URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [scsi/] [eata_dma.c] - Rev 1626
Go to most recent revision | Compare with Previous | Blame | View Log
/************************************************************ * * * Linux EATA SCSI driver * * * * based on the CAM document CAM/89-004 rev. 2.0c, * * DPT's driver kit, some internal documents and source, * * and several other Linux scsi drivers and kernel docs. * * * * The driver currently: * * -supports all ISA based EATA-DMA boards * * like PM2011, PM2021, PM2041, PM3021 * * -supports all EISA based EATA-DMA boards * * like PM2012B, PM2022, PM2122, PM2322, PM2042, * * PM3122, PM3222, PM3332 * * -supports all PCI based EATA-DMA boards * * like PM2024, PM2124, PM2044, PM2144, PM3224, * * PM3334 * * -supports the Wide, Ultra Wide and Differential * * versions of the boards * * -supports multiple HBAs with & without IRQ sharing * * -supports all SCSI channels on multi channel boards * * -supports ix86 and MIPS, untested on ALPHA * * -needs identical IDs on all channels of a HBA * * -can be loaded as module * * -displays statistical and hardware information * * in /proc/scsi/eata_dma * * -provides rudimentary latency measurement * * possibilities via /proc/scsi/eata_dma/<hostnum> * * * * (c)1993-96 Michael Neuffer * * mike@i-Connect.Net * * neuffer@mail.uni-mainz.de * * * * This program is free software; you can redistribute it * * and/or modify it under the terms of the GNU General * * Public License as published by the Free Software * * Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be * * useful, but WITHOUT ANY WARRANTY; without even the * * implied warranty of MERCHANTABILITY or FITNESS FOR A * * PARTICULAR PURPOSE. See the GNU General Public License * * for more details. * * * * You should have received a copy of the GNU General * * Public License along with this kernel; if not, write to * * the Free Software Foundation, Inc., 675 Mass Ave, * * Cambridge, MA 02139, USA. * * * * I have to thank DPT for their excellent support. I took * * me almost a year and a stopover at their HQ, on my first * * trip to the USA, to get it, but since then they've been * * very helpful and tried to give me all the infos and * * support I need. * * * * Thanks also to Simon Shapiro, Greg Hosler and Mike * * Jagdis who did a lot of testing and found quite a number * * of bugs during the development. * ************************************************************ * last change: 96/10/21 OS: Linux 2.0.23 * ************************************************************/ /* Look in eata_dma.h for configuration and revision information */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/ioport.h> #include <linux/malloc.h> #include <linux/in.h> #include <linux/bios32.h> #include <linux/pci.h> #include <linux/proc_fs.h> #include <linux/delay.h> #include <asm/byteorder.h> #include <asm/types.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/pgtable.h> #ifdef __mips__ #include <asm/cachectl.h> #endif #include <linux/blk.h> #include "scsi.h" #include "sd.h" #include "hosts.h" #include "eata_dma.h" #include "eata_dma_proc.h" #include <linux/stat.h> #include <linux/config.h> /* for CONFIG_PCI */ struct proc_dir_entry proc_scsi_eata_dma = { PROC_SCSI_EATA, 8, "eata_dma", S_IFDIR | S_IRUGO | S_IXUGO, 2 }; static u32 ISAbases[] = {0x1F0, 0x170, 0x330, 0x230}; static unchar EISAbases[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; static uint registered_HBAs = 0; static struct Scsi_Host *last_HBA = NULL; static struct Scsi_Host *first_HBA = NULL; static unchar reg_IRQ[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static unchar reg_IRQL[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct eata_sp *status = 0; /* Statuspacket array */ static void *dma_scratch = 0; static struct eata_register *fake_int_base; static int fake_int_result; static int fake_int_happened; static ulong int_counter = 0; static ulong queue_counter = 0; void eata_scsi_done (Scsi_Cmnd * scmd) { scmd->request.rq_status = RQ_SCSI_DONE; if (scmd->request.sem != NULL) up(scmd->request.sem); return; } void eata_fake_int_handler(s32 irq, void *dev_id, struct pt_regs * regs) { fake_int_result = inb((ulong)fake_int_base + HA_RSTATUS); fake_int_happened = TRUE; DBG(DBG_INTR3, printk("eata_fake_int_handler called irq%d base %p" " res %#x\n", irq, fake_int_base, fake_int_result)); return; } #include "eata_dma_proc.c" #ifdef MODULE int eata_release(struct Scsi_Host *sh) { uint i; if (sh->irq && reg_IRQ[sh->irq] == 1) free_irq(sh->irq, NULL); else reg_IRQ[sh->irq]--; scsi_init_free((void *)status, 512); scsi_init_free((void *)dma_scratch - 4, 1024); for (i = 0; i < sh->can_queue; i++){ /* Free all SG arrays */ if(SD(sh)->ccb[i].sg_list != NULL) scsi_init_free((void *) SD(sh)->ccb[i].sg_list, sh->sg_tablesize * sizeof(struct eata_sg_list)); } if (SD(sh)->channel == 0) { if (sh->dma_channel != BUSMASTER) free_dma(sh->dma_channel); if (sh->io_port && sh->n_io_port) release_region(sh->io_port, sh->n_io_port); } return(TRUE); } #endif inline void eata_latency_in(struct eata_ccb *cp, hostdata *hd) { uint time; time = jiffies - cp->timestamp; if(hd->all_lat[1] > time) hd->all_lat[1] = time; if(hd->all_lat[2] < time) hd->all_lat[2] = time; hd->all_lat[3] += time; hd->all_lat[0]++; if((cp->rw_latency) == WRITE) { /* was WRITE */ if(hd->writes_lat[cp->sizeindex][1] > time) hd->writes_lat[cp->sizeindex][1] = time; if(hd->writes_lat[cp->sizeindex][2] < time) hd->writes_lat[cp->sizeindex][2] = time; hd->writes_lat[cp->sizeindex][3] += time; hd->writes_lat[cp->sizeindex][0]++; } else if((cp->rw_latency) == READ) { if(hd->reads_lat[cp->sizeindex][1] > time) hd->reads_lat[cp->sizeindex][1] = time; if(hd->reads_lat[cp->sizeindex][2] < time) hd->reads_lat[cp->sizeindex][2] = time; hd->reads_lat[cp->sizeindex][3] += time; hd->reads_lat[cp->sizeindex][0]++; } } inline void eata_latency_out(struct eata_ccb *cp, Scsi_Cmnd *cmd) { int x, z; short *sho; long *lon; x = 0; /* just to keep GCC quiet */ cp->timestamp = jiffies; /* For latency measurements */ switch(cmd->cmnd[0]) { case WRITE_6: x = cmd->cmnd[4]/2; cp->rw_latency = WRITE; break; case READ_6: x = cmd->cmnd[4]/2; cp->rw_latency = READ; break; case WRITE_10: sho = (short *) &cmd->cmnd[7]; x = ntohs(*sho)/2; cp->rw_latency = WRITE; break; case READ_10: sho = (short *) &cmd->cmnd[7]; x = ntohs(*sho)/2; cp->rw_latency = READ; break; case WRITE_12: lon = (long *) &cmd->cmnd[6]; x = ntohl(*lon)/2; cp->rw_latency = WRITE; break; case READ_12: lon = (long *) &cmd->cmnd[6]; x = ntohl(*lon)/2; cp->rw_latency = READ; break; default: cp->rw_latency = OTHER; break; } if (cmd->cmnd[0] == WRITE_6 || cmd->cmnd[0] == WRITE_10 || cmd->cmnd[0] == WRITE_12 || cmd->cmnd[0] == READ_6 || cmd->cmnd[0] == READ_10 || cmd->cmnd[0] == READ_12) { for(z = 0; (x > (1 << z)) && (z <= 11); z++) /* nothing */; cp->sizeindex = z; } } void eata_int_handler(int irq, void *dev_id, struct pt_regs * regs) { uint i, result = 0; uint hba_stat, scsi_stat, eata_stat; Scsi_Cmnd *cmd; struct eata_ccb *ccb; struct eata_sp *sp; uint base; uint x; struct Scsi_Host *sh; for (x = 1, sh = first_HBA; x <= registered_HBAs; x++, sh = SD(sh)->next) { if (sh->irq != irq) continue; while(inb((uint)sh->base + HA_RAUXSTAT) & HA_AIRQ) { int_counter++; sp = &SD(sh)->sp; #ifdef __mips__ sys_cacheflush(sp, sizeof(struct eata_sp), 2); #endif ccb = sp->ccb; if(ccb == NULL) { eata_stat = inb((uint)sh->base + HA_RSTATUS); printk("eata_dma: int_handler, Spurious IRQ %d " "received. CCB pointer not set.\n", irq); break; } cmd = ccb->cmd; base = (uint) cmd->host->base; hba_stat = sp->hba_stat; scsi_stat = (sp->scsi_stat >> 1) & 0x1f; if (sp->EOC == FALSE) { eata_stat = inb(base + HA_RSTATUS); printk(KERN_WARNING "eata_dma: int_handler, board: %x cmd %lx " "returned unfinished.\n" "EATA: %x HBA: %x SCSI: %x spadr %lx spadrirq %lx, " "irq%d\n", base, (long)ccb, eata_stat, hba_stat, scsi_stat,(long)&status, (long)&status[irq], irq); cmd->result = DID_ERROR << 16; ccb->status = FREE; cmd->scsi_done(cmd); break; } sp->EOC = FALSE; /* Clean out this flag */ if (ccb->status == LOCKED || ccb->status == RESET) { printk("eata_dma: int_handler, reseted command pid %ld returned" "\n", cmd->pid); DBG(DBG_INTR && DBG_DELAY, DELAY(1)); } eata_stat = inb(base + HA_RSTATUS); DBG(DBG_INTR, printk("IRQ %d received, base %#.4x, pid %ld, " "target: %x, lun: %x, ea_s: %#.2x, hba_s: " "%#.2x \n", irq, base, cmd->pid, cmd->target, cmd->lun, eata_stat, hba_stat)); switch (hba_stat) { case HA_NO_ERROR: /* NO Error */ if(HD(cmd)->do_latency == TRUE && ccb->timestamp) eata_latency_in(ccb, HD(cmd)); result = DID_OK << 16; break; case HA_ERR_SEL_TO: /* Selection Timeout */ case HA_ERR_CMD_TO: /* Command Timeout */ result = DID_TIME_OUT << 16; break; case HA_BUS_RESET: /* SCSI Bus Reset Received */ result = DID_RESET << 16; DBG(DBG_STATUS, printk(KERN_WARNING "scsi%d: BUS RESET " "received on cmd %ld\n", HD(cmd)->HBA_number, cmd->pid)); break; case HA_INIT_POWERUP: /* Initial Controller Power-up */ if (cmd->device->type != TYPE_TAPE) result = DID_BUS_BUSY << 16; else result = DID_ERROR << 16; for (i = 0; i < MAXTARGET; i++) DBG(DBG_STATUS, printk(KERN_DEBUG "scsi%d: cmd pid %ld " "returned with INIT_POWERUP\n", HD(cmd)->HBA_number, cmd->pid)); break; case HA_CP_ABORT_NA: case HA_CP_ABORTED: result = DID_ABORT << 16; DBG(DBG_STATUS, printk(KERN_WARNING "scsi%d: aborted cmd " "returned\n", HD(cmd)->HBA_number)); break; case HA_CP_RESET_NA: case HA_CP_RESET: HD(cmd)->resetlevel[cmd->channel] = 0; result = DID_RESET << 16; DBG(DBG_STATUS, printk(KERN_WARNING "scsi%d: reseted cmd " "pid %ldreturned\n", HD(cmd)->HBA_number, cmd->pid)); case HA_SCSI_HUNG: /* SCSI Hung */ printk(KERN_ERR "scsi%d: SCSI hung\n", HD(cmd)->HBA_number); result = DID_ERROR << 16; break; case HA_RSENSE_FAIL: /* Auto Request-Sense Failed */ DBG(DBG_STATUS, printk(KERN_ERR "scsi%d: Auto Request Sense " "Failed\n", HD(cmd)->HBA_number)); result = DID_ERROR << 16; break; case HA_UNX_BUSPHASE: /* Unexpected Bus Phase */ case HA_UNX_BUS_FREE: /* Unexpected Bus Free */ case HA_BUS_PARITY: /* Bus Parity Error */ case HA_UNX_MSGRJCT: /* Unexpected Message Reject */ case HA_RESET_STUCK: /* SCSI Bus Reset Stuck */ case HA_PARITY_ERR: /* Controller Ram Parity */ default: result = DID_ERROR << 16; break; } cmd->result = result | (scsi_stat << 1); #if DBG_INTR2 if (scsi_stat || result || hba_stat || eata_stat != 0x50 || cmd->scsi_done == NULL || cmd->device->id == 7) printk("HBA: %d, channel %d, id: %d, lun %d, pid %ld:\n" "eata_stat %#x, hba_stat %#.2x, scsi_stat %#.2x, " "sense_key: %#x, result: %#.8x\n", x, cmd->device->channel, cmd->device->id, cmd->device->lun, cmd->pid, eata_stat, hba_stat, scsi_stat, cmd->sense_buffer[2] & 0xf, cmd->result); DBG(DBG_INTR&&DBG_DELAY,DELAY(1)); #endif ccb->status = FREE; /* now we can release the slot */ cmd->scsi_done(cmd); } } return; } inline int eata_send_command(u32 addr, u32 base, u8 command) { long loop = R_LIMIT; while (inb(base + HA_RAUXSTAT) & HA_ABUSY) if (--loop == 0) return(FALSE); if(addr != (u32) NULL) addr = virt_to_bus((void *)addr); /* * This is overkill.....but the MIPSen seem to need this * and it will be optimized away for i86 and ALPHA machines. */ flush_cache_all(); /* And now the address in nice little byte chunks */ #ifdef __LITTLE_ENDIAN outb(addr, base + HA_WDMAADDR); outb(addr >> 8, base + HA_WDMAADDR + 1); outb(addr >> 16, base + HA_WDMAADDR + 2); outb(addr >> 24, base + HA_WDMAADDR + 3); #else outb(addr >> 24, base + HA_WDMAADDR); outb(addr >> 16, base + HA_WDMAADDR + 1); outb(addr >> 8, base + HA_WDMAADDR + 2); outb(addr, base + HA_WDMAADDR + 3); #endif outb(command, base + HA_WCOMMAND); return(TRUE); } inline int eata_send_immediate(u32 base, u32 addr, u8 ifc, u8 code, u8 code2) { if(addr != (u32) NULL) addr = virt_to_bus((void *)addr); /* * This is overkill.....but the MIPSen seem to need this * and it will be optimized away for i86 and ALPHA machines. */ flush_cache_all(); outb(0x0, base + HA_WDMAADDR - 1); if(addr){ #ifdef __LITTLE_ENDIAN outb(addr, base + HA_WDMAADDR); outb(addr >> 8, base + HA_WDMAADDR + 1); outb(addr >> 16, base + HA_WDMAADDR + 2); outb(addr >> 24, base + HA_WDMAADDR + 3); #else outb(addr >> 24, base + HA_WDMAADDR); outb(addr >> 16, base + HA_WDMAADDR + 1); outb(addr >> 8, base + HA_WDMAADDR + 2); outb(addr, base + HA_WDMAADDR + 3); #endif } else { outb(0x0, base + HA_WDMAADDR); outb(0x0, base + HA_WDMAADDR + 1); outb(code2, base + HA_WCODE2); outb(code, base + HA_WCODE); } outb(ifc, base + HA_WIFC); outb(EATA_CMD_IMMEDIATE, base + HA_WCOMMAND); return(TRUE); } int eata_queue(Scsi_Cmnd * cmd, void (* done) (Scsi_Cmnd *)) { unsigned int i, x, y; ulong flags; hostdata *hd; struct Scsi_Host *sh; struct eata_ccb *ccb; struct scatterlist *sl; save_flags(flags); cli(); #if 0 for (x = 1, sh = first_HBA; x <= registered_HBAs; x++, sh = SD(sh)->next) { if(inb((uint)sh->base + HA_RAUXSTAT) & HA_AIRQ) { printk("eata_dma: scsi%d interrupt pending in eata_queue.\n" " Calling interrupt handler.\n", sh->host_no); eata_int_handler(sh->irq, 0, 0); } } #endif queue_counter++; hd = HD(cmd); sh = cmd->host; if (cmd->cmnd[0] == REQUEST_SENSE && cmd->sense_buffer[0] != 0) { DBG(DBG_REQSENSE, printk(KERN_DEBUG "Tried to REQUEST SENSE\n")); cmd->result = DID_OK << 16; done(cmd); return(0); } /* check for free slot */ for (y = hd->last_ccb + 1, x = 0; x < sh->can_queue; x++, y++) { if (y >= sh->can_queue) y = 0; if (hd->ccb[y].status == FREE) break; } hd->last_ccb = y; if (x >= sh->can_queue) { cmd->result = DID_BUS_BUSY << 16; DBG(DBG_QUEUE && DBG_ABNORM, printk(KERN_CRIT "eata_queue pid %ld, HBA QUEUE FULL..., " "returning DID_BUS_BUSY\n", cmd->pid)); done(cmd); restore_flags(flags); return(0); } ccb = &hd->ccb[y]; memset(ccb, 0, sizeof(struct eata_ccb) - sizeof(struct eata_sg_list *)); ccb->status = USED; /* claim free slot */ restore_flags(flags); DBG(DBG_QUEUE, printk("eata_queue pid %ld, target: %x, lun: %x, y %d\n", cmd->pid, cmd->target, cmd->lun, y)); DBG(DBG_QUEUE && DBG_DELAY, DELAY(1)); if(hd->do_latency == TRUE) eata_latency_out(ccb, cmd); cmd->scsi_done = (void *)done; switch (cmd->cmnd[0]) { case CHANGE_DEFINITION: case COMPARE: case COPY: case COPY_VERIFY: case LOG_SELECT: case MODE_SELECT: case MODE_SELECT_10: case SEND_DIAGNOSTIC: case WRITE_BUFFER: case FORMAT_UNIT: case REASSIGN_BLOCKS: case RESERVE: case SEARCH_EQUAL: case SEARCH_HIGH: case SEARCH_LOW: case WRITE_6: case WRITE_10: case WRITE_VERIFY: case UPDATE_BLOCK: case WRITE_LONG: case WRITE_SAME: case SEARCH_HIGH_12: case SEARCH_EQUAL_12: case SEARCH_LOW_12: case WRITE_12: case WRITE_VERIFY_12: case SET_WINDOW: case MEDIUM_SCAN: case SEND_VOLUME_TAG: case 0xea: /* alternate number for WRITE LONG */ ccb->DataOut = TRUE; /* Output mode */ break; case TEST_UNIT_READY: default: ccb->DataIn = TRUE; /* Input mode */ } /* FIXME: This will have to be changed once the midlevel driver * allows different HBA IDs on every channel. */ if (cmd->target == sh->this_id) ccb->Interpret = TRUE; /* Interpret command */ if (cmd->use_sg) { ccb->scatter = TRUE; /* SG mode */ if (ccb->sg_list == NULL) { ccb->sg_list = kmalloc(sh->sg_tablesize * sizeof(struct eata_sg_list), GFP_ATOMIC | GFP_DMA); } if (ccb->sg_list == NULL) panic("eata_dma: Run out of DMA memory for SG lists !