ( ( dev->mem_start & 0x30 ) == 0x30 ) ? 0 : ( dev->mem_start & 0x30 ) >> 4; if ( priv->speed == 0x1 ) { priv->speed = TLAN_SPEED_10; } else if ( priv->speed == 0x2 ) { priv->speed = TLAN_SPEED_100; } priv->sa_int = dev->mem_start & 0x02; priv->debug = dev->mem_end; printk("TLAN %d.%d: %s irq=%2d io=%04x, %s, Rev. %d\n", TLanVersionMajor, TLanVersionMinor, dev->name, (int) irq, io_base, priv->adapter->deviceLabel, priv->adapterRev ); TLan_Init( dev ); return 0; } /* tlan_probe */ #endif /* MODULE */ /*************************************************************** * TLan_PciProbe * * Returns: * 1 if another TLAN card was found, 0 if not. * Parms: * pci_bus The PCI bus the card was found * on. * pci_dfn The PCI whatever the card was * found at. * pci_irq The IRQ of the found adapter. * pci_rev The revision of the adapter. * pci_io_base The first IO port used by the * adapter. * dl_ix The index in the device list * of the adapter. * * This function searches for an adapter with PCI vendor * and device IDs matching those in the TLanAdapterList. * The function 'remembers' the last device it found, * and so finds a new device (if anymore are to be found) * each time the function is called. It then looks up * pertinent PCI info and returns it to the caller. * **************************************************************/ int TLan_PciProbe( u8 *pci_bus, u8 *pci_dfn, u8 *pci_irq, u8 *pci_rev, u32 *pci_io_base, u32 *dl_ix ) { static int dl_index = 0; static int pci_index = 0; int not_found; u8 pci_latency; u16 pci_command; int reg; if ( ! pcibios_present() ) { printk( "TLAN: PCI Bios not present.\n" ); return 0; } for (; TLanAdapterList[dl_index].vendorId != 0; dl_index++) { not_found = pcibios_find_device( TLanAdapterList[dl_index].vendorId, TLanAdapterList[dl_index].deviceId, pci_index, pci_bus, pci_dfn ); if ( ! not_found ) { TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: found: Vendor Id = 0x%hx, Device Id = 0x%hx\n", TLanAdapterList[dl_index].vendorId, TLanAdapterList[dl_index].deviceId ); pcibios_read_config_byte ( *pci_bus, *pci_dfn, PCI_REVISION_ID, pci_rev); pcibios_read_config_byte ( *pci_bus, *pci_dfn, PCI_INTERRUPT_LINE, pci_irq); pcibios_read_config_word ( *pci_bus, *pci_dfn, PCI_COMMAND, &pci_command); pcibios_read_config_dword( *pci_bus, *pci_dfn, PCI_BASE_ADDRESS_0, pci_io_base); pcibios_read_config_byte ( *pci_bus, *pci_dfn, PCI_LATENCY_TIMER, &pci_latency); if (pci_latency < 0x10) { pcibios_write_config_byte( *pci_bus, *pci_dfn, PCI_LATENCY_TIMER, 0xff); TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: Setting latency timer to max.\n"); } for ( reg = PCI_BASE_ADDRESS_0; reg <= PCI_BASE_ADDRESS_5; reg +=4 ) { pcibios_read_config_dword( *pci_bus, *pci_dfn, reg, pci_io_base); if ((pci_command & PCI_COMMAND_IO) && (*pci_io_base & 0x3)) { *pci_io_base &= PCI_BASE_ADDRESS_IO_MASK; TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: IO mapping is available at %x.\n", *pci_io_base); break; } else { *pci_io_base = 0; } } if ( *pci_io_base == 0 ) printk("TLAN: IO mapping not available, ignoring device.\n"); if ( ! ( pci_command & PCI_COMMAND_MASTER ) ) { pcibios_write_config_word ( *pci_bus, *pci_dfn, PCI_COMMAND, pci_command | PCI_COMMAND_MASTER ); printk( "TLAN: Activating PCI bus mastering for this device.\n" ); } pci_index++; if ( *pci_io_base ) { *dl_ix = dl_index; return 1; } } else { pci_index = 0; } } return 0; } /* TLan_PciProbe */ /*************************************************************** * TLan_Init * * Returns: * 0 on success, error code otherwise. * Parms: * dev The structure of the device to be * init'ed. * * This function completes the initialization of the * device structure and driver. It reserves the IO * addresses, allocates memory for the lists and bounce * buffers, retrieves the MAC address from the eeprom * and assignes the device's methods. * **************************************************************/ int TLan_Init( struct device *dev ) { int dma_size; int err; int i; TLanPrivateInfo *priv; priv = (TLanPrivateInfo *) dev->priv; err = check_region( dev->base_addr, 0x10 ); if ( err ) { printk( "TLAN: %s: Io port region 0x%lx size 0x%x in use.\n", dev->name, dev->base_addr, 0x10 ); return -EIO; } request_region( dev->base_addr, 0x10, TLanSignature ); if ( bbuf ) { dma_size = ( TLAN_NUM_RX_LISTS + TLAN_NUM_TX_LISTS ) * ( sizeof(TLanList) + TLAN_MAX_FRAME_SIZE ); } else { dma_size = ( TLAN_NUM_RX_LISTS + TLAN_NUM_TX_LISTS ) * ( sizeof(TLanList) ); } priv->dmaStorage = kmalloc( dma_size, GFP_KERNEL | GFP_DMA ); if ( priv->dmaStorage == NULL ) { printk( "TLAN: Could not allocate lists and buffers for %s.\n", dev->name ); return -ENOMEM; } memset( priv->dmaStorage, 0, dma_size ); priv->rxList = (TLanList *) ( ( ( (u32) priv->dmaStorage ) + 7 ) & 0xFFFFFFF8 ); priv->txList = priv->rxList + TLAN_NUM_RX_LISTS; if ( bbuf ) { priv->rxBuffer = (u8 *) ( priv->txList + TLAN_NUM_TX_LISTS ); priv->txBuffer = priv->rxBuffer + ( TLAN_NUM_RX_LISTS * TLAN_MAX_FRAME_SIZE ); } err = 0; for ( i = 0; i < 6 ; i++ ) err |= TLan_EeReadByte( dev, (u8) priv->adapter->addrOfs + i, (u8 *) &dev->dev_addr[i] ); if ( err ) { printk( "TLAN: %s: Error reading MAC from eeprom: %d\n", dev->name, err ); } dev->addr_len = 6; dev->open = &TLan_Open; dev->hard_start_xmit = &TLan_StartTx; dev->stop = &TLan_Close; dev->get_stats = &TLan_GetStats; dev->set_multicast_list = &TLan_SetMulticastList; return 0; } /* TLan_Init */ /*************************************************************** * TLan_Open * * Returns: * 0 on success, error code otherwise. * Parms: * dev Structure of device to be opened. * * This routine puts the driver and TLAN adapter in a * state where it is ready to send and receive packets. * It allocates the IRQ, resets and brings the adapter * out of reset, and allows interrupts. It also delays * the startup for autonegotiation or sends a Rx GO * command to the adapter, as appropriate. * **************************************************************/ int TLan_Open( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; int err; priv->tlanRev = TLan_DioRead8( dev->base_addr, TLAN_DEF_REVISION ); if ( priv->sa_int ) { TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: Using SA_INTERRUPT\n" ); err = request_irq( dev->irq, TLan_HandleInterrupt, SA_SHIRQ | SA_INTERRUPT, TLanSignature, dev ); } else { err = request_irq( dev->irq, TLan_HandleInterrupt, SA_SHIRQ, TLanSignature, dev ); } if ( err ) { printk( "TLAN: Cannot open %s because IRQ %d is already in use.\n", dev->name, dev->irq ); return -EAGAIN; } MOD_INC_USE_COUNT; dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; /* NOTE: It might not be necessary to read the stats before a reset if you don't care what the values are. */ TLan_ResetLists( dev ); TLan_ReadAndClearStats( dev, TLAN_IGNORE ); TLan_ResetAdapter( dev ); TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: %s: Opened. TLAN Chip Rev: %x\n", dev->name, priv->tlanRev ); return 0; } /* TLan_Open */ /*************************************************************** * TLan_StartTx * * Returns: * 0 on success, non-zero on failure. * Parms: * skb A pointer to the sk_buff containing the * frame to be sent. * dev The device to send the data on. * * This function adds a frame to the Tx list to be sent * ASAP. First it verifies that the adapter is ready and * there is room in the queue. Then it sets up the next * available list, copies the frame to the corresponding * buffer. If the adapter Tx channel is idle, it gives * the adapter a Tx Go command on the list, otherwise it * sets the forward address of the previous list to point * to this one. Then it frees the sk_buff. * **************************************************************/ int