URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [scsi/] [seagate.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * seagate.c Copyright (C) 1992, 1993 Drew Eckhardt * low level scsi driver for ST01/ST02, Future Domain TMC-885, * TMC-950 by * * Drew Eckhardt * * <drew@colorado.edu> * * Note : TMC-880 boards don't work because they have two bits in * the status register flipped, I'll fix this "RSN" * * This card does all the I/O via memory mapped I/O, so there is no need * to check or allocate a region of the I/O address space. */ /* * Configuration : * To use without BIOS -DOVERRIDE=base_address -DCONTROLLER=FD or SEAGATE * -DIRQ will override the default of 5. * Note: You can now set these options from the kernel's "command line". * The syntax is: * * st0x=ADDRESS,IRQ (for a Seagate controller) * or: * tmc8xx=ADDRESS,IRQ (for a TMC-8xx or TMC-950 controller) * eg: * tmc8xx=0xC8000,15 * * will configure the driver for a TMC-8xx style controller using IRQ 15 * with a base address of 0xC8000. * * -DFAST or -DFAST32 will use blind transfers where possible * * -DARBITRATE will cause the host adapter to arbitrate for the * bus for better SCSI-II compatibility, rather than just * waiting for BUS FREE and then doing its thing. Should * let us do one command per Lun when I integrate my * reorganization changes into the distribution sources. * * -DSLOW_HANDSHAKE will allow compatibility with broken devices that don't * handshake fast enough (ie, some CD ROM's) for the Seagate * code. * * -DSLOW_RATE=x, x some number will let you specify a default * transfer rate if handshaking isn't working correctly. */ #include <linux/module.h> #include <asm/io.h> #include <asm/system.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/config.h> #include <linux/proc_fs.h> #include <linux/blk.h> #include "scsi.h" #include "hosts.h" #include "seagate.h" #include "constants.h" #include<linux/stat.h> struct proc_dir_entry proc_scsi_seagate = { PROC_SCSI_SEAGATE, 7, "seagate", S_IFDIR | S_IRUGO | S_IXUGO, 2 }; #ifndef IRQ #define IRQ 5 #endif #if (defined(FAST32) && !defined(FAST)) #define FAST #endif #if defined(SLOW_RATE) && !defined(SLOW_HANDSHAKE) #define SLOW_HANDSHAKE #endif #if defined(SLOW_HANDSHAKE) && !defined(SLOW_RATE) #define SLOW_RATE 50 #endif #if defined(LINKED) #undef LINKED /* Linked commands are currently broken ! */ #endif static int internal_command(unsigned char target, unsigned char lun, const void *cmnd, void *buff, int bufflen, int reselect); static int incommand; /* set if arbitration has finished and we are in some command phase. */ static const void *base_address = NULL; /* Where the card ROM starts, used to calculate memory mapped register location. */ #ifdef notyet static volatile int abort_confirm = 0; #endif static volatile void *st0x_cr_sr; /* control register write, status register read. 256 bytes in length. Read is status of SCSI BUS, as per STAT masks. */ static volatile void *st0x_dr; /* data register, read write 256 bytes in length. */ static volatile int st0x_aborted=0; /* set when we are aborted, ie by a time out, etc. */ static unsigned char controller_type = 0; /* set to SEAGATE for ST0x boards or FD for TMC-8xx boards */ static unsigned char irq = IRQ; #define retcode(result) (((result) << 16) | (message << 8) | status) #define STATUS (*(volatile unsigned char *) st0x_cr_sr) #define CONTROL STATUS #define DATA (*(volatile unsigned char *) st0x_dr) void st0x_setup (char *str, int *ints) { controller_type = SEAGATE; base_address = (void *) ints[1]; irq = ints[2]; } void tmc8xx_setup (char *str, int *ints) { controller_type = FD; base_address = (void *) ints[1]; irq = ints[2]; } #ifndef OVERRIDE static const char * seagate_bases[] = { (char *) 0xc8000, (char *) 0xca000, (char *) 0xcc000, (char *) 0xce000, (char *) 0xdc000, (char *) 0xde000 }; typedef struct { const char *signature ; unsigned offset; unsigned length; unsigned char type; } Signature; static const Signature signatures[] = { #if defined(CONFIG_SCSI_SEAGATE) || defined(CONFIG_SCSI_SEAGATE_MODULE) {"ST01 v1.7 (C) Copyright 1987 Seagate", 15, 37, SEAGATE}, {"SCSI BIOS 2.00 (C) Copyright 1987 Seagate", 15, 40, SEAGATE}, /* * The following two lines are NOT mistakes. One detects