\n"); ccb->cp_dataDMA = htonl(virt_to_bus(ccb->sg_list)); ccb->cp_datalen = htonl(cmd->use_sg * sizeof(struct eata_sg_list)); sl=(struct scatterlist *)cmd->request_buffer; for(i = 0; i < cmd->use_sg; i++, sl++){ ccb->sg_list[i].data = htonl(virt_to_bus(sl->address)); ccb->sg_list[i].len = htonl((u32) sl->length); } } else { ccb->scatter = FALSE; ccb->cp_datalen = htonl(cmd->request_bufflen); ccb->cp_dataDMA = htonl(virt_to_bus(cmd->request_buffer)); } ccb->Auto_Req_Sen = TRUE; ccb->cp_reqDMA = htonl(virt_to_bus(cmd->sense_buffer)); ccb->reqlen = sizeof(cmd->sense_buffer); ccb->cp_id = cmd->target; ccb->cp_channel = cmd->channel; ccb->cp_lun = cmd->lun; ccb->cp_dispri = TRUE; ccb->cp_identify = TRUE; memcpy(ccb->cp_cdb, cmd->cmnd, cmd->cmd_len); ccb->cp_statDMA = htonl(virt_to_bus(&(hd->sp))); ccb->cp_viraddr = ccb; /* This will be passed thru, so we don't need to * convert it */ ccb->cmd = cmd; cmd->host_scribble = (char *)&hd->ccb[y]; if(eata_send_command((u32) ccb, (u32) sh->base, EATA_CMD_DMA_SEND_CP) == FALSE) { cmd->result = DID_BUS_BUSY << 16; DBG(DBG_QUEUE && DBG_ABNORM, printk("eata_queue target %d, pid %ld, HBA busy, " "returning DID_BUS_BUSY\n",cmd->target, cmd->pid)); ccb->status = FREE; done(cmd); return(0); } DBG(DBG_QUEUE, printk("Queued base %#.4x pid: %ld target: %x lun: %x " "slot %d irq %d\n", (s32)sh->base, cmd->pid, cmd->target, cmd->lun, y, sh->irq)); DBG(DBG_QUEUE && DBG_DELAY, DELAY(1)); return(0); } int eata_abort(Scsi_Cmnd * cmd) { ulong loop = HZ / 2; ulong flags; int x; struct Scsi_Host *sh; save_flags(flags); cli(); DBG(DBG_ABNORM, printk("eata_abort called pid: %ld target: %x lun: %x" " reason %x\n", cmd->pid, cmd->target, cmd->lun, cmd->abort_reason)); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); /* Some interrupt controllers seem to loose interrupts */ for (x = 1, sh = first_HBA; x <= registered_HBAs; x++, sh = SD(sh)->next) { if(inb((uint)sh->base + HA_RAUXSTAT) & HA_AIRQ) { printk("eata_dma: scsi%d interrupt pending in eata_abort.\n" " Calling interrupt handler.\n", sh->host_no); eata_int_handler(sh->irq, 0, 0); } } while (inb((u32)(cmd->host->base) + HA_RAUXSTAT) & HA_ABUSY) { if (--loop == 0) { printk("eata_dma: abort, timeout error.\n"); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); restore_flags(flags); return (SCSI_ABORT_ERROR); } } if (CD(cmd)->status == RESET) { printk("eata_dma: abort, command reset error.\n"); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); restore_flags(flags); return (SCSI_ABORT_ERROR); } if (CD(cmd)->status == LOCKED) { DBG(DBG_ABNORM, printk("eata_dma: abort, queue slot locked.\n")); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); restore_flags(flags); return (SCSI_ABORT_NOT_RUNNING); } if (CD(cmd)->status == USED) { DBG(DBG_ABNORM, printk("Returning: SCSI_ABORT_BUSY\n")); restore_flags(flags); return (SCSI_ABORT_BUSY); /* SNOOZE */ } if (CD(cmd)->status == FREE) { DBG(DBG_ABNORM, printk("Returning: SCSI_ABORT_NOT_RUNNING\n")); restore_flags(flags); return (SCSI_ABORT_NOT_RUNNING); } restore_flags(flags); panic("eata_dma: abort: invalid slot status\n"); } int eata_reset(Scsi_Cmnd * cmd, unsigned int resetflags) { uint x; ulong loop = loops_per_sec / 3; ulong flags; unchar success = FALSE; Scsi_Cmnd *sp; struct Scsi_Host *sh; save_flags(flags); cli(); DBG(DBG_ABNORM, printk("eata_reset called pid:%ld target: %x lun: %x" " reason %x\n", cmd->pid, cmd->target, cmd->lun, cmd->abort_reason)); for (x = 1, sh = first_HBA; x <= registered_HBAs; x++, sh = SD(sh)->next) { if(inb((uint)sh->base + HA_RAUXSTAT) & HA_AIRQ) { printk("eata_dma: scsi%d interrupt pending in eata_reset.\n" " Calling interrupt handler.\n", sh->host_no); eata_int_handler(sh->irq, 0, 0); } } if (HD(cmd)->state == RESET) { printk("eata_reset: exit, already in reset.\n"); restore_flags(flags); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); return (SCSI_RESET_ERROR); } while (inb((u32)(cmd->host->base) + HA_RAUXSTAT) & HA_ABUSY) if (--loop == 0) { printk("eata_reset: exit, timeout error.\n"); restore_flags(flags); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); return (SCSI_RESET_ERROR); } for (x = 0; x < cmd->host->can_queue; x++) { if (HD(cmd)->ccb[x].status == FREE) continue; if (HD(cmd)->ccb[x].status == LOCKED) { HD(cmd)->ccb[x].status = FREE; printk("eata_reset: locked slot %d forced free.\n", x); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); continue; } sp = HD(cmd)->ccb[x].cmd; HD(cmd)->ccb[x].status = RESET; if (sp == NULL) panic("eata_reset: slot %d, sp==NULL.\n", x); printk("eata_reset: slot %d in reset, pid %ld.\n", x, sp->pid); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); if (sp == cmd) success = TRUE; } /* hard reset the HBA */ inb((u32) (cmd->host->base) + HA_RSTATUS); /* This might cause trouble */ eata_send_command(0, (u32) cmd->host->base, EATA_CMD_RESET); HD(cmd)->state = RESET; DBG(DBG_ABNORM, printk("eata_reset: board reset done, enabling " "interrupts.\n")); DELAY(2); /* In theorie we should get interrupts and set free all * used queueslots */ DBG(DBG_ABNORM, printk("eata_reset: interrupts disabled again.\n")); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); for (x = 0; x < cmd->host->can_queue; x++) { /* Skip slots already set free by interrupt and those that * are still LOCKED from the last reset */ if (HD(cmd)->ccb[x].status != RESET) continue; sp = HD(cmd)->ccb[x].cmd; sp->result = DID_RESET << 16; /* This mailbox is still waiting for its interrupt */ HD(cmd)->ccb[x].status = LOCKED; printk("eata_reset: slot %d locked, DID_RESET, pid %ld done.