TLan_StartTx( struct sk_buff *skb, struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; TLanList *tail_list; u8 *tail_buffer; int pad; if ( ! priv->phyOnline ) { TLAN_DBG( TLAN_DEBUG_TX, "TLAN TRANSMIT: %s PHY is not ready\n", dev->name ); dev_kfree_skb( skb, FREE_WRITE ); return 0; } tail_list = priv->txList + priv->txTail; if ( tail_list->cStat != TLAN_CSTAT_UNUSED ) { TLAN_DBG( TLAN_DEBUG_TX, "TLAN TRANSMIT: %s is busy (Head=%d Tail=%d)\n", dev->name, priv->txHead, priv->txTail ); dev->tbusy = 1; priv->txBusyCount++; return 1; } tail_list->forward = 0; if ( bbuf ) { tail_buffer = priv->txBuffer + ( priv->txTail * TLAN_MAX_FRAME_SIZE ); memcpy( tail_buffer, skb->data, skb->len ); } else { tail_list->buffer[0].address = virt_to_bus( skb->data ); tail_list->buffer[9].address = (u32) skb; } pad = TLAN_MIN_FRAME_SIZE - skb->len; if ( pad > 0 ) { tail_list->frameSize = (u16) skb->len + pad; tail_list->buffer[0].count = (u32) skb->len; tail_list->buffer[1].count = TLAN_LAST_BUFFER | (u32) pad; tail_list->buffer[1].address = virt_to_bus( TLanPadBuffer ); } else { tail_list->frameSize = (u16) skb->len; tail_list->buffer[0].count = TLAN_LAST_BUFFER | (u32) skb->len; tail_list->buffer[1].count = 0; tail_list->buffer[1].address = 0; } cli(); tail_list->cStat = TLAN_CSTAT_READY; if ( ! priv->txInProgress ) { priv->txInProgress = 1; outw( 0x4, dev->base_addr + TLAN_HOST_INT ); TLAN_DBG( TLAN_DEBUG_TX, "TLAN TRANSMIT: Starting TX on buffer %d\n", priv->txTail ); outl( virt_to_bus( tail_list ), dev->base_addr + TLAN_CH_PARM ); outl( TLAN_HC_GO | TLAN_HC_ACK, dev->base_addr + TLAN_HOST_CMD ); } else { TLAN_DBG( TLAN_DEBUG_TX, "TLAN TRANSMIT: Adding buffer %d to TX channel\n", priv->txTail ); if ( priv->txTail == 0 ) { ( priv->txList + ( TLAN_NUM_TX_LISTS - 1 ) )->forward = virt_to_bus( tail_list ); } else { ( priv->txList + ( priv->txTail - 1 ) )->forward = virt_to_bus( tail_list ); } } sti(); CIRC_INC( priv->txTail, TLAN_NUM_TX_LISTS ); if ( bbuf ) { dev_kfree_skb( skb, FREE_WRITE ); } dev->trans_start = jiffies; return 0; } /* TLan_StartTx */ /*************************************************************** * TLan_HandleInterrupt * * Returns: * Nothing * Parms: * irq The line on which the interrupt * occurred. * dev_id A pointer to the device assigned to * this irq line. * regs ??? * * This function handles an interrupt generated by its * assigned TLAN adapter. The function deactivates * interrupts on its adapter, records the type of * interrupt, executes the appropriate subhandler, and * acknowdges the interrupt to the adapter (thus * re-enabling adapter interrupts. * **************************************************************/ void TLan_HandleInterrupt(int irq, void *dev_id, struct pt_regs *regs) { u32 ack; struct device *dev; u32 host_cmd; u16 host_int; int type; dev = (struct device *) dev_id; cli(); if ( dev->interrupt ) { printk( "TLAN: Re-entering interrupt handler for %s: %d.\n" , dev->name, dev->interrupt ); } dev->interrupt++; host_int = inw( dev->base_addr + TLAN_HOST_INT ); outw( host_int, dev->base_addr + TLAN_HOST_INT ); type = ( host_int & TLAN_HI_IT_MASK ) >> 2; ack = TLanIntVector[type]( dev, host_int ); if ( ack ) { host_cmd = TLAN_HC_ACK | ack | ( type << 18 ); outl( host_cmd, dev->base_addr + TLAN_HOST_CMD ); } dev->interrupt--; sti(); } /* TLan_HandleInterrupts */ /*************************************************************** * TLan_Close * * Returns: * An error code. * Parms: * dev The device structure of the device to * close. * * This function shuts down the adapter. It records any * stats, puts the adapter into reset state, deactivates * its time as needed, and frees the irq it is using. * **************************************************************/ int TLan_Close(struct device *dev) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; dev->start = 0; dev->tbusy = 1; TLan_ReadAndClearStats( dev, TLAN_RECORD ); outl( TLAN_HC_AD_RST, dev->base_addr + TLAN_HOST_CMD ); if ( priv->timer.function != NULL ) del_timer( &priv->timer ); free_irq( dev->irq, dev ); TLan_FreeLists( dev ); TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: Device %s closed.\n", dev->name ); MOD_DEC_USE_COUNT; return 0; } /* TLan_Close */ /*************************************************************** * TLan_GetStats * * Returns: * A pointer to the device's statistics structure. * Parms: * dev The device structure to return the * stats for. * * This function updates the devices statistics by reading * the TLAN chip's onboard registers. Then it returns the * address of the statistics structure. * **************************************************************/ struct net_device_stats *TLan_GetStats( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; int i; /* Should only read stats if open ? */ TLan_ReadAndClearStats( dev, TLAN_RECORD ); TLAN_DBG( TLAN_DEBUG_RX, "TLAN RECEIVE: %s EOC count = %d\n", dev->name, priv->rxEocCount ); TLAN_DBG( TLAN_DEBUG_TX, "TLAN TRANSMIT: %s Busy count = %d\n", dev->name, priv->txBusyCount ); if ( debug & TLAN_DEBUG_GNRL ) { TLan_PrintDio( dev->base_addr ); TLan_PhyPrint( dev ); } if ( debug & TLAN_DEBUG_LIST ) { for ( i = 0; i < TLAN_NUM_RX_LISTS; i++ ) TLan_PrintList( priv->rxList + i, "RX", i ); for ( i = 0; i < TLAN_NUM_TX_LISTS; i++ ) TLan_PrintList( priv->txList + i, "TX", i ); } return ( &( (TLanPrivateInfo *) dev->priv )->stats ); } /* TLan_GetStats */ /*************************************************************** * TLan_SetMulticastList * * Returns: * Nothing * Parms: * dev The device structure to set the * multicast list for. * * This function sets the TLAN adaptor to various receive * modes. If the IFF_PROMISC flag is set, promiscuous * mode is acitviated. Otherwise, promiscuous mode is * turned off. If the IFF_ALLMULTI flag is set, then * the hash table is set to receive all group addresses. * Otherwise, the first three multicast addresses are * stored in AREG_1-3, and the rest are selected via the * hash table, as necessary. * **************************************************************/ void TLan_SetMulticastList( struct device *dev ) { struct dev_mc_list *dmi = dev->mc_list; u32 hash1 = 0; u32 hash2 = 0; int i; u32 offset; u8 tmp; if ( dev->flags & IFF_PROMISC ) { tmp = TLan_DioRead8( dev->base_addr, TLAN_NET_CMD ); TLan_DioWrite8( dev->base_addr, TLAN_NET_CMD, tmp | TLAN_NET_CMD_CAF ); } else { tmp = TLan_DioRead8( dev->base_addr, TLAN_NET_CMD ); TLan_DioWrite8( dev->base_addr, TLAN_NET_CMD, tmp & ~TLAN_NET_CMD_CAF ); if ( dev->flags & IFF_ALLMULTI ) { for ( i = 0; i < 3; i++ ) TLan_SetMac( dev, i + 1, NULL ); TLan_DioWrite32( dev->base_addr, TLAN_HASH_1, 0xFFFFFFFF ); TLan_DioWrite32( dev->base_addr, TLAN_HASH_2, 0xFFFFFFFF ); } else { for ( i = 0; i < dev->mc_count; i++ ) { if ( i < 3 ) { TLan_SetMac( dev, i + 1, (char *) &dmi->dmi_addr ); } else { offset = TLan_HashFunc( (u8 *) &dmi->dmi_addr ); if ( offset < 32 ) hash1 |= ( 1 << offset ); else hash2 |= ( 1 << ( offset - 32 ) ); } dmi = dmi->next; } for ( ; i < 3; i++ ) TLan_SetMac( dev, i + 1, NULL ); TLan_DioWrite32( dev->base_addr, TLAN_HASH_1, hash1 ); TLan_DioWrite32( dev->base_addr, TLAN_HASH_2, hash2 ); } } } /* TLan_SetMulticastList */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver Interrupt Vectors and Table Please see Chap. 4, "Interrupt Handling" of the "ThunderLAN Programmer's Guide" for more informations on handling interrupts generated by TLAN based adapters. ****************************************************************************** *****************************************************************************/ /*************************************************************** * TLan_HandleInvalid * * Returns: * 0 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles invalid interrupts. This should * never happen unless some other adapter is trying to use * the IRQ line assigned to the device. * **************************************************************/ u32 TLan_HandleInvalid( struct device *dev, u16 host_int ) { host_int = 0; /* printk( "TLAN: Invalid interrupt on %s.