ROM revision * 3.0.0, the other 3.2. Since seagate has only one type of SCSI adapter, * and this is not going to change, the "SEAGATE" and "SCSI" together * are probably "good enough" */ {"SEAGATE SCSI BIOS ",16, 17, SEAGATE}, {"SEAGATE SCSI BIOS ",17, 17, SEAGATE}, /* * However, future domain makes several incompatible SCSI boards, so specific * signatures must be used. */ {"FUTURE DOMAIN CORP. (C) 1986-1989 V5.0C2/14/89", 5, 46, FD}, {"FUTURE DOMAIN CORP. (C) 1986-1989 V6.0A7/28/89", 5, 46, FD}, {"FUTURE DOMAIN CORP. (C) 1986-1990 V6.0105/31/90",5, 47, FD}, {"FUTURE DOMAIN CORP. (C) 1986-1990 V6.0209/18/90",5, 47, FD}, {"FUTURE DOMAIN CORP. (C) 1986-1990 V7.009/18/90", 5, 46, FD}, {"FUTURE DOMAIN CORP. (C) 1992 V8.00.004/02/92", 5, 44, FD}, {"IBM F1 BIOS V1.1004/30/92", 5, 25, FD}, {"FUTURE DOMAIN TMC-950", 5, 21, FD}, #endif /* CONFIG_SCSI_SEAGATE */ } ; #define NUM_SIGNATURES (sizeof(signatures) / sizeof(Signature)) #endif /* n OVERRIDE */ /* * hostno stores the hostnumber, as told to us by the init routine. */ static int hostno = -1; static void seagate_reconnect_intr(int, void *, struct pt_regs *); #ifdef FAST static int fast = 1; #endif #ifdef SLOW_HANDSHAKE /* * Support for broken devices : * The Seagate board has a handshaking problem. Namely, a lack * thereof for slow devices. You can blast 600K/second through * it if you are polling for each byte, more if you do a blind * transfer. In the first case, with a fast device, REQ will * transition high-low or high-low-high before your loop restarts * and you'll have no problems. In the second case, the board * will insert wait states for up to 13.2 usecs for REQ to * transition low->high, and everything will work. * * However, there's nothing in the state machine that says * you *HAVE* to see a high-low-high set of transitions before * sending the next byte, and slow things like the Trantor CD ROMS * will break because of this. * * So, we need to slow things down, which isn't as simple as it * seems. We can't slow things down period, because then people * who don't recompile their kernels will shoot me for ruining * their performance. We need to do it on a case per case basis. * * The best for performance will be to, only for borken devices * (this is stored on a per-target basis in the scsi_devices array) * * Wait for a low->high transition before continuing with that * transfer. If we timeout, continue anyways. We don't need * a long timeout, because REQ should only be asserted until the * corresponding ACK is received and processed. * * Note that we can't use the system timer for this, because of * resolution, and we *really* can't use the timer chip since * gettimeofday() and the beeper routines use that. So, * the best thing for us to do will be to calibrate a timing * loop in the initialization code using the timer chip before * gettimeofday() can screw with it. */ static int borken_calibration = 0; static void borken_init (void) { register int count = 0, start = jiffies + 1, stop = start + 25; while (jiffies < start); for (;jiffies < stop; ++count); /* * Ok, we now have a count for .25 seconds. Convert to a * count per second and divide by transfer rate in K. */ borken_calibration = (count * 4) / (SLOW_RATE*1024); if (borken_calibration < 1) borken_calibration = 1; #if (DEBUG & DEBUG_BORKEN) printk("scsi%d : borken calibrated to %dK/sec, %d cycles per transfer\n", hostno, BORKEN_RATE, borken_calibration); #endif } static inline void borken_wait(void) { register int count; for (count = borken_calibration; count && (STATUS & STAT_REQ); --count); #if (DEBUG & DEBUG_BORKEN) if (count) printk("scsi%d : borken timeout\n", hostno); #endif } #endif /* def SLOW_HANDSHAKE */ int seagate_st0x_detect (Scsi_Host_Template * tpnt) { struct Scsi_Host *instance; #ifndef OVERRIDE int i,j; #endif tpnt->proc_dir = &proc_scsi_seagate; /* * First, we try for the manual override. */ #ifdef DEBUG printk("Autodetecting ST0x / TMC-8xx\n"); #endif if (hostno != -1) { printk ("ERROR : seagate_st0x_detect() called twice.