\n", x, sp->pid); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); sp->scsi_done(sp); } HD(cmd)->state = FALSE; restore_flags(flags); if (success) { DBG(DBG_ABNORM, printk("eata_reset: exit, pending.\n")); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); return (SCSI_RESET_PENDING); } else { DBG(DBG_ABNORM, printk("eata_reset: exit, wakeup.\n")); DBG(DBG_ABNORM && DBG_DELAY, DELAY(1)); return (SCSI_RESET_PUNT); } } /* Here we try to determine the optimum queue depth for * each attached device. * * At the moment the algorithm is rather simple */ static void eata_select_queue_depths(struct Scsi_Host *host, Scsi_Device *devicelist) { Scsi_Device *device; int devcount = 0; int factor = 0; #if CRIPPLE_QUEUE for(device = devicelist; device != NULL; device = device->next) { if(device->host == host) device->queue_depth = 2; } #else /* First we do a sample run go find out what we have */ for(device = devicelist; device != NULL; device = device->next) { if (device->host == host) { devcount++; switch(device->type) { case TYPE_DISK: case TYPE_MOD: factor += TYPE_DISK_QUEUE; break; case TYPE_TAPE: factor += TYPE_TAPE_QUEUE; break; case TYPE_WORM: case TYPE_ROM: factor += TYPE_ROM_QUEUE; break; case TYPE_PROCESSOR: case TYPE_SCANNER: default: factor += TYPE_OTHER_QUEUE; break; } } } DBG(DBG_REGISTER, printk(KERN_DEBUG "scsi%d: needed queueslots %d\n", host->host_no, factor)); if(factor == 0) /* We don't want to get a DIV BY ZERO error */ factor = 1; factor = (SD(host)->queuesize * 10) / factor; DBG(DBG_REGISTER, printk(KERN_DEBUG "scsi%d: using factor %dE-1\n", host->host_no, factor)); /* Now that have the factor we can set the individual queuesizes */ for(device = devicelist; device != NULL; device = device->next) { if(device->host == host) { if(SD(device->host)->bustype != IS_ISA){ switch(device->type) { case TYPE_DISK: case TYPE_MOD: device->queue_depth = (TYPE_DISK_QUEUE * factor) / 10; break; case TYPE_TAPE: device->queue_depth = (TYPE_TAPE_QUEUE * factor) / 10; break; case TYPE_WORM: case TYPE_ROM: device->queue_depth = (TYPE_ROM_QUEUE * factor) / 10; break; case TYPE_PROCESSOR: case TYPE_SCANNER: default: device->queue_depth = (TYPE_OTHER_QUEUE * factor) / 10; break; } } else /* ISA forces us to limit the queue depth because of the * bounce buffer memory overhead. I know this is cruel */ device->queue_depth = 2; /* * It showed that we need to set an upper limit of commands * we can allow to queue for a single device on the bus. * If we get above that limit, the broken midlevel SCSI code * will produce bogus timeouts and aborts en masse. :-( */ if(device->queue_depth > UPPER_DEVICE_QUEUE_LIMIT) device->queue_depth = UPPER_DEVICE_QUEUE_LIMIT; if(device->queue_depth == 0) device->queue_depth = 1; printk(KERN_INFO "scsi%d: queue depth for target %d on channel %d " "set to %d\n", host->host_no, device->id, device->channel, device->queue_depth); } } #endif } #if CHECK_BLINK int check_blink_state(long base) { ushort loops = 10; u32 blinkindicator; u32 state = 0x12345678; u32 oldstate = 0; blinkindicator = htonl(0x54504442); while ((loops--) && (state != oldstate)) { oldstate = state; state = inl((uint) base + 1); } DBG(DBG_BLINK, printk("Did Blink check. Status: %d\n", (state == oldstate) && (state == blinkindicator))); if ((state == oldstate) && (state == blinkindicator)) return(TRUE); else return (FALSE); } #endif char * get_board_data(u32 base, u32 irq, u32 id) { struct eata_ccb *cp; struct eata_sp *sp; static char *buff; ulong i; cp = (struct eata_ccb *) scsi_init_malloc(sizeof(struct eata_ccb), GFP_ATOMIC | GFP_DMA); sp = (struct eata_sp *) scsi_init_malloc(sizeof(struct eata_sp), GFP_ATOMIC | GFP_DMA); buff = dma_scratch; memset(cp, 0, sizeof(struct eata_ccb)); memset(sp, 0, sizeof(struct eata_sp)); memset(buff, 0, 256); cp->DataIn = TRUE; cp->Interpret = TRUE; /* Interpret command */ cp->cp_dispri = TRUE; cp->cp_identify = TRUE; cp->cp_datalen = htonl(56); cp->cp_dataDMA = htonl(virt_to_bus(buff)); cp->cp_statDMA = htonl(virt_to_bus(sp)); cp->cp_viraddr = cp; cp->cp_id = id; cp->cp_lun = 0; cp->cp_cdb[0] = INQUIRY; cp->cp_cdb[1] = 0; cp->cp_cdb[2] = 0; cp->cp_cdb[3] = 0; cp->cp_cdb[4] = 56; cp->cp_cdb[5] = 0; fake_int_base = (struct eata_register *) base; fake_int_result = FALSE; fake_int_happened = FALSE; eata_send_command((u32) cp, (u32) base, EATA_CMD_DMA_SEND_CP); i = jiffies + (3 * HZ); while (fake_int_happened == FALSE && jiffies <= i) barrier(); DBG(DBG_INTR3, printk(KERN_DEBUG "fake_int_result: %#x hbastat %#x " "scsistat %#x, buff %p sp %p\n", fake_int_result, (u32) (sp->hba_stat /*& 0x7f*/), (u32) sp->scsi_stat, buff, sp)); scsi_init_free((void *)cp, sizeof(struct eata_ccb)); scsi_init_free((void *)sp, sizeof(struct eata_sp)); if ((fake_int_result & HA_SERROR) || jiffies > i){ printk(KERN_WARNING "eata_dma: trying to reset HBA at %x to clear " "possible blink state\n", base); /* hard reset the HBA */ inb((u32) (base) + HA_RSTATUS); eata_send_command(0, base, EATA_CMD_RESET); DELAY(1); return (NULL); } else return (buff); } int get_conf_PIO(u32 base, struct get_conf *buf) { ulong loop = R_LIMIT; u16 *p; if(check_region(base, 9)) return (FALSE); memset(buf, 0, sizeof(struct get_conf)); while (inb(base + HA_RSTATUS) & HA_SBUSY) if (--loop == 0) return (FALSE); fake_int_base = (struct eata_register *) base; fake_int_result = FALSE; fake_int_happened = FALSE; DBG(DBG_PIO && DBG_PROBE, printk("Issuing PIO READ CONFIG to HBA at %#x\n", base)); eata_send_command(0, base, EATA_CMD_PIO_READ_CONFIG); loop = R_LIMIT; for (p = (u16 *) buf; (long)p <= ((long)buf + (sizeof(struct get_conf) / 2)); p++) { while (!