\n", dev->name ); */ return 0; } /* TLan_HandleInvalid */ /*************************************************************** * TLan_HandleTxEOF * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles Tx EOF interrupts which are raised * by the adapter when it has completed sending the * contents of a buffer. If detemines which list/buffer * was completed and resets it. If the buffer was the last * in the channel (EOC), then the function checks to see if * another buffer is ready to send, and if so, sends a Tx * Go command. Finally, the driver activates/continues the * activity LED. * **************************************************************/ u32 TLan_HandleTxEOF( struct device *dev, u16 host_int ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; int eoc = 0; TLanList *head_list; u32 ack = 1; TLAN_DBG( TLAN_DEBUG_TX, "TLAN TRANSMIT: Handling TX EOF (Head=%d Tail=%d)\n", priv->txHead, priv->txTail ); host_int = 0; head_list = priv->txList + priv->txHead; if ( ! bbuf ) { dev_kfree_skb( (struct sk_buff *) head_list->buffer[9].address, FREE_WRITE ); head_list->buffer[9].address = 0; } if ( head_list->cStat & TLAN_CSTAT_EOC ) eoc = 1; if ( ! head_list->cStat & TLAN_CSTAT_FRM_CMP ) { printk( "TLAN: Received interrupt for uncompleted TX frame.\n" ); } #if LINUX_KERNEL_VERSION > 0x20100 priv->stats->tx_bytes += head_list->frameSize; #endif head_list->cStat = TLAN_CSTAT_UNUSED; dev->tbusy = 0; CIRC_INC( priv->txHead, TLAN_NUM_TX_LISTS ); if ( eoc ) { TLAN_DBG( TLAN_DEBUG_TX, "TLAN TRANSMIT: Handling TX EOC (Head=%d Tail=%d)\n", priv->txHead, priv->txTail ); head_list = priv->txList + priv->txHead; if ( ( head_list->cStat & TLAN_CSTAT_READY ) == TLAN_CSTAT_READY ) { outl( virt_to_bus( head_list ), dev->base_addr + TLAN_CH_PARM ); ack |= TLAN_HC_GO; } else { priv->txInProgress = 0; } } if ( priv->adapter->flags & TLAN_ADAPTER_ACTIVITY_LED ) { TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK | TLAN_LED_ACT ); if ( priv->timer.function == NULL ) { TLan_SetTimer( dev, TLAN_TIMER_ACT_DELAY, TLAN_TIMER_ACTIVITY ); } else if ( priv->timerType == TLAN_TIMER_ACTIVITY ) { priv->timerSetAt = jiffies; } } return ack; } /* TLan_HandleTxEOF */ /*************************************************************** * TLan_HandleStatOverflow * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles the Statistics Overflow interrupt * which means that one or more of the TLAN statistics * registers has reached 1/2 capacity and needs to be read. * **************************************************************/ u32 TLan_HandleStatOverflow( struct device *dev, u16 host_int ) { host_int = 0; TLan_ReadAndClearStats( dev, TLAN_RECORD ); return 1; } /* TLan_HandleStatOverflow */ /*************************************************************** * TLan_HandleRxEOF * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles the Rx EOF interrupt which * indicates a frame has been received by the adapter from * the net and the frame has been transferred to memory. * The function determines the bounce buffer the frame has * been loaded into, creates a new sk_buff big enough to * hold the frame, and sends it to protocol stack. It * then resets the used buffer and appends it to the end * of the list. If the frame was the last in the Rx * channel (EOC), the function restarts the receive channel * by sending an Rx Go command to the adapter. Then it * activates/continues the activity LED. * **************************************************************/ u32 TLan_HandleRxEOF( struct device *dev, u16 host_int ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u32 ack = 1; int eoc = 0; u8 *head_buffer; TLanList *head_list; struct sk_buff *skb; TLanList *tail_list; void *t; TLAN_DBG( TLAN_DEBUG_RX, "TLAN RECEIVE: Handling RX EOF (Head=%d Tail=%d)\n", priv->rxHead, priv->rxTail ); host_int = 0; head_list = priv->rxList + priv->rxHead; tail_list = priv->rxList + priv->rxTail; if ( head_list->cStat & TLAN_CSTAT_EOC ) { eoc = 1; } if ( ! head_list->cStat & TLAN_CSTAT_FRM_CMP ) { printk( "TLAN: Received interrupt for uncompleted RX frame.\n" ); } else if ( bbuf ) { skb = dev_alloc_skb( head_list->frameSize + 7 ); if ( skb == NULL ) { printk( "TLAN: Couldn't allocate memory for received data.\n" ); } else { head_buffer = priv->rxBuffer + ( priv->rxHead * TLAN_MAX_FRAME_SIZE ); skb->dev = dev; skb_reserve( skb, 2 ); t = (void *) skb_put( skb, head_list->frameSize ); #if LINUX_KERNEL_VERSION > 0x20100 priv->stats->rx_bytes += head_list->frameSize; #endif memcpy( t, head_buffer, head_list->frameSize ); skb->protocol = eth_type_trans( skb, dev ); netif_rx( skb ); } } else { skb = (struct sk_buff *) head_list->buffer[9].address; head_list->buffer[9].address = 0; skb_trim( skb, head_list->frameSize ); #if LINUX_KERNEL_VERSION > 0x20100 priv->stats->rx_bytes += head_list->frameSize; #endif skb->protocol = eth_type_trans( skb, dev ); netif_rx( skb ); skb = dev_alloc_skb( TLAN_MAX_FRAME_SIZE + 7 ); if ( skb == NULL ) { printk( "TLAN: Couldn't allocate memory for received data.\n" ); /* If this ever happened it would be a problem */ } else { skb->dev = dev; skb_reserve( skb, 2 ); t = (void *) skb_put( skb, TLAN_MAX_FRAME_SIZE ); head_list->buffer[0].address = virt_to_bus( t ); head_list->buffer[9].address = (u32) skb; } } head_list->forward = 0; head_list->frameSize = TLAN_MAX_FRAME_SIZE; head_list->buffer[0].count = TLAN_MAX_FRAME_SIZE | TLAN_LAST_BUFFER; tail_list->forward = virt_to_bus( head_list ); CIRC_INC( priv->rxHead, TLAN_NUM_RX_LISTS ); CIRC_INC( priv->rxTail, TLAN_NUM_RX_LISTS ); if ( eoc ) { TLAN_DBG( TLAN_DEBUG_RX, "TLAN RECEIVE: Handling RX EOC (Head=%d Tail=%d)\n", priv->rxHead, priv->rxTail ); head_list = priv->rxList + priv->rxHead; outl( virt_to_bus( head_list ), dev->base_addr + TLAN_CH_PARM ); ack |= TLAN_HC_GO | TLAN_HC_RT; priv->rxEocCount++; } if ( priv->adapter->flags & TLAN_ADAPTER_ACTIVITY_LED ) { TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK | TLAN_LED_ACT ); if ( priv->timer.function == NULL ) { TLan_SetTimer( dev, TLAN_TIMER_ACT_DELAY, TLAN_TIMER_ACTIVITY ); } else if ( priv->timerType == TLAN_TIMER_ACTIVITY ) { priv->timerSetAt = jiffies; } } dev->last_rx = jiffies; return ack; } /* TLan_HandleRxEOF */ /*************************************************************** * TLan_HandleDummy * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles the Dummy interrupt, which is * raised whenever a test interrupt is generated by setting * the Req_Int bit of HOST_CMD to 1. * **************************************************************/ u32 TLan_HandleDummy( struct device *dev, u16 host_int ) { host_int = 0; printk( "TLAN: Test interrupt on %s.