\n"); return 0; } /* If the user specified the controller type from the command line, controller_type will be non-zero, so don't try to detect one */ if (!controller_type) { #ifdef OVERRIDE base_address = (void *) OVERRIDE; /* CONTROLLER is used to override controller (SEAGATE or FD). PM: 07/01/93 */ #ifdef CONTROLLER controller_type = CONTROLLER; #else #error Please use -DCONTROLLER=SEAGATE or -DCONTROLLER=FD to override controller type #endif /* CONTROLLER */ #ifdef DEBUG printk("Base address overridden to %x, controller type is %s\n", base_address,controller_type == SEAGATE ? "SEAGATE" : "FD"); #endif #else /* OVERRIDE */ /* * To detect this card, we simply look for the signature * from the BIOS version notice in all the possible locations * of the ROM's. This has a nice side effect of not trashing * any register locations that might be used by something else. * * XXX - note that we probably should be probing the address * space for the on-board RAM instead. */ for (i = 0; i < (sizeof (seagate_bases) / sizeof (char * )); ++i) for (j = 0; !base_address && j < NUM_SIGNATURES; ++j) if (!memcmp ((const void *) (seagate_bases[i] + signatures[j].offset), (const void *) signatures[j].signature, signatures[j].length)) { base_address = (const void *) seagate_bases[i]; controller_type = signatures[j].type; } #endif /* OVERRIDE */ } /* (! controller_type) */ tpnt->this_id = (controller_type == SEAGATE) ? 7 : 6; tpnt->name = (controller_type == SEAGATE) ? ST0X_ID_STR : FD_ID_STR; if (base_address) { st0x_cr_sr =(void *) (((const unsigned char *) base_address) + (controller_type == SEAGATE ? 0x1a00 : 0x1c00)); st0x_dr = (void *) (((const unsigned char *) base_address ) + (controller_type == SEAGATE ? 0x1c00 : 0x1e00)); #ifdef DEBUG printk("%s detected. Base address = %x, cr = %x, dr = %x\n", tpnt->name, base_address, st0x_cr_sr, st0x_dr); #endif /* * At all times, we will use IRQ 5. Should also check for IRQ3 if we * loose our first interrupt. */ instance = scsi_register(tpnt, 0); hostno = instance->host_no; if (request_irq((int) irq, seagate_reconnect_intr, SA_INTERRUPT, (controller_type == SEAGATE) ? "seagate" : "tmc-8xx", NULL)) { printk("scsi%d : unable to allocate IRQ%d\n", hostno, (int) irq); return 0; } instance->irq = irq; instance->io_port = (unsigned int) base_address; #ifdef SLOW_HANDSHAKE borken_init(); #endif printk("%s options:" #ifdef ARBITRATE " ARBITRATE" #endif #ifdef SLOW_HANDSHAKE " SLOW_HANDSHAKE" #endif #ifdef FAST #ifdef FAST32 " FAST32" #else " FAST" #endif #endif #ifdef LINKED " LINKED" #endif "\n", tpnt->name); return 1; } else { #ifdef DEBUG printk("ST0x / TMC-8xx not detected.\n"); #endif return 0; } } const char *seagate_st0x_info(struct Scsi_Host * shpnt) { static char buffer[64]; sprintf(buffer, "%s at irq %d, address 0x%05X", (controller_type == SEAGATE) ? ST0X_ID_STR : FD_ID_STR, irq, (unsigned int)base_address); return buffer; } int seagate_st0x_proc_info(char *buffer, char **start, off_t offset, int length, int hostno, int inout) { const char *info = seagate_st0x_info(NULL); int len; int pos; int begin; if (inout) return(-ENOSYS); begin = 0; strcpy(buffer,info); strcat(buffer,"\n"); pos = len = strlen(buffer); if (pos<offset) { len = 0; begin = pos; } *start = buffer + (offset - begin); len -= (offset - begin); if ( len > length ) len = length; return(len); } /* * These are our saved pointers for the outstanding command that is * waiting for a reconnect */ static unsigned char current_target, current_lun; static unsigned char *current_cmnd, *current_data; static int current_nobuffs; static struct scatterlist *current_buffer; static int current_bufflen; #ifdef LINKED /* * linked_connected indicates whether or not we are currently connected to * linked_target, linked_lun and in an INFORMATION TRANSFER phase, * using linked commands. */ static int linked_connected = 0; static unsigned char linked_target, linked_lun; #endif static void (*done_fn)(Scsi_Cmnd *) = NULL; static Scsi_Cmnd * SCint = NULL; /* * These control whether or not disconnect / reconnect will be attempted, * or are being attempted. */ #define NO_RECONNECT 0 #define RECONNECT_NOW 1 #define CAN_RECONNECT 2 #ifdef LINKED /* * LINKED_RIGHT indicates that we are currently connected to the correct target * for this command, LINKED_WRONG indicates that we are connected to the wrong * target. Note that these imply CAN_RECONNECT. */ #define LINKED_RIGHT 3 #define LINKED_WRONG 4 #endif /* * This determines if we are expecting to reconnect or not. */ static int should_reconnect = 0; /* * The seagate_reconnect_intr routine is called when a target reselects the * host adapter. This occurs on the interrupt triggered by the target * asserting SEL. */ static void seagate_reconnect_intr(int irq, void *dev_id, struct pt_regs *regs) { int temp; Scsi_Cmnd * SCtmp; /* enable all other interrupts. */ sti(); #if (DEBUG & PHASE_RESELECT) printk("scsi%d : seagate_reconnect_intr() called\n", hostno); #endif if (!should_reconnect) printk("scsi%d: unexpected interrupt.