(inb(base + HA_RSTATUS) & HA_SDRQ)) if (--loop == 0) return (FALSE); loop = R_LIMIT; *p = inw(base + HA_RDATA); } if (!(inb(base + HA_RSTATUS) & HA_SERROR)) { /* Error ? */ if (htonl(EATA_SIGNATURE) == buf->signature) { DBG(DBG_PIO&&DBG_PROBE, printk("EATA Controller found at %x " "EATA Level: %x\n", (uint) base, (uint) (buf->version))); while (inb(base + HA_RSTATUS) & HA_SDRQ) inw(base + HA_RDATA); return (TRUE); } } else { DBG(DBG_PROBE, printk("eata_dma: get_conf_PIO, error during transfer " "for HBA at %lx\n", (long)base)); } return (FALSE); } void print_config(struct get_conf *gc) { printk("LEN: %d ver:%d OCS:%d TAR:%d TRNXFR:%d MORES:%d DMAS:%d\n", (u32) ntohl(gc->len), gc->version, gc->OCS_enabled, gc->TAR_support, gc->TRNXFR, gc->MORE_support, gc->DMA_support); printk("DMAV:%d HAAV:%d SCSIID0:%d ID1:%d ID2:%d QUEUE:%d SG:%d SEC:%d\n", gc->DMA_valid, gc->HAA_valid, gc->scsi_id[3], gc->scsi_id[2], gc->scsi_id[1], ntohs(gc->queuesiz), ntohs(gc->SGsiz), gc->SECOND); printk("IRQ:%d IRQT:%d DMAC:%d FORCADR:%d SG_64K:%d SG_UAE:%d MID:%d " "MCH:%d MLUN:%d\n", gc->IRQ, gc->IRQ_TR, (8 - gc->DMA_channel) & 7, gc->FORCADR, gc->SG_64K, gc->SG_UAE, gc->MAX_ID, gc->MAX_CHAN, gc->MAX_LUN); printk("RIDQ:%d PCI:%d EISA:%d\n", gc->ID_qest, gc->is_PCI, gc->is_EISA); DBG(DPT_DEBUG, DELAY(14)); } short register_HBA(u32 base, struct get_conf *gc, Scsi_Host_Template * tpnt, u8 bustype) { ulong size = 0; unchar dma_channel = 0; char *buff = 0; unchar bugs = 0; struct Scsi_Host *sh; hostdata *hd; int x; DBG(DBG_REGISTER, print_config(gc)); if (gc->DMA_support == FALSE) { printk("The EATA HBA at %#.4x does not support DMA.\n" "Please use the EATA-PIO driver.\n", base); return (FALSE); } if(gc->HAA_valid == FALSE || ntohl(gc->len) < 0x22) gc->MAX_CHAN = 0; if (reg_IRQ[gc->IRQ] == FALSE) { /* Interrupt already registered ? */ if (!request_irq(gc->IRQ, (void *) eata_fake_int_handler, SA_INTERRUPT, "eata_dma", NULL)){ reg_IRQ[gc->IRQ]++; if (!gc->IRQ_TR) reg_IRQL[gc->IRQ] = TRUE; /* IRQ is edge triggered */ } else { printk("Couldn't allocate IRQ %d, Sorry.", gc->IRQ); return (FALSE); } } else { /* More than one HBA on this IRQ */ if (reg_IRQL[gc->IRQ] == TRUE) { printk("Can't support more than one HBA on this IRQ,\n" " if the IRQ is edge triggered. Sorry.\n"); return (FALSE); } else reg_IRQ[gc->IRQ]++; } /* If DMA is supported but DMA_valid isn't set to indicate that * the channel number is given we must have pre 2.0 firmware (1.7?) * which leaves us to guess since the "newer ones" also don't set the * DMA_valid bit. */ if (gc->DMA_support && !gc->DMA_valid && gc->DMA_channel) { printk(KERN_WARNING "eata_dma: If you are using a pre 2.0 firmware " "please update it !\n" " You can get new firmware releases from ftp.dpt.com\n"); gc->DMA_channel = (base == 0x1f0 ? 3 /* DMA=5 */ : 2 /* DMA=6 */); gc->DMA_valid = TRUE; } /* if gc->DMA_valid it must be an ISA HBA and we have to register it */ dma_channel = BUSMASTER; if (gc->DMA_valid) { if (request_dma(dma_channel = (8 - gc->DMA_channel) & 7, "eata_dma")) { printk(KERN_WARNING "Unable to allocate DMA channel %d for ISA HBA" " at %#.4x.\n", dma_channel, base); reg_IRQ[gc->IRQ]--; if (reg_IRQ[gc->IRQ] == 0) free_irq(gc->IRQ, NULL); if (gc->IRQ_TR == FALSE) reg_IRQL[gc->IRQ] = FALSE; return (FALSE); } } if (dma_channel != BUSMASTER) { disable_dma(dma_channel); clear_dma_ff(dma_channel); set_dma_mode(dma_channel, DMA_MODE_CASCADE); enable_dma(dma_channel); } if (bustype != IS_EISA && bustype != IS_ISA) buff = get_board_data(base, gc->IRQ, gc->scsi_id[3]); if (buff == NULL) { if (bustype == IS_EISA || bustype == IS_ISA) { bugs = bugs || BROKEN_INQUIRY; } else { if (gc->DMA_support == FALSE) printk(KERN_WARNING "HBA at %#.4x doesn't support DMA. " "Sorry\n", base); else printk(KERN_WARNING "HBA at %#.4x does not react on INQUIRY. " "Sorry.\n", base); if (gc->DMA_valid) free_dma(dma_channel); reg_IRQ[gc->IRQ]--; if (reg_IRQ[gc->IRQ] == 0) free_irq(gc->IRQ, NULL); if (gc->IRQ_TR == FALSE) reg_IRQL[gc->IRQ] = FALSE; return (FALSE); } } if (gc->DMA_support == FALSE && buff != NULL) printk(KERN_WARNING "HBA %.12sat %#.4x doesn't set the DMA_support " "flag correctly.\n", &buff[16], base); request_region(base, 9, "eata_dma"); /* We already checked the * availability, so this * should not fail. */ if(ntohs(gc->queuesiz) == 0) { gc->queuesiz = ntohs(64); printk(KERN_WARNING "Warning: Queue size has to be corrected. Assuming" " 64 queueslots\n" " This might be a PM2012B with a defective Firmware\n" " Contact DPT support@dpt.com for an upgrade\n"); } size = sizeof(hostdata) + ((sizeof(struct eata_ccb) + sizeof(long)) * ntohs(gc->queuesiz)); DBG(DBG_REGISTER, printk("scsi_register size: %ld\n", size)); sh = scsi_register(tpnt, size); if(sh != NULL) { hd = SD(sh); memset(hd->reads, 0, sizeof(u32) * 26); sh->select_queue_depths = eata_select_queue_depths; hd->bustype = bustype; /* * If we are using a ISA board, we can't use extended SG, * because we would need excessive amounts of memory for * bounce buffers. */ if (gc->SG_64K==TRUE && ntohs(gc->SGsiz)==64 && hd->bustype!