\n", dev->name ); return 1; } /* TLan_HandleDummy */ /*************************************************************** * TLan_HandleTxEOC * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This driver is structured to determine EOC occurances by * reading the CSTAT member of the list structure. Tx EOC * interrupts are disabled via the DIO INTDIS register. * However, TLAN chips before revision 3.0 didn't have this * functionality, so process EOC events if this is the * case. * **************************************************************/ u32 TLan_HandleTxEOC( struct device *dev, u16 host_int ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; TLanList *head_list; u32 ack = 1; host_int = 0; if ( priv->tlanRev < 0x30 ) { TLAN_DBG( TLAN_DEBUG_TX, "TLAN TRANSMIT: Handling TX EOC (Head=%d Tail=%d) -- IRQ\n", priv->txHead, priv->txTail ); head_list = priv->txList + priv->txHead; if ( ( head_list->cStat & TLAN_CSTAT_READY ) == TLAN_CSTAT_READY ) { outl( virt_to_bus( head_list ), dev->base_addr + TLAN_CH_PARM ); ack |= TLAN_HC_GO; } else { priv->txInProgress = 0; } } return ack; } /* TLan_HandleTxEOC */ /*************************************************************** * TLan_HandleStatusCheck * * Returns: * 0 if Adapter check, 1 if Network Status check. * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles Adapter Check/Network Status * interrupts generated by the adapter. It checks the * vector in the HOST_INT register to determine if it is * an Adapter Check interrupt. If so, it resets the * adapter. Otherwise it clears the status registers * and services the PHY. * **************************************************************/ u32 TLan_HandleStatusCheck( struct device *dev, u16 host_int ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u32 ack; u32 error; u8 net_sts; u32 phy; u16 tlphy_ctl; u16 tlphy_sts; ack = 1; if ( host_int & TLAN_HI_IV_MASK ) { error = inl( dev->base_addr + TLAN_CH_PARM ); printk( "TLAN: %s: Adaptor Error = 0x%x\n", dev->name, error ); TLan_ReadAndClearStats( dev, TLAN_RECORD ); outl( TLAN_HC_AD_RST, dev->base_addr + TLAN_HOST_CMD ); TLan_FreeLists( dev ); TLan_ResetLists( dev ); TLan_ResetAdapter( dev ); dev->tbusy = 0; ack = 0; } else { TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: %s: Status Check\n", dev->name ); phy = priv->phy[priv->phyNum]; net_sts = TLan_DioRead8( dev->base_addr, TLAN_NET_STS ); if ( net_sts ) { TLan_DioWrite8( dev->base_addr, TLAN_NET_STS, net_sts ); TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: %s: Net_Sts = %x\n", dev->name, (unsigned) net_sts ); } if ( ( net_sts & TLAN_NET_STS_MIRQ ) && ( priv->phyNum == 0 ) ) { TLan_MiiReadReg( dev, phy, TLAN_TLPHY_STS, &tlphy_sts ); TLan_MiiReadReg( dev, phy, TLAN_TLPHY_CTL, &tlphy_ctl ); if ( ! ( tlphy_sts & TLAN_TS_POLOK ) && ! ( tlphy_ctl & TLAN_TC_SWAPOL ) ) { tlphy_ctl |= TLAN_TC_SWAPOL; TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tlphy_ctl); } else if ( ( tlphy_sts & TLAN_TS_POLOK ) && ( tlphy_ctl & TLAN_TC_SWAPOL ) ) { tlphy_ctl &= ~TLAN_TC_SWAPOL; TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tlphy_ctl); } if (debug) { TLan_PhyPrint( dev ); } } } return ack; } /* TLan_HandleStatusCheck */ /*************************************************************** * TLan_HandleRxEOC * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This driver is structured to determine EOC occurances by * reading the CSTAT member of the list structure. Rx EOC * interrupts are disabled via the DIO INTDIS register. * However, TLAN chips before revision 3.0 didn't have this * CSTAT member or a INTDIS register, so if this chip is * pre-3.0, process EOC interrupts normally. * **************************************************************/ u32 TLan_HandleRxEOC( struct device *dev, u16 host_int ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; TLanList *head_list; u32 ack = 1; host_int = 0; if ( priv->tlanRev < 0x30 ) { TLAN_DBG( TLAN_DEBUG_RX, "TLAN RECEIVE: Handling RX EOC (Head=%d Tail=%d) -- IRQ\n", priv->rxHead, priv->rxTail ); head_list = priv->rxList + priv->rxHead; outl( virt_to_bus( head_list ), dev->base_addr + TLAN_CH_PARM ); ack |= TLAN_HC_GO | TLAN_HC_RT; priv->rxEocCount++; } return ack; } /* TLan_HandleRxEOC */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver Timer Function ****************************************************************************** *****************************************************************************/ /*************************************************************** * TLan_Timer * * Returns: * Nothing * Parms: * data A value given to add timer when * add_timer was called. * * This function handles timed functionality for the * TLAN driver. The two current timer uses are for * delaying for autonegotionation and driving the ACT LED. * - Autonegotiation requires being allowed about * 2 1/2 seconds before attempting to transmit a * packet. It would be a very bad thing to hang * the kernel this long, so the driver doesn't * allow transmission 'til after this time, for * certain PHYs. It would be much nicer if all * PHYs were interrupt-capable like the internal * PHY. * - The ACT LED, which shows adapter activity, is * driven by the driver, and so must be left on * for a short period to power up the LED so it * can be seen. This delay can be changed by * changing the TLAN_TIMER_ACT_DELAY in tlan.h, * if desired. 10 jiffies produces a slightly * sluggish response. * **************************************************************/ void TLan_Timer( unsigned long data ) { struct device *dev = (struct device *) data; TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u32 elapsed; priv->timer.function = NULL; switch ( priv->timerType ) { case TLAN_TIMER_PHY_PDOWN: TLan_PhyPowerDown( dev ); break; case TLAN_TIMER_PHY_PUP: TLan_PhyPowerUp( dev ); break; case TLAN_TIMER_PHY_RESET: TLan_PhyReset( dev ); break; case TLAN_TIMER_PHY_START_LINK: TLan_PhyStartLink( dev ); break; case TLAN_TIMER_PHY_FINISH_AN: TLan_PhyFinishAutoNeg( dev ); break; case TLAN_TIMER_FINISH_RESET: TLan_FinishReset( dev ); break; case TLAN_TIMER_ACTIVITY: cli(); if ( priv->timer.function == NULL ) { elapsed = jiffies - priv->timerSetAt; if ( elapsed >= TLAN_TIMER_ACT_DELAY ) { TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK ); } else { priv->timer.function = &TLan_Timer; priv->timer.expires = priv->timerSetAt + TLAN_TIMER_ACT_DELAY; sti(); add_timer( &priv->timer ); } } sti(); break; default: break; } } /* TLan_Timer */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver Adapter Related Routines ****************************************************************************** *****************************************************************************/ /*************************************************************** * TLan_ResetLists * * Returns: * Nothing * Parms: * dev The device structure with the list * stuctures to be reset. * * This routine sets the variables associated with managing * the TLAN lists to their initial values. * **************************************************************/ void TLan_ResetLists( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; int i; TLanList *list; struct sk_buff *skb; void *t = NULL; priv->txHead = 0; priv->txTail = 0; for ( i = 0; i < TLAN_NUM_TX_LISTS; i++ ) { list = priv->txList + i; list->cStat = TLAN_CSTAT_UNUSED; if ( bbuf ) { list->buffer[0].address = virt_to_bus( priv->txBuffer + ( i * TLAN_MAX_FRAME_SIZE ) ); } else { list->buffer[0].address = 0; } list->buffer[2].count = 0; list->buffer[2].address = 0; } priv->rxHead = 0; priv->rxTail = TLAN_NUM_RX_LISTS - 1; for ( i = 0; i < TLAN_NUM_RX_LISTS; i++ ) { list = priv->rxList + i; list->cStat = TLAN_CSTAT_READY; list->frameSize = TLAN_MAX_FRAME_SIZE; list->buffer[0].count = TLAN_MAX_FRAME_SIZE | TLAN_LAST_BUFFER; if ( bbuf ) { list->buffer[0].address = virt_to_bus( priv->rxBuffer + ( i * TLAN_MAX_FRAME_SIZE ) ); } else { skb = dev_alloc_skb( TLAN_MAX_FRAME_SIZE + 7 ); if ( skb == NULL ) { printk( "TLAN: Couldn't allocate memory for received data.