\n", hostno); else { should_reconnect = 0; #if (DEBUG & PHASE_RESELECT) printk("scsi%d : internal_command(" "%d, %08x, %08x, %d, RECONNECT_NOW\n", hostno, current_target, current_data, current_bufflen); #endif temp = internal_command (current_target, current_lun, current_cmnd, current_data, current_bufflen, RECONNECT_NOW); if (msg_byte(temp) != DISCONNECT) { if (done_fn) { #if (DEBUG & PHASE_RESELECT) printk("scsi%d : done_fn(%d,%08x)", hostno, hostno, temp); #endif if(!SCint) panic("SCint == NULL in seagate"); SCtmp = SCint; SCint = NULL; SCtmp->result = temp; done_fn (SCtmp); } else printk("done_fn() not defined.\n"); } } } /* * The seagate_st0x_queue_command() function provides a queued interface * to the seagate SCSI driver. Basically, it just passes control onto the * seagate_command() function, after fixing it so that the done_fn() * is set to the one passed to the function. We have to be very careful, * because there are some commands on some devices that do not disconnect, * and if we simply call the done_fn when the command is done then another * command is started and queue_command is called again... We end up * overflowing the kernel stack, and this tends not to be such a good idea. */ static int recursion_depth = 0; int seagate_st0x_queue_command (Scsi_Cmnd * SCpnt, void (*done)(Scsi_Cmnd *)) { int result, reconnect; Scsi_Cmnd * SCtmp; done_fn = done; current_target = SCpnt->target; current_lun = SCpnt->lun; (const void *) current_cmnd = SCpnt->cmnd; current_data = (unsigned char *) SCpnt->request_buffer; current_bufflen = SCpnt->request_bufflen; SCint = SCpnt; if(recursion_depth) { return 0; }; recursion_depth++; do{ #ifdef LINKED /* * Set linked command bit in control field of SCSI command. */ current_cmnd[SCpnt->cmd_len] |= 0x01; if (linked_connected) { #if (DEBUG & DEBUG_LINKED) printk("scsi%d : using linked commands, current I_T_L nexus is ", hostno); #endif if ((linked_target == current_target) && (linked_lun == current_lun)) { #if (DEBUG & DEBUG_LINKED) printk("correct\n"); #endif reconnect = LINKED_RIGHT; } else { #if (DEBUG & DEBUG_LINKED) printk("incorrect\n"); #endif reconnect = LINKED_WRONG; } } else #endif /* LINKED */ reconnect = CAN_RECONNECT; result = internal_command (SCint->target, SCint->lun, SCint->cmnd, SCint->request_buffer, SCint->request_bufflen, reconnect); if (msg_byte(result) == DISCONNECT) break; SCtmp = SCint; SCint = NULL; SCtmp->result = result; done_fn (SCtmp); } while(SCint); recursion_depth--; return 0; } int seagate_st0x_command (Scsi_Cmnd * SCpnt) { return internal_command (SCpnt->target, SCpnt->lun, SCpnt->cmnd, SCpnt->request_buffer, SCpnt->request_bufflen, (int) NO_RECONNECT); } static int internal_command(unsigned char target, unsigned char lun, const void *cmnd, void *buff, int bufflen, int reselect) { int len = 0; unsigned char *data = NULL; struct scatterlist *buffer = NULL; int nobuffs = 0; int clock; int temp; #ifdef SLOW_HANDSHAKE int borken; /* Does the current target require Very Slow I/O ? */ #endif #if (DEBUG & PHASE_DATAIN) || (DEBUG & PHASE_DATOUT) int transfered = 0; #endif #if (((DEBUG & PHASE_ETC) == PHASE_ETC) || (DEBUG & PRINT_COMMAND) || \ (DEBUG & PHASE_EXIT)) int i; #endif #if ((DEBUG & PHASE_ETC) == PHASE_ETC) int phase=0, newphase; #endif int done = 0; unsigned char status = 0; unsigned char message = 0; register unsigned char status_read; unsigned transfersize = 0, underflow = 0; incommand = 0; st0x_aborted = 0; #ifdef SLOW_HANDSHAKE borken = (int) SCint->device->borken; #endif #if (DEBUG & PRINT_COMMAND) printk ("scsi%d : target = %d, command = ", hostno, target); print_command((unsigned char *) cmnd); printk("\n"); #endif #if (DEBUG & PHASE_RESELECT) switch (reselect) { case RECONNECT_NOW : printk("scsi%d : reconnecting\n", hostno); break; #ifdef LINKED case LINKED_RIGHT : printk("scsi%d : connected, can reconnect\n", hostno); break; case LINKED_WRONG : printk("scsi%d : connected to wrong target, can reconnect\n", hostno); break; #endif case CAN_RECONNECT : printk("scsi%d : allowed to reconnect\n", hostno); break; default : printk("scsi%d : not allowed to reconnect\n", hostno); } #endif if (target == (controller_type == SEAGATE ? 