=IS_ISA){ sh->sg_tablesize = SG_SIZE_BIG; } else { sh->sg_tablesize = ntohs(gc->SGsiz); if (sh->sg_tablesize > SG_SIZE || sh->sg_tablesize == 0) { if (sh->sg_tablesize == 0) printk(KERN_WARNING "Warning: SG size had to be fixed.\n" "This might be a PM2012 with a defective Firmware" "\nContact DPT support@dpt.com for an upgrade\n"); sh->sg_tablesize = SG_SIZE; } } hd->sgsize = sh->sg_tablesize; } if(sh != NULL) { sh->can_queue = hd->queuesize = ntohs(gc->queuesiz); sh->cmd_per_lun = 0; } if(sh == NULL) { DBG(DBG_REGISTER, printk(KERN_NOTICE "eata_dma: couldn't register HBA" " at%x \n", base)); scsi_unregister(sh); if (gc->DMA_valid) free_dma(dma_channel); reg_IRQ[gc->IRQ]--; if (reg_IRQ[gc->IRQ] == 0) free_irq(gc->IRQ, NULL); if (gc->IRQ_TR == FALSE) reg_IRQL[gc->IRQ] = FALSE; return (FALSE); } hd->broken_INQUIRY = (bugs & BROKEN_INQUIRY); if(hd->broken_INQUIRY == TRUE) { strcpy(hd->vendor, "DPT"); strcpy(hd->name, "??????????"); strcpy(hd->revision, "???.?"); hd->firmware_revision = 0; } else { strncpy(hd->vendor, &buff[8], 8); hd->vendor[8] = 0; strncpy(hd->name, &buff[16], 17); hd->name[17] = 0; hd->revision[0] = buff[32]; hd->revision[1] = buff[33]; hd->revision[2] = buff[34]; hd->revision[3] = '.'; hd->revision[4] = buff[35]; hd->revision[5] = 0; hd->firmware_revision = (buff[32] << 24) + (buff[33] << 16) + (buff[34] << 8) + buff[35]; } if (hd->firmware_revision >= (('0'<<24) + ('7'<<16) + ('G'<< 8) + '0')) hd->immediate_support = 1; else hd->immediate_support = 0; switch (ntohl(gc->len)) { case 0x1c: hd->EATA_revision = 'a'; break; case 0x1e: hd->EATA_revision = 'b'; break; case 0x22: hd->EATA_revision = 'c'; break; case 0x24: hd->EATA_revision = 'z'; default: hd->EATA_revision = '?'; } if(ntohl(gc->len) >= 0x22) { sh->max_id = gc->MAX_ID + 1; sh->max_lun = gc->MAX_LUN + 1; } else { sh->max_id = 8; sh->max_lun = 8; } hd->HBA_number = sh->host_no; hd->channel = gc->MAX_CHAN; sh->max_channel = gc->MAX_CHAN; sh->unique_id = base; sh->base = (char *) base; sh->io_port = base; sh->n_io_port = 9; sh->irq = gc->IRQ; sh->dma_channel = dma_channel; /* FIXME: * SCSI midlevel code should support different HBA ids on every channel */ sh->this_id = gc->scsi_id[3]; if (gc->SECOND) hd->primary = FALSE; else hd->primary = TRUE; sh->wish_block = FALSE; if (hd->bustype != IS_ISA) { sh->unchecked_isa_dma = FALSE; } else { sh->unchecked_isa_dma = TRUE; /* We're doing ISA DMA */ } for(x = 0; x <= 11; x++){ /* Initialize min. latency */ hd->writes_lat[x][1] = 0xffffffff; hd->reads_lat[x][1] = 0xffffffff; } hd->all_lat[1] = 0xffffffff; hd->next = NULL; /* build a linked list of all HBAs */ hd->prev = last_HBA; if(hd->prev != NULL) SD(hd->prev)->next = sh; last_HBA = sh; if (first_HBA == NULL) first_HBA = sh; registered_HBAs++; return (TRUE); } void find_EISA(struct get_conf *buf, Scsi_Host_Template * tpnt) { u32 base; int i; #if CHECKPAL u8 pal1, pal2, pal3; #endif for (i = 0; i < MAXEISA; i++) { if (EISAbases[i] == TRUE) { /* Still a possibility ? */ base = 0x1c88 + (i * 0x1000); #if CHECKPAL pal1 = inb((u16)base - 8); pal2 = inb((u16)base - 7); pal3 = inb((u16)base - 6); if (((pal1 == DPT_ID1) && (pal2 == DPT_ID2)) || ((pal1 == NEC_ID1) && (pal2 == NEC_ID2) && (pal3 == NEC_ID3))|| ((pal1 == ATT_ID1) && (pal2 == ATT_ID2) && (pal3 == ATT_ID3))){ DBG(DBG_PROBE, printk("EISA EATA id tags found: %x %x %x \n", (int)pal1, (int)pal2, (int)pal3)); #endif if (get_conf_PIO(base, buf) == TRUE) { if (buf->IRQ) { DBG(DBG_EISA, printk("Registering EISA HBA\n")); register_HBA(base, buf, tpnt, IS_EISA); } else printk("eata_dma: No valid IRQ. HBA removed from list\n"); } #if CHECK_BLINK else { if (check_blink_state(base)) printk("HBA is in BLINK state. Consult your HBAs " "Manual to correct this.\n"); } #endif /* Nothing found here so we take it from the list */ EISAbases[i] = 0; #if CHECKPAL } #endif } } return; } void find_ISA(struct get_conf *buf, Scsi_Host_Template * tpnt) { int i; for (i = 0; i < MAXISA; i++) { if (ISAbases[i]) { if (get_conf_PIO(ISAbases[i],buf) == TRUE){ DBG(DBG_ISA, printk("Registering ISA HBA\n")); register_HBA(ISAbases[i], buf, tpnt, IS_ISA); } #if CHECK_BLINK else { if (check_blink_state(ISAbases[i])) printk("HBA is in BLINK state. Consult your HBAs " "Manual to correct this.\n"); } #endif ISAbases[i] = 0; } } return; } void find_PCI(struct get_conf *buf, Scsi_Host_Template * tpnt) { #ifndef CONFIG_PCI printk("eata_dma: kernel PCI support not enabled. Skipping scan for PCI HBAs.\n"); #else u8 pci_bus, pci_device_fn; static s16 pci_index = 0; /* Device index to PCI BIOS calls */ u32 base = 0; u16 com_adr; u16 rev_device; u32 error, i, x; u8 pal1, pal2, pal3; if (pcibios_present()) { for (i = 0; i <= MAXPCI; ++i, ++pci_index) { if (pcibios_find_device(PCI_VENDOR_ID_DPT, PCI_DEVICE_ID_DPT, pci_index, &pci_bus, &pci_device_fn)) break; DBG(DBG_PROBE && DBG_PCI, printk("eata_dma: find_PCI, HBA at bus %d, device %d," " function %d, index %d\n", (s32)pci_bus, (s32)((pci_device_fn & 0xf8) >> 3), (s32)(pci_device_fn & 7), pci_index)); if (!