\n" ); /* If this ever happened it would be a problem */ } else { skb->dev = dev; skb_reserve( skb, 2 ); t = (void *) skb_put( skb, TLAN_MAX_FRAME_SIZE ); } list->buffer[0].address = virt_to_bus( t ); list->buffer[9].address = (u32) skb; } list->buffer[1].count = 0; list->buffer[1].address = 0; if ( i < TLAN_NUM_RX_LISTS - 1 ) list->forward = virt_to_bus( list + 1 ); else list->forward = 0; } } /* TLan_ResetLists */ void TLan_FreeLists( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; int i; TLanList *list; struct sk_buff *skb; if ( ! bbuf ) { for ( i = 0; i < TLAN_NUM_TX_LISTS; i++ ) { list = priv->txList + i; skb = (struct sk_buff *) list->buffer[9].address; if ( skb ) { dev_kfree_skb( skb, FREE_WRITE ); list->buffer[9].address = 0; } } for ( i = 0; i < TLAN_NUM_RX_LISTS; i++ ) { list = priv->rxList + i; skb = (struct sk_buff *) list->buffer[9].address; if ( skb ) { dev_kfree_skb( skb, FREE_READ ); list->buffer[9].address = 0; } } } } /* TLan_FreeLists */ /*************************************************************** * TLan_PrintDio * * Returns: * Nothing * Parms: * io_base Base IO port of the device of * which to print DIO registers. * * This function prints out all the internal (DIO) * registers of a TLAN chip. * **************************************************************/ void TLan_PrintDio( u16 io_base ) { u32 data0, data1; int i; printk( "TLAN: Contents of internal registers for io base 0x%04hx.\n", io_base ); printk( "TLAN: Off. +0 +4\n" ); for ( i = 0; i < 0x4C; i+= 8 ) { data0 = TLan_DioRead32( io_base, i ); data1 = TLan_DioRead32( io_base, i + 0x4 ); printk( "TLAN: 0x%02x 0x%08x 0x%08x\n", i, data0, data1 ); } } /* TLan_PrintDio */ /*************************************************************** * TLan_PrintList * * Returns: * Nothing * Parms: * list A pointer to the TLanList structure to * be printed. * type A string to designate type of list, * "Rx" or "Tx". * num The index of the list. * * This function prints out the contents of the list * pointed to by the list parameter. * **************************************************************/ void TLan_PrintList( TLanList *list, char *type, int num) { int i; printk( "TLAN: %s List %d at 0x%08x\n", type, num, (u32) list ); printk( "TLAN: Forward = 0x%08x\n", list->forward ); printk( "TLAN: CSTAT = 0x%04hx\n", list->cStat ); printk( "TLAN: Frame Size = 0x%04hx\n", list->frameSize ); /* for ( i = 0; i < 10; i++ ) { */ for ( i = 0; i < 2; i++ ) { printk( "TLAN: Buffer[%d].count, addr = 0x%08x, 0x%08x\n", i, list->buffer[i].count, list->buffer[i].address ); } } /* TLan_PrintList */ /*************************************************************** * TLan_ReadAndClearStats * * Returns: * Nothing * Parms: * dev Pointer to device structure of adapter * to which to read stats. * record Flag indicating whether to add * * This functions reads all the internal status registers * of the TLAN chip, which clears them as a side effect. * It then either adds the values to the device's status * struct, or discards them, depending on whether record * is TLAN_RECORD (!=0) or TLAN_IGNORE (==0). * **************************************************************/ void TLan_ReadAndClearStats( struct device *dev, int record ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u32 tx_good, tx_under; u32 rx_good, rx_over; u32 def_tx, crc, code; u32 multi_col, single_col; u32 excess_col, late_col, loss; outw( TLAN_GOOD_TX_FRMS, dev->base_addr + TLAN_DIO_ADR ); tx_good = inb( dev->base_addr + TLAN_DIO_DATA ); tx_good += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8; tx_good += inb( dev->base_addr + TLAN_DIO_DATA + 2 ) << 16; tx_under = inb( dev->base_addr + TLAN_DIO_DATA + 3 ); outw( TLAN_GOOD_RX_FRMS, dev->base_addr + TLAN_DIO_ADR ); rx_good = inb( dev->base_addr + TLAN_DIO_DATA ); rx_good += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8; rx_good += inb( dev->base_addr + TLAN_DIO_DATA + 2 ) << 16; rx_over = inb( dev->base_addr + TLAN_DIO_DATA + 3 ); outw( TLAN_DEFERRED_TX, dev->base_addr + TLAN_DIO_ADR ); def_tx = inb( dev->base_addr + TLAN_DIO_DATA ); def_tx += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8; crc = inb( dev->base_addr + TLAN_DIO_DATA + 2 ); code = inb( dev->base_addr + TLAN_DIO_DATA + 3 ); outw( TLAN_MULTICOL_FRMS, dev->base_addr + TLAN_DIO_ADR ); multi_col = inb( dev->base_addr + TLAN_DIO_DATA ); multi_col += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8; single_col = inb( dev->base_addr + TLAN_DIO_DATA + 2 ); single_col += inb( dev->base_addr + TLAN_DIO_DATA + 3 ) << 8; outw( TLAN_EXCESSCOL_FRMS, dev->base_addr + TLAN_DIO_ADR ); excess_col = inb( dev->base_addr + TLAN_DIO_DATA ); late_col = inb( dev->base_addr + TLAN_DIO_DATA + 1 ); loss = inb( dev->base_addr + TLAN_DIO_DATA + 2 ); if ( record ) { priv->stats.rx_packets += rx_good; priv->stats.rx_errors += rx_over + crc + code; priv->stats.tx_packets += tx_good; priv->stats.tx_errors += tx_under + loss; priv->stats.collisions += multi_col + single_col + excess_col + late_col; priv->stats.rx_over_errors += rx_over; priv->stats.rx_crc_errors += crc; priv->stats.rx_frame_errors += code; priv->stats.tx_aborted_errors += tx_under; priv->stats.tx_carrier_errors += loss; } } /* TLan_ReadAndClearStats */ /*************************************************************** * TLan_Reset * * Returns: * 0 * Parms: * dev Pointer to device structure of adapter * to be reset. * * This function resets the adapter and it's physical * device. See Chap. 3, pp. 9-10 of the "ThunderLAN * Programmer's Guide" for details. The routine tries to * implement what is detailed there, though adjustments * have been made. * **************************************************************/ void TLan_ResetAdapter( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; int i; u32 addr; u32 data; u8 data8; priv->tlanFullDuplex = FALSE; /* 1. Assert reset bit. */ data = inl(dev->base_addr + TLAN_HOST_CMD); data |= TLAN_HC_AD_RST; outl(data, dev->base_addr + TLAN_HOST_CMD); udelay(1000); /* 2. Turn off interrupts. ( Probably isn't necessary ) */ data = inl(dev->base_addr + TLAN_HOST_CMD); data |= TLAN_HC_INT_OFF; outl(data, dev->base_addr + TLAN_HOST_CMD); /* 3. Clear AREGs and HASHs. */ for ( i = TLAN_AREG_0; i <= TLAN_HASH_2; i += 4 ) { TLan_DioWrite32( dev->base_addr, (u16) i, 0 ); } /* 4. Setup NetConfig register. */ data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN; TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, (u16) data ); /* 5. Load Ld_Tmr and Ld_Thr in HOST_CMD. */ outl( TLAN_HC_LD_TMR | 0x0, dev->base_addr + TLAN_HOST_CMD ); outl( TLAN_HC_LD_THR | 0x1, dev->base_addr + TLAN_HOST_CMD ); /* 6. Unreset the MII by setting NMRST (in NetSio) to 1. */ outw( TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR ); addr = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO; TLan_SetBit( TLAN_NET_SIO_NMRST, addr ); /* 7. Setup the remaining registers. */ if ( priv->tlanRev >= 0x30 ) { data8 = TLAN_ID_TX_EOC | TLAN_ID_RX_EOC; TLan_DioWrite8( dev->base_addr, TLAN_INT_DIS, data8 ); } TLan_PhyDetect( dev ); data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN; if ( priv->adapter->flags & TLAN_ADAPTER_BIT_RATE_PHY ) { data |= TLAN_NET_CFG_BIT; if ( priv->aui == 1 ) { TLan_DioWrite8( dev->base_addr, TLAN_ACOMMIT, 0x0a ); } else if ( priv->duplex == TLAN_DUPLEX_FULL ) { TLan_DioWrite8( dev->base_addr, TLAN_ACOMMIT, 0x00 ); priv->tlanFullDuplex = TRUE; } else { TLan_DioWrite8( dev->base_addr, TLAN_ACOMMIT, 0x08 ); } } if ( priv->phyNum == 0 ) { data |= TLAN_NET_CFG_PHY_EN; } TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, (u16) data ); if ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) { TLan_FinishReset( dev ); } else { TLan_PhyPowerDown( dev ); } } /* TLan_ResetAdapter */ void TLan_FinishReset( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u8 data; u32 phy; u8 sio; u16 status; u16 tlphy_ctl; phy = priv->phy[priv->phyNum]; data = TLAN_NET_CMD_NRESET | TLAN_NET_CMD_NWRAP; if ( priv->tlanFullDuplex ) { data |= TLAN_NET_CMD_DUPLEX; } TLan_DioWrite8( dev->base_addr, TLAN_NET_CMD, data ); data = TLAN_NET_MASK_MASK4 | TLAN_NET_MASK_MASK5; if ( priv->phyNum == 0 ) { data |= TLAN_NET_MASK_MASK7; } TLan_DioWrite8( dev->base_addr, TLAN_NET_MASK, data ); TLan_DioWrite16( dev->base_addr, TLAN_MAX_RX, TLAN_MAX_FRAME_SIZE ); if ( ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) || ( priv->aui ) ) { status = MII_GS_LINK; printk( "TLAN: %s: Link forced.