7 : 6)) return DID_BAD_TARGET; /* * We work it differently depending on if this is "the first time," * or a reconnect. If this is a reselect phase, then SEL will * be asserted, and we must skip selection / arbitration phases. */ switch (reselect) { case RECONNECT_NOW: #if (DEBUG & PHASE_RESELECT) printk("scsi%d : phase RESELECT \n", hostno); #endif /* * At this point, we should find the logical or of our ID and the original * target's ID on the BUS, with BSY, SEL, and I/O signals asserted. * * After ARBITRATION phase is completed, only SEL, BSY, and the * target ID are asserted. A valid initiator ID is not on the bus * until IO is asserted, so we must wait for that. */ clock = jiffies + 10; for (;;) { temp = STATUS; if ((temp & STAT_IO) && !(temp & STAT_BSY)) break; if (jiffies > clock) { #if (DEBUG & PHASE_RESELECT) printk("scsi%d : RESELECT timed out while waiting for IO .\n", hostno); #endif return (DID_BAD_INTR << 16); } } /* * After I/O is asserted by the target, we can read our ID and its * ID off of the BUS. */ if (!((temp = DATA) & (controller_type == SEAGATE ? 0x80 : 0x40))) { #if (DEBUG & PHASE_RESELECT) printk("scsi%d : detected reconnect request to different target.\n" "\tData bus = %d\n", hostno, temp); #endif return (DID_BAD_INTR << 16); } if (!(temp & (1 << current_target))) { printk("scsi%d : Unexpected reselect interrupt. Data bus = %d\n", hostno, temp); return (DID_BAD_INTR << 16); } buffer=current_buffer; cmnd=current_cmnd; /* WDE add */ data=current_data; /* WDE add */ len=current_bufflen; /* WDE add */ nobuffs=current_nobuffs; /* * We have determined that we have been selected. At this point, * we must respond to the reselection by asserting BSY ourselves */ #if 1 CONTROL = (BASE_CMD | CMD_DRVR_ENABLE | CMD_BSY); #else CONTROL = (BASE_CMD | CMD_BSY); #endif /* * The target will drop SEL, and raise BSY, at which time we must drop * BSY. */ for (clock = jiffies + 10; (jiffies < clock) && (STATUS & STAT_SEL);); if (jiffies >= clock) { CONTROL = (BASE_CMD | CMD_INTR); #if (DEBUG & PHASE_RESELECT) printk("scsi%d : RESELECT timed out while waiting for SEL.\n", hostno); #endif return (DID_BAD_INTR << 16); } CONTROL = BASE_CMD; /* * At this point, we have connected with the target and can get * on with our lives. */ break; case CAN_RECONNECT: #ifdef LINKED /* * This is a bletcherous hack, just as bad as the Unix #! interpreter stuff. * If it turns out we are using the wrong I_T_L nexus, the easiest way to deal * with it is to go into our INFORMATION TRANSFER PHASE code, send a ABORT * message on MESSAGE OUT phase, and then loop back to here. */ connect_loop : #endif #if (DEBUG & PHASE_BUS_FREE) printk ("scsi%d : phase = BUS FREE \n", hostno); #endif /* * BUS FREE PHASE * * On entry, we make sure that the BUS is in a BUS FREE * phase, by insuring that both BSY and SEL are low for * at least one bus settle delay. Several reads help * eliminate wire glitch. */ clock = jiffies + ST0X_BUS_FREE_DELAY; #if !defined (ARBITRATE) while (((STATUS | STATUS | STATUS) & (STAT_BSY | STAT_SEL)) && (!st0x_aborted) && (jiffies < clock)); if (jiffies > clock) return retcode(DID_BUS_BUSY); else if (st0x_aborted) return retcode(st0x_aborted); #endif #if (DEBUG & PHASE_SELECTION) printk("scsi%d : phase = SELECTION\n", hostno); #endif clock = jiffies + ST0X_SELECTION_DELAY; /* * Arbitration/selection procedure : * 1. Disable drivers * 2. Write HOST adapter address bit * 3. Set start arbitration. * 4. We get either ARBITRATION COMPLETE or SELECT at this * point. * 5. OR our ID and targets on bus. * 6. Enable SCSI drivers and asserted SEL and ATTN */ #if defined(ARBITRATE) cli(); CONTROL = 0; DATA = (controller_type == SEAGATE) ? 