(error = pcibios_read_config_word(pci_bus, pci_device_fn, PCI_CLASS_DEVICE, &rev_device))) { if (rev_device == PCI_CLASS_STORAGE_SCSI) { if (!(error = pcibios_read_config_word(pci_bus, pci_device_fn, PCI_COMMAND, (u16 *) & com_adr))) { if (!((com_adr & PCI_COMMAND_IO) && (com_adr & PCI_COMMAND_MASTER))) { printk("eata_dma: find_PCI, HBA has IO or" " BUSMASTER mode disabled\n"); continue; } } else printk("eata_dma: find_PCI, error %x while reading " "PCI_COMMAND\n", error); } else printk("eata_dma: find_PCI, DEVICECLASSID %x didn't match\n", rev_device); } else { printk("eata_dma: find_PCI, error %x while reading " "PCI_CLASS_BASE\n", error); continue; } if (!(error = pcibios_read_config_dword(pci_bus, pci_device_fn, PCI_BASE_ADDRESS_0, (int *) &base))){ /* Check if the address is valid */ if (base & 0x01) { base &= 0xfffffffe; /* EISA tag there ? */ pal1 = inb(base); pal2 = inb(base + 1); pal3 = inb(base + 2); if (((pal1 == DPT_ID1) && (pal2 == DPT_ID2)) || ((pal1 == NEC_ID1) && (pal2 == NEC_ID2) && (pal3 == NEC_ID3)) || ((pal1 == ATT_ID1) && (pal2 == ATT_ID2) && (pal3 == ATT_ID3))) base += 0x08; else base += 0x10; /* Now, THIS is the real address */ if (base != 0x1f8) { /* We didn't find it in the primary search */ if (get_conf_PIO(base, buf) == TRUE) { /* OK. We made it till here, so we can go now * and register it. We only have to check and * eventually remove it from the EISA and ISA list */ DBG(DBG_PCI, printk("Registering PCI HBA\n")); register_HBA(base, buf, tpnt, IS_PCI); if (base < 0x1000) { for (x = 0; x < MAXISA; ++x) { if (ISAbases[x] == base) { ISAbases[x] = 0; break; } } } else if ((base & 0x0fff) == 0x0c88) EISAbases[(base >> 12) & 0x0f] = 0; continue; /* break; */ } #if CHECK_BLINK else if (check_blink_state(base) == TRUE) { printk("eata_dma: HBA is in BLINK state.\n" "Consult your HBAs manual to correct this.\n"); } #endif } } } else { printk("eata_dma: error %x while reading " "PCI_BASE_ADDRESS_0\n", error); } } } else { printk("eata_dma: No BIOS32 extensions present. This driver release " "still depends on it.\n" " Skipping scan for PCI HBAs. \n"); } #endif /* #ifndef CONFIG_PCI */ return; } int eata_detect(Scsi_Host_Template * tpnt) { struct Scsi_Host *HBA_ptr; struct get_conf gc; int i; DBG((DBG_PROBE && DBG_DELAY) || DPT_DEBUG, printk("Using lots of delays to let you read the debugging output\n")); tpnt->proc_dir = &proc_scsi_eata_dma; status = scsi_init_malloc(512, GFP_ATOMIC | GFP_DMA); dma_scratch = scsi_init_malloc(1024, GFP_ATOMIC | GFP_DMA); if(status == NULL || dma_scratch == NULL) { printk("eata_dma: can't allocate enough memory to probe for hosts !\n"); return(0); } dma_scratch += 4; find_PCI(&gc, tpnt); find_EISA(&gc, tpnt); find_ISA(&gc, tpnt); for (i = 0; i <= MAXIRQ; i++) { /* Now that we know what we have, we */ if (reg_IRQ[i] >= 1){ /* exchange the interrupt handler which */ free_irq(i, NULL); /* we used for probing with the real one */ request_irq(i, (void *)(eata_int_handler), SA_INTERRUPT|SA_SHIRQ, "eata_dma", NULL); } } HBA_ptr = first_HBA; if (registered_HBAs != 0) { printk("EATA (Extended Attachment) driver version: %d.%d%s" "\ndeveloped in co-operation with DPT\n" "(c) 1993-96 Michael Neuffer, mike@i-Connect.Net\n", VER_MAJOR, VER_MINOR, VER_SUB); printk("Registered HBAs:"); printk("\nHBA no. Boardtype Revis EATA Bus BaseIO IRQ" " DMA Ch ID Pr QS S/G IS\n"); for (i = 1; i <= registered_HBAs; i++) { printk("scsi%-2d: %.12s v%s 2.0%c %s %#.4x %2d", HBA_ptr->host_no, SD(HBA_ptr)->name, SD(HBA_ptr)->revision, SD(HBA_ptr)->EATA_revision, (SD(HBA_ptr)->bustype == 'P')? "PCI ":(SD(HBA_ptr)->bustype == 'E')?"EISA":"ISA ", (u32) HBA_ptr->base, HBA_ptr->irq); if(HBA_ptr->dma_channel != BUSMASTER) printk(" %2x ", HBA_ptr->dma_channel); else printk(" %s", "BMST"); printk(" %d %d %c %3d %3d %c\n", SD(HBA_ptr)->channel+1, HBA_ptr->this_id, (SD(HBA_ptr)->primary == TRUE)?'Y':'N', HBA_ptr->can_queue, HBA_ptr->sg_tablesize, (SD(HBA_ptr)->immediate_support == TRUE)?'Y':'N'); HBA_ptr = SD(HBA_ptr)->next; } } else { scsi_init_free((void *)status, 512); } scsi_init_free((void *)dma_scratch - 4, 1024); DBG(DPT_DEBUG, DELAY(12)); return(registered_HBAs); } #ifdef MODULE /* Eventually this will go into an include file, but this will be later */ Scsi_Host_Template driver_template = EATA_DMA; #include "scsi_module.c" #endif /* * Overrides for Emacs so that we almost follow Linus's tabbing style. * Emacs will notice this stuff at the end of the file and automatically * adjust the settings for this buffer only. This must remain at the end * of the file. * --------------------------------------------------------------------------- * Local variables: * c-indent-level: 4 * c-brace-imaginary-offset: 0 * c-brace-offset: -4 * c-argdecl-indent: 4 * c-label-offset: -4 * c-continued-statement-offset: 4 * c-continued-brace-offset: 0 * tab-width: 8 * End: */
Go to most recent revision | Compare with Previous | Blame | View Log