\n", dev->name ); } else { TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status ); udelay( 1000 ); TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status ); if ( status & MII_GS_LINK ) { printk( "TLAN: %s: Link active.\n", dev->name ); TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK ); } } if ( priv->phyNum == 0 ) { TLan_MiiReadReg( dev, phy, TLAN_TLPHY_CTL, &tlphy_ctl ); tlphy_ctl |= TLAN_TC_INTEN; TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tlphy_ctl ); sio = TLan_DioRead8( dev->base_addr, TLAN_NET_SIO ); sio |= TLAN_NET_SIO_MINTEN; TLan_DioWrite8( dev->base_addr, TLAN_NET_SIO, sio ); } if ( status & MII_GS_LINK ) { TLan_SetMac( dev, 0, dev->dev_addr ); priv->phyOnline = 1; outb( ( TLAN_HC_INT_ON >> 8 ), dev->base_addr + TLAN_HOST_CMD + 1 ); if ( debug >= 1 ) { outb( ( TLAN_HC_REQ_INT >> 8 ), dev->base_addr + TLAN_HOST_CMD + 1 ); } outl( virt_to_bus( priv->rxList ), dev->base_addr + TLAN_CH_PARM ); outl( TLAN_HC_GO | TLAN_HC_RT, dev->base_addr + TLAN_HOST_CMD ); } else { printk( "TLAN: %s: Link inactive, will retry in 10 secs...\n", dev->name ); TLan_SetTimer( dev, 1000, TLAN_TIMER_FINISH_RESET ); return; } } /* TLan_FinishReset */ /*************************************************************** * TLan_SetMac * * Returns: * Nothing * Parms: * dev Pointer to device structure of adapter * on which to change the AREG. * areg The AREG to set the address in (0 - 3). * mac A pointer to an array of chars. Each * element stores one byte of the address. * IE, it isn't in ascii. * * This function transfers a MAC address to one of the * TLAN AREGs (address registers). The TLAN chip locks * the register on writing to offset 0 and unlocks the * register after writing to offset 5. If NULL is passed * in mac, then the AREG is filled with 0's. * **************************************************************/ void TLan_SetMac( struct device *dev, int areg, char *mac ) { int i; areg *= 6; if ( mac != NULL ) { for ( i = 0; i < 6; i++ ) TLan_DioWrite8( dev->base_addr, TLAN_AREG_0 + areg + i, mac[i] ); } else { for ( i = 0; i < 6; i++ ) TLan_DioWrite8( dev->base_addr, TLAN_AREG_0 + areg + i, 0 ); } } /* TLan_SetMac */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver PHY Layer Routines ****************************************************************************** *****************************************************************************/ /********************************************************************* * TLan_PhyPrint * * Returns: * Nothing * Parms: * dev A pointer to the device structure of the * TLAN device having the PHYs to be detailed. * * This function prints the registers a PHY (aka tranceiver). * ********************************************************************/ void TLan_PhyPrint( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u16 i, data0, data1, data2, data3, phy; phy = priv->phy[priv->phyNum]; if ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) { printk( "TLAN: Device %s, Unmanaged PHY.\n", dev->name ); } else if ( phy <= TLAN_PHY_MAX_ADDR ) { printk( "TLAN: Device %s, PHY 0x%02x.\n", dev->name, phy ); printk( "TLAN: Off. +0 +1 +2 +3 \n" ); for ( i = 0; i < 0x20; i+= 4 ) { printk( "TLAN: 0x%02x", i ); TLan_MiiReadReg( dev, phy, i, &data0 ); printk( " 0x%04hx", data0 ); TLan_MiiReadReg( dev, phy, i + 1, &data1 ); printk( " 0x%04hx", data1 ); TLan_MiiReadReg( dev, phy, i + 2, &data2 ); printk( " 0x%04hx", data2 ); TLan_MiiReadReg( dev, phy, i + 3, &data3 ); printk( " 0x%04hx\n", data3 ); } } else { printk( "TLAN: Device %s, Invalid PHY.\n", dev->name ); } } /* TLan_PhyPrint */ /********************************************************************* * TLan_PhyDetect * * Returns: * Nothing * Parms: * dev A pointer to the device structure of the adapter * for which the PHY needs determined. * * So far I've found that adapters which have external PHYs * may also use the internal PHY for part of the functionality. * (eg, AUI/Thinnet). This function finds out if this TLAN * chip has an internal PHY, and then finds the first external * PHY (starting from address 0) if it exists). * ********************************************************************/ void TLan_PhyDetect( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u16 control; u16 hi; u16 lo; u32 phy; if ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) { priv->phyNum = 0xFFFF; return; } TLan_MiiReadReg( dev, TLAN_PHY_MAX_ADDR, MII_GEN_ID_HI, &hi ); if ( hi != 0xFFFF ) { priv->phy[0] = TLAN_PHY_MAX_ADDR; } else { priv->phy[0] = TLAN_PHY_NONE; } priv->phy[1] = TLAN_PHY_NONE; for ( phy = 0; phy <= TLAN_PHY_MAX_ADDR; phy++ ) { TLan_MiiReadReg( dev, phy, MII_GEN_CTL, &control ); TLan_MiiReadReg( dev, phy, MII_GEN_ID_HI, &hi ); TLan_MiiReadReg( dev, phy, MII_GEN_ID_LO, &lo ); if ( ( control != 0xFFFF ) || ( hi != 0xFFFF ) || ( lo != 0xFFFF ) ) { TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: PHY found at %02x %04x %04x %04x\n", phy, control, hi, lo ); if ( ( priv->phy[1] == TLAN_PHY_NONE ) && ( phy != TLAN_PHY_MAX_ADDR ) ) { priv->phy[1] = phy; } } } if ( priv->phy[1] != TLAN_PHY_NONE ) { priv->phyNum = 1; } else if ( priv->phy[0] != TLAN_PHY_NONE ) { priv->phyNum = 0; } else { printk( "TLAN: Cannot initialize device, no PHY was found!\n" ); } } /* TLan_PhyDetect */ void TLan_PhyPowerDown( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u16 value; TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: %s: Powering down PHY(s).\n", dev->name ); value = MII_GC_PDOWN | MII_GC_LOOPBK | MII_GC_ISOLATE; TLan_MiiSync( dev->base_addr ); TLan_MiiWriteReg( dev, priv->phy[priv->phyNum], MII_GEN_CTL, value ); if ( ( priv->phyNum == 0 ) && ( priv->phy[1] != TLAN_PHY_NONE ) && ( ! ( priv->adapter->flags & TLAN_ADAPTER_USE_INTERN_10 ) ) ) { TLan_MiiSync( dev->base_addr ); TLan_MiiWriteReg( dev, priv->phy[1], MII_GEN_CTL, value ); } /* Wait for 5 jiffies (50 ms) and powerup * This is abitrary. It is intended to make sure the * tranceiver settles. */ TLan_SetTimer( dev, 5, TLAN_TIMER_PHY_PUP ); } /* TLan_PhyPowerDown */ void TLan_PhyPowerUp( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u16 value; TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: %s: Powering up PHY.\n", dev->name ); TLan_MiiSync( dev->base_addr ); value = MII_GC_LOOPBK; TLan_MiiWriteReg( dev, priv->phy[priv->phyNum], MII_GEN_CTL, value ); /* Wait for 50 jiffies (500 ms) and reset the * tranceiver. The TLAN docs say both 50 ms and * 500 ms, so do the longer, just in case */ TLan_SetTimer( dev, 50, TLAN_TIMER_PHY_RESET ); } /* TLan_PhyPowerUp */ void TLan_PhyReset( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u16 phy; u16 value; phy = priv->phy[priv->phyNum]; TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: %s: Reseting PHY.\n", dev->name ); TLan_MiiSync( dev->base_addr ); value = MII_GC_LOOPBK | MII_GC_RESET; TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, value ); TLan_MiiReadReg( dev, phy, MII_GEN_CTL, &value ); while ( value & MII_GC_RESET ) { TLan_MiiReadReg( dev, phy, MII_GEN_CTL, &value ); } TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0 ); /* Wait for 50 jiffies (500 ms) and initialize. * I don't remember why I wait this long. */ TLan_SetTimer( dev, 50, TLAN_TIMER_PHY_START_LINK ); } /* TLan_PhyReset */ void TLan_PhyStartLink( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u16 ability; u16 control; u16 data; u16 phy; u16 status; u16 tctl; phy = priv->phy[priv->phyNum]; TLAN_DBG( TLAN_DEBUG_GNRL, "TLAN: %s: Trying to activate link.