0x80 : 0x40; CONTROL = CMD_START_ARB; sti(); while (!((status_read = STATUS) & (STAT_ARB_CMPL | STAT_SEL)) && (jiffies < clock) && !st0x_aborted); if (!(status_read & STAT_ARB_CMPL)) { #if (DEBUG & PHASE_SELECTION) if (status_read & STAT_SEL) printk("scsi%d : arbitration lost\n", hostno); else printk("scsi%d : arbitration timeout.\n", hostno); #endif CONTROL = BASE_CMD; return retcode(DID_NO_CONNECT); }; #if (DEBUG & PHASE_SELECTION) printk("scsi%d : arbitration complete\n", hostno); #endif #endif /* * When the SCSI device decides that we're gawking at it, it will * respond by asserting BUSY on the bus. * * Note : the Seagate ST-01/02 product manual says that we should * twiddle the DATA register before the control register. However, * this does not work reliably so we do it the other way around. * * Probably could be a problem with arbitration too, we really should * try this with a SCSI protocol or logic analyzer to see what is * going on. */ cli(); DATA = (unsigned char) ((1 << target) | (controller_type == SEAGATE ? 0x80 : 0x40)); CONTROL = BASE_CMD | CMD_DRVR_ENABLE | CMD_SEL | (reselect ? CMD_ATTN : 0); sti(); while (!((status_read = STATUS) & STAT_BSY) && (jiffies < clock) && !st0x_aborted) #if 0 && (DEBUG & PHASE_SELECTION) { temp = clock - jiffies; if (!(jiffies % 5)) printk("seagate_st0x_timeout : %d \r",temp); } printk("Done. \n"); printk("scsi%d : status = %02x, seagate_st0x_timeout = %d, aborted = %02x \n", hostno, status_read, temp, st0x_aborted); #else ; #endif if ((jiffies >= clock) && !(status_read & STAT_BSY)) { #if (DEBUG & PHASE_SELECTION) printk ("scsi%d : NO CONNECT with target %d, status = %x \n", hostno, target, STATUS); #endif return retcode(DID_NO_CONNECT); } /* * If we have been aborted, and we have a command in progress, IE the * target still has BSY asserted, then we will reset the bus, and * notify the midlevel driver to expect sense. */ if (st0x_aborted) { CONTROL = BASE_CMD; if (STATUS & STAT_BSY) { printk("scsi%d : BST asserted after we've been aborted.\n", hostno); seagate_st0x_reset(NULL, 0); return retcode(DID_RESET); } return retcode(st0x_aborted); } /* Establish current pointers. Take into account scatter / gather */ if ((nobuffs = SCint->use_sg)) { #if (DEBUG & DEBUG_SG) { int i; printk("scsi%d : scatter gather requested, using %d buffers.\n", hostno, nobuffs); for (i = 0; i < nobuffs; ++i) printk("scsi%d : buffer %d address = %08x length = %d\n", hostno, i, buffer[i].address, buffer[i].length); } #endif buffer = (struct scatterlist *) SCint->buffer; len = buffer->length; data = (unsigned char *) buffer->address; } else { #if (DEBUG & DEBUG_SG) printk("scsi%d : scatter gather not requested.\n", hostno); #endif buffer = NULL; len = SCint->request_bufflen; data = (unsigned char *) SCint->request_buffer; } #if (DEBUG & (PHASE_DATAIN | PHASE_DATAOUT)) printk("scsi%d : len = %d\n", hostno, len); #endif break; #ifdef LINKED case LINKED_RIGHT: break; case LINKED_WRONG: break; #endif } /* * There are several conditions under which we wish to send a message : * 1. When we are allowing disconnect / reconnect, and need to establish * the I_T_L nexus via an IDENTIFY with the DiscPriv bit set. * * 2. When we are doing linked commands, are have the wrong I_T_L nexus * established and want to send an ABORT message. */ CONTROL = BASE_CMD | CMD_DRVR_ENABLE | (((reselect == CAN_RECONNECT) #ifdef LINKED || (reselect == LINKED_WRONG) #endif ) ? CMD_ATTN : 0) ; /* * INFORMATION TRANSFER PHASE * * The nasty looking read / write inline assembler loops we use for * DATAIN and DATAOUT phases are approximately 4-5 times as fast as * the 'C' versions - since we're moving 1024 bytes of data, this * really adds up. */ #if ((DEBUG & PHASE_ETC) == PHASE_ETC) printk("scsi%d : phase = INFORMATION TRANSFER\n", hostno); #endif incommand = 1; transfersize = SCint->transfersize; underflow = SCint->underflow; /* * Now, we poll the device for status information, * and handle any requests it makes. Note that since we are unsure of * how much data will be flowing across the system, etc and cannot * make reasonable timeouts, that we will instead have the midlevel * driver handle any timeouts that occur in this phase. */ while (((status_read = STATUS) & STAT_BSY) && !st0x_aborted && !done) { #ifdef PARITY if (status_read & STAT_PARITY) { printk("scsi%d : got parity error\n", hostno); st0x_aborted = DID_PARITY; } #endif if (status_read & STAT_REQ) { #if ((DEBUG & PHASE_ETC) == PHASE_ETC) if ((newphase = (status_read & REQ_MASK)) != phase) { phase = newphase; switch (phase) { case REQ_DATAOUT: printk("scsi%d : phase = DATA OUT\n", hostno); break; case REQ_DATAIN : printk("scsi%d : phase = DATA IN\n", hostno); break; case REQ_CMDOUT : printk("scsi%d : phase = COMMAND OUT\n", hostno); break; case REQ_STATIN : printk("scsi%d : phase = STATUS IN\n", hostno); break; case REQ_MSGOUT : printk("scsi%d : phase = MESSAGE OUT\n", hostno); break; case REQ_MSGIN : printk("scsi%d : phase = MESSAGE IN\n", hostno); break; default : printk("scsi%d : phase = UNKNOWN\n", hostno); st0x_aborted = DID_ERROR; } } #endif switch (status_read & REQ_MASK) { case REQ_DATAOUT : /* * If we are in fast mode, then we simply splat the data out * in word-sized chunks as fast as we can. */ #ifdef FAST if (!len) { #if 0 printk("scsi%d: underflow to target %d lun %d \n", hostno, target, lun); st0x_aborted = DID_ERROR; fast = 0; #endif break; } if (fast && transfersize && !(len % transfersize) && (len >= transfersize) #ifdef FAST32 && !(transfersize % 4) #endif ) { #if (DEBUG & DEBUG_FAST) printk("scsi%d : FAST transfer, underflow = %d, transfersize = %d\n" " len = %d, data = %08x\n", hostno, SCint->underflow, SCint->transfersize, len, data); #endif __asm__(" cld; " #ifdef FAST32 " shr $2, %%ecx; 1: lodsl; movl %%eax, (%%edi); " #else "1: lodsb; movb %%al, (%%edi); " #endif " loop 1b;" : : /* input */ "D" (st0x_dr), "S" (data), "c" (SCint->transfersize) : /* clobbered */ "eax", "ecx", "esi" ); len -= transfersize; data += transfersize; #if (DEBUG & DEBUG_FAST) printk("scsi%d : FAST transfer complete len = %d data = %08x\n", hostno, len, data); #endif } else #endif { /* * We loop as long as we are in a data out phase, there is data to send, * and BSY is still active. */ __asm__ ( /* Local variables : len = ecx data = esi st0x_cr_sr = ebx st0x_dr = edi Test for any data here at all. */ "\torl %%ecx, %%ecx jz 2f cld movl " SYMBOL_NAME_STR(st0x_cr_sr) ", %%ebx movl " SYMBOL_NAME_STR(st0x_dr) ", %%edi 1: movb (%%ebx), %%al\n" /* Test for BSY */ "\ttest $1, %%al jz 2f\n" /* Test for data out phase - STATUS & REQ_MASK should be REQ_DATAOUT, which is 0. */ "\ttest $0xe, %%al jnz 2f \n" /* Test for REQ */ "\ttest $0x10, %%al jz 1b lodsb movb %%al, (%%edi) loop 1b 2: ": /* output */ "=S" (data), "=c" (len) : /* input */ "0" (data), "1" (len) : /* clobbered */ "eax", "ebx", "edi"); } if (!len && nobuffs) { --nobuffs; ++buffer; len = buffer->length; data = (unsigned char *) buffer->address; #if (DEBUG & DEBUG_SG) printk("scsi%d : next scatter-gather buffer len = %d address = %08x\n", hostno, len, data); #endif } break; case REQ_DATAIN : #ifdef SLOW_HANDSHAKE if (borken) { #if (DEBUG & (PHASE_DATAIN)) transfered += len; #endif for (; len && (STATUS & (REQ_MASK | STAT_REQ)) == (REQ_DATAIN | STAT_REQ); --len) { *data++ = DATA; borken_wait(); } #if (DEBUG & (PHASE_DATAIN)) transfered -= len; #endif } else #endif #ifdef FAST if (fast && transfersize && !(len % transfersize) && (len >= transfersize) #ifdef FAST32 && !(transfersize % 4) #endif ) { #if (DEBUG & DEBUG_FAST) printk("scsi%d : FAST transfer, underflow = %d, transfersize = %d\n" " len = %d, data = %08x\n", hostno, SCint->underflow, SCint->transfersize, len, data); #endif __asm__(" cld; " #ifdef FAST32 " shr $2, %%ecx; 1: movl (%%esi), %%eax; stosl; " #else "1: movb (%%esi), %%al; stosb; " #endif " loop 1b;" : : /* input */ "S" (st0x_dr), "D" (data), "c" (SCint->transfersize) : /* clobbered */ "eax", "ecx", "edi"); len -= transfersize; data += transfersize; #if (DEBUG & PHASE_DATAIN) printk("scsi%d: transfered += %d\n", hostno, transfersize); transfered += transfersize; #endif #if (DEBUG & DEBUG_FAST) printk("scsi%d : FAST transfer complete len = %d data = %08x\n", hostno, len, data); #endif } else #endif { #if (DEBUG & PHASE_DATAIN) printk("scsi%d: transfered += %d\n", hostno, len); transfered += len; /* Assume we'll transfer it all, then subtract what we *didn't* transfer */ #endif /* * We loop as long as we are in a data