\n", dev->name ); TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status ); if ( ( status & MII_GS_AUTONEG ) && ( priv->duplex == TLAN_DUPLEX_DEFAULT ) && ( priv->speed == TLAN_SPEED_DEFAULT ) && ( ! priv->aui ) ) { ability = status >> 11; if ( priv->speed == TLAN_SPEED_10 ) { ability &= 0x0003; } else if ( priv->speed == TLAN_SPEED_100 ) { ability &= 0x001C; } if ( priv->duplex == TLAN_DUPLEX_FULL ) { ability &= 0x000A; } else if ( priv->duplex == TLAN_DUPLEX_HALF ) { ability &= 0x0005; } TLan_MiiWriteReg( dev, phy, MII_AN_ADV, ( ability << 5 ) | 1 ); TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x1000 ); TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x1200 ); /* Wait for 400 jiffies (4 sec) for autonegotiation * to complete. The max spec time is less than this * but the card need additional time to start AN. * .5 sec should be plenty extra. */ printk( "TLAN: %s: Starting autonegotiation.\n", dev->name ); TLan_SetTimer( dev, 400, TLAN_TIMER_PHY_FINISH_AN ); return; } if ( ( priv->aui ) && ( priv->phyNum != 0 ) ) { priv->phyNum = 0; data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN; TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, data ); TLan_SetTimer( dev, 4, TLAN_TIMER_PHY_PDOWN ); return; } else if ( priv->phyNum == 0 ) { TLan_MiiReadReg( dev, phy, TLAN_TLPHY_CTL, &tctl ); if ( priv->aui ) { tctl |= TLAN_TC_AUISEL; } else { tctl &= ~TLAN_TC_AUISEL; control = 0; if ( priv->duplex == TLAN_DUPLEX_FULL ) { control |= MII_GC_DUPLEX; priv->tlanFullDuplex = TRUE; } if ( priv->speed == TLAN_SPEED_100 ) { control |= MII_GC_SPEEDSEL; } TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, control ); } TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tctl ); } /* Wait for 100 jiffies (1 sec) to give the tranceiver time * to establish link. */ TLan_SetTimer( dev, 100, TLAN_TIMER_FINISH_RESET ); } /* TLan_PhyStartLink */ void TLan_PhyFinishAutoNeg( struct device *dev ) { TLanPrivateInfo *priv = (TLanPrivateInfo *) dev->priv; u16 an_adv; u16 an_lpa; u16 data; u16 mode; u16 phy; u16 status; phy = priv->phy[priv->phyNum]; TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status ); if ( ! ( status & MII_GS_AUTOCMPLT ) ) { /* Wait for 800 jiffies (8 sec) to give the process * more time. Perhaps we should fail after a while. */ printk( "TLAN: Giving autonegotiation more time.\n" ); TLan_SetTimer( dev, 800, TLAN_TIMER_PHY_FINISH_AN ); return; } printk( "TLAN: %s: Autonegotiation complete.\n", dev->name ); TLan_MiiReadReg( dev, phy, MII_AN_ADV, &an_adv ); TLan_MiiReadReg( dev, phy, MII_AN_LPA, &an_lpa ); mode = an_adv & an_lpa & 0x03E0; if ( mode & 0x0100 ) { priv->tlanFullDuplex = TRUE; } else if ( ! ( mode & 0x0080 ) && ( mode & 0x0040 ) ) { priv->tlanFullDuplex = TRUE; } if ( ( ! ( mode & 0x0180 ) ) && ( priv->adapter->flags & TLAN_ADAPTER_USE_INTERN_10 ) && ( priv->phyNum != 0 ) ) { priv->phyNum = 0; data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN; TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, data ); TLan_SetTimer( dev, 40, TLAN_TIMER_PHY_PDOWN ); return; } if ( priv->phyNum == 0 ) { if ( ( priv->duplex == TLAN_DUPLEX_FULL ) || ( an_adv & an_lpa & 0x0040 ) ) { TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, MII_GC_AUTOENB | MII_GC_DUPLEX ); printk( "TLAN: Starting internal PHY with DUPLEX\n" ); } else { TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, MII_GC_AUTOENB ); printk( "TLAN: Starting internal PHY with HALF-DUPLEX\n" ); } } /* Wait for 10 jiffies (100 ms). No reason in partiticular. */ TLan_SetTimer( dev, 10, TLAN_TIMER_FINISH_RESET ); } /* TLan_PhyFinishAutoNeg */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver MII Routines These routines are based on the information in Chap. 2 of the "ThunderLAN Programmer's Guide", pp. 15-24. ****************************************************************************** *****************************************************************************/ /*************************************************************** * TLan_MiiReadReg * * Returns: * 0 if ack received ok * 1 otherwise. * * Parms: * dev The device structure containing * The io address and interrupt count * for this device. * phy The address of the PHY to be queried. * reg The register whose contents are to be * retreived. * val A pointer to a variable to store the * retrieved value. * * This function uses the TLAN's MII bus to retreive the contents * of a given register on a PHY. It sends the appropriate info * and then reads the 16-bit register value from the MII bus via * the TLAN SIO register. * **************************************************************/ int TLan_MiiReadReg( struct device *dev, u16 phy, u16 reg, u16 *val ) { u8 nack; u16 sio, tmp; u32 i; int err; int minten; err = FALSE; outw(TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR); sio = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO; if ( dev->interrupt == 0 ) cli(); dev->interrupt++; TLan_MiiSync(dev->base_addr); minten = TLan_GetBit( TLAN_NET_SIO_MINTEN, sio ); if ( minten ) TLan_ClearBit(TLAN_NET_SIO_MINTEN, sio); TLan_MiiSendData( dev->base_addr, 0x1, 2 ); /* Start ( 01b ) */ TLan_MiiSendData( dev->base_addr, 0x2, 2 ); /* Read ( 10b ) */ TLan_MiiSendData( dev->base_addr, phy, 5 ); /* Device # */ TLan_MiiSendData( dev->base_addr, reg, 5 ); /* Register # */ TLan_ClearBit(TLAN_NET_SIO_MTXEN, sio); /* Change direction */ TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Clock Idle bit */ TLan_SetBit(TLAN_NET_SIO_MCLK, sio); TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Wait 300ns */ nack = TLan_GetBit(TLAN_NET_SIO_MDATA, sio); /* Check for ACK */ TLan_SetBit(TLAN_NET_SIO_MCLK, sio); /* Finish ACK */ if (nack) { /* No ACK, so fake it */ for (i = 0; i < 16; i++) { TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); TLan_SetBit(TLAN_NET_SIO_MCLK, sio); } tmp = 0xffff; err = TRUE; } else { /* ACK, so read data */ for (tmp = 0, i = 0x8000; i; i >>= 1) { TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); if (TLan_GetBit(TLAN_NET_SIO_MDATA, sio)) tmp |= i; TLan_SetBit(TLAN_NET_SIO_MCLK, sio); } } TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Idle cycle */ TLan_SetBit(TLAN_NET_SIO_MCLK, sio); if ( minten ) TLan_SetBit(TLAN_NET_SIO_MINTEN, sio); *val = tmp; dev->interrupt--; if ( dev->interrupt == 0 ) sti(); return err; } /* TLan_MiiReadReg */ /*************************************************************** * TLan_MiiSendData * * Returns: * Nothing * Parms: * base_port The base IO port of the adapter in * question. * dev The address of the PHY to be queried. * data The value to be placed on the MII bus. * num_bits The number of bits in data that are to * be placed on the MII bus. * * This function sends on sequence of bits on the MII * configuration bus. * **************************************************************/ void TLan_MiiSendData( u16 base_port, u32 data, unsigned num_bits ) { u16 sio; u32 i; if ( num_bits == 0 ) return; outw( TLAN_NET_SIO, base_port + TLAN_DIO_ADR ); sio = base_port + TLAN_DIO_DATA + TLAN_NET_SIO; TLan_SetBit( TLAN_NET_SIO_MTXEN, sio ); for ( i = ( 0x1 << ( num_bits - 1 ) ); i; i >>= 1 ) { TLan_ClearBit( TLAN_NET_SIO_MCLK, sio ); TLan_GetBit( TLAN_NET_SIO_MCLK, sio ); if ( data & i ) TLan_SetBit( TLAN_NET_SIO_MDATA, sio ); else TLan_ClearBit( TLAN_NET_SIO_MDATA, sio ); TLan_SetBit( TLAN_NET_SIO_MCLK, sio ); TLan_GetBit( TLAN_NET_SIO_MCLK, sio ); } } /* TLan_MiiSendData */ /*************************************************************** * TLan_MiiSync * * Returns: * Nothing * Parms: * base_port The base IO port of the adapter in * question. * * This functions syncs all PHYs in terms of the MII configuration * bus. * **************************************************************/ void TLan_MiiSync( u16 base_port ) { int i; u16 sio; outw( TLAN_NET_SIO, base_port + TLAN_DIO_ADR ); sio = base_port + TLAN_DIO_DATA + TLAN_NET_SIO; TLan_ClearBit( TLAN_NET_SIO_MTXEN, sio ); for ( i = 0; i < 32; i++ ) { TLan_ClearBit( TLAN_NET_SIO_MCLK, sio ); TLan_SetBit( TLAN_NET_SIO_MCLK, sio ); } } /* TLan_MiiSync */ /*************************************************************** * TLan_MiiWriteReg * * Returns: * Nothing * Parms: * dev The device structure for the device * to write to. * phy The address of the PHY to be written to. * reg The register whose contents are to be * written. * val The value to be written to the register. * * This function uses the TLAN's MII bus to write the contents of a * given register on a PHY. It sends the appropriate info and then * writes the 16-bit register value from the MII configuration bus * via the TLAN SIO register. * **************************************************************/ void TLan_MiiWriteReg( struct device *dev, u16 phy, u16 reg, u16 val ) { u16 sio; int minten; outw(TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR); sio = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO; if ( dev->interrupt == 0 ) cli(); dev->interrupt++; TLan_MiiSync( dev->base_addr ); minten = TLan_GetBit( TLAN_NET_SIO_MINTEN, sio ); if ( minten ) TLan_ClearBit( TLAN_NET_SIO_MINTEN, sio ); TLan_MiiSendData( dev->base_addr, 0x1, 2 ); /* Start ( 01b ) */ TLan_MiiSendData( dev->base_addr, 0x1, 2 ); /* Write ( 01b ) */ TLan_MiiSendData( dev->base_addr, phy, 5 ); /* Device # */ TLan_MiiSendData( dev->base_addr, reg, 5 ); /* Register # */ TLan_MiiSendData( dev->base_addr, 0x2, 2 ); /* Send ACK */ TLan_MiiSendData( dev->base_addr, val, 16 ); /* Send Data */ TLan_ClearBit( TLAN_NET_SIO_MCLK, sio ); /* Idle cycle */ TLan_SetBit( TLAN_NET_SIO_MCLK, sio ); if ( minten ) TLan_SetBit( TLAN_NET_SIO_MINTEN, sio ); dev->interrupt--; if ( dev->interrupt == 0 ) sti(); } /* TLan_MiiWriteReg */ /***************************************************************************** ****************************************************************************** ThunderLAN Driver Eeprom routines The Compaq Netelligent 10 and 10/100 cards use a Microchip 24C02A EEPROM. These functions are based on information in Microchip's data sheet. I don't know how well this functions will work with other EEPROMs. ****************************************************************************** *****************************************************************************/ /*************************************************************** * TLan_EeSendStart * * Returns: * Nothing * Parms: * io_base The IO port base address for the * TLAN device with the EEPROM to * use. * * This function sends a start cycle to an EEPROM attached * to a TLAN chip. * **************************************************************/ void TLan_EeSendStart( u16 io_base ) { u16 sio; outw( TLAN_NET_SIO, io_base + TLAN_DIO_ADR ); sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO; TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_SetBit( TLAN_NET_SIO_EDATA, sio ); TLan_SetBit( TLAN_NET_SIO_ETXEN, sio ); TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); } /* TLan_EeSendStart */ /*************************************************************** * TLan_EeSendByte * * Returns: * If the correct ack was received, 0, otherwise 1 * Parms: io_base The IO port base address for the * TLAN device with the EEPROM to * use. * data The 8 bits of information to * send to the EEPROM. * stop If TLAN_EEPROM_STOP is passed, a * stop cycle is sent after the * byte is sent after the ack is * read. * * This function sends a byte on the serial EEPROM line, * driving the clock to send each bit. The function then * reverses transmission direction and reads an acknowledge * bit. * **************************************************************/ int TLan_EeSendByte( u16 io_base, u8 data, int stop ) { int err; u8 place; u16 sio; outw( TLAN_NET_SIO, io_base + TLAN_DIO_ADR ); sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO; /* Assume clock is low, tx is enabled; */ for ( place = 0x80; place != 0; place >>= 1 ) { if ( place & data ) TLan_SetBit( TLAN_NET_SIO_EDATA, sio ); else TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); } TLan_ClearBit( TLAN_NET_SIO_ETXEN, sio ); TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); err = TLan_GetBit( TLAN_NET_SIO_EDATA, sio ); TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); TLan_SetBit( TLAN_NET_SIO_ETXEN, sio ); if ( ( ! err ) && stop ) { TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); /* STOP, raise data while clock is high */ TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_SetBit( TLAN_NET_SIO_EDATA, sio ); } return ( err ); } /* TLan_EeSendByte */ /*************************************************************** * TLan_EeReceiveByte * * Returns: * Nothing * Parms: * io_base The IO port base address for the * TLAN device with the EEPROM to * use. * data An address to a char to hold the * data sent from the EEPROM. * stop If TLAN_EEPROM_STOP is passed, a * stop cycle is sent after the * byte is received, and no ack is * sent. * * This function receives 8 bits of data from the EEPROM * over the serial link. It then sends and ack bit, or no * ack and a stop bit. This function is used to retrieve * data after the address of a byte in the EEPROM has been * sent. * **************************************************************/ void TLan_EeReceiveByte( u16 io_base, u8 *data, int stop ) { u8 place; u16 sio; outw( TLAN_NET_SIO, io_base + TLAN_DIO_ADR ); sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO; *data = 0; /* Assume clock is low, tx is enabled; */ TLan_ClearBit( TLAN_NET_SIO_ETXEN, sio ); for ( place = 0x80; place; place >>= 1 ) { TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); if ( TLan_GetBit( TLAN_NET_SIO_EDATA, sio ) ) *data |= place; TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); } TLan_SetBit( TLAN_NET_SIO_ETXEN, sio ); if ( ! stop ) { TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); /* Ack = 0 */ TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); } else { TLan_SetBit( TLAN_NET_SIO_EDATA, sio ); /* No ack = 1 (?) */ TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio ); TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); /* STOP, raise data while clock is high */ TLan_SetBit( TLAN_NET_SIO_ECLOK, sio ); TLan_SetBit( TLAN_NET_SIO_EDATA, sio ); } } /* TLan_EeReceiveByte */ /*************************************************************** * TLan_EeReadByte * * Returns: * No error = 0, else, the stage at which the error * occured. * Parms: * io_base The IO port base address for the * TLAN device with the EEPROM to * use. * ee_addr The address of the byte in the * EEPROM whose contents are to be * retrieved. * data An address to a char to hold the * data obtained from the EEPROM. * * This function reads a byte of information from an byte * cell in the EEPROM. * **************************************************************/ int TLan_EeReadByte( struct device *dev, u8 ee_addr, u8 *data ) { int err; if ( dev->interrupt == 0 ) cli(); dev->interrupt++; TLan_EeSendStart( dev->base_addr ); err = TLan_EeSendByte( dev->base_addr, 0xA0, TLAN_EEPROM_ACK ); if (err) return 1; err = TLan_EeSendByte( dev->base_addr, ee_addr, TLAN_EEPROM_ACK ); if (err) return 2; TLan_EeSendStart( dev->base_addr ); err = TLan_EeSendByte( dev->base_addr, 0xA1, TLAN_EEPROM_ACK ); if (err) return 3; TLan_EeReceiveByte( dev->base_addr, data, TLAN_EEPROM_STOP ); dev->interrupt--; if ( dev->interrupt == 0 ) sti(); return 0; } /* TLan_EeReadByte */
Go to most recent revision | Compare with Previous | Blame | View Log