in phase, there is room to read, * and BSY is still active */ __asm__ ( /* Local variables : ecx = len edi = data esi = st0x_cr_sr ebx = st0x_dr Test for room to read */ "\torl %%ecx, %%ecx jz 2f cld movl " SYMBOL_NAME_STR(st0x_cr_sr) ", %%esi movl " SYMBOL_NAME_STR(st0x_dr) ", %%ebx 1: movb (%%esi), %%al\n" /* Test for BSY */ "\ttest $1, %%al jz 2f\n" /* Test for data in phase - STATUS & REQ_MASK should be REQ_DATAIN, = STAT_IO, which is 4. */ "\tmovb $0xe, %%ah andb %%al, %%ah cmpb $0x04, %%ah jne 2f\n" /* Test for REQ */ "\ttest $0x10, %%al jz 1b movb (%%ebx), %%al stosb loop 1b\n" "2:\n" : /* output */ "=D" (data), "=c" (len) : /* input */ "0" (data), "1" (len) : /* clobbered */ "eax","ebx", "esi"); #if (DEBUG & PHASE_DATAIN) printk("scsi%d: transfered -= %d\n", hostno, len); transfered -= len; /* Since we assumed all of Len got * transfered, correct our mistake */ #endif } if (!len && nobuffs) { --nobuffs; ++buffer; len = buffer->length; data = (unsigned char *) buffer->address; #if (DEBUG & DEBUG_SG) printk("scsi%d : next scatter-gather buffer len = %d address = %08x\n", hostno, len, data); #endif } break; case REQ_CMDOUT : while (((status_read = STATUS) & STAT_BSY) && ((status_read & REQ_MASK) == REQ_CMDOUT)) if (status_read & STAT_REQ) { DATA = *(const unsigned char *) cmnd; cmnd = 1+(const unsigned char *) cmnd; #ifdef SLOW_HANDSHAKE if (borken) borken_wait(); #endif } break; case REQ_STATIN : status = DATA; break; case REQ_MSGOUT : /* * We can only have sent a MSG OUT if we requested to do this * by raising ATTN. So, we must drop ATTN. */ CONTROL = BASE_CMD | CMD_DRVR_ENABLE; /* * If we are reconnecting, then we must send an IDENTIFY message in * response to MSGOUT. */ switch (reselect) { case CAN_RECONNECT: DATA = IDENTIFY(1, lun); #if (DEBUG & (PHASE_RESELECT | PHASE_MSGOUT)) printk("scsi%d : sent IDENTIFY message.\n", hostno); #endif break; #ifdef LINKED case LINKED_WRONG: DATA = ABORT; linked_connected = 0; reselect = CAN_RECONNECT; goto connect_loop; #if (DEBUG & (PHASE_MSGOUT | DEBUG_LINKED)) printk("scsi%d : sent ABORT message to cancel incorrect I_T_L nexus.\n", hostno); #endif #endif /* LINKED */ #if (DEBUG & DEBUG_LINKED) printk("correct\n"); #endif default: DATA = NOP; printk("scsi%d : target %d requested MSGOUT, sent NOP message.\n", hostno, target); } break; case REQ_MSGIN : switch (message = DATA) { case DISCONNECT : should_reconnect = 1; current_data = data; /* WDE add */ current_buffer = buffer; current_bufflen = len; /* WDE add */ current_nobuffs = nobuffs; #ifdef LINKED linked_connected = 0; #endif done=1; #if (DEBUG & (PHASE_RESELECT | PHASE_MSGIN)) printk("scsi%d : disconnected.\n", hostno); #endif break; #ifdef LINKED case LINKED_CMD_COMPLETE: case LINKED_FLG_CMD_COMPLETE: #endif case COMMAND_COMPLETE : /* * Note : we should check for underflow here. */ #if (DEBUG & PHASE_MSGIN) printk("scsi%d : command complete.\n", hostno); #endif done = 1; break; case ABORT : #if (DEBUG & PHASE_MSGIN) printk("scsi%d : abort message.\n", hostno); #endif done=1; break; case SAVE_POINTERS : current_buffer = buffer; current_bufflen = len; /* WDE add */ current_data = data; /* WDE mod */ current_nobuffs = nobuffs; #if (DEBUG & PHASE_MSGIN) printk("scsi%d : pointers saved.\n", hostno); #endif break; case RESTORE_POINTERS: buffer=current_buffer; cmnd=current_cmnd; data=current_data; /* WDE mod */ len=current_bufflen; nobuffs=current_nobuffs; #if (DEBUG & PHASE_MSGIN) printk("scsi%d : pointers restored.\n", hostno); #endif break; default: /* * IDENTIFY distinguishes itself from the other messages by setting the * high byte. * * Note : we need to handle at least one outstanding command per LUN, * and need to hash the SCSI command for that I_T_L nexus based on the * known ID (at this point) and LUN. */ if (message & 0x80) { #if (DEBUG & PHASE_MSGIN) printk("scsi%d : IDENTIFY message received from id %d, lun %d.\n", hostno, target, message & 7); #endif } else { /* * We should go into a MESSAGE OUT phase, and send a MESSAGE_REJECT * if we run into a message that we don't like. The seagate driver * needs some serious restructuring first though. */ #if (DEBUG & PHASE_MSGIN) printk("scsi%d : unknown message %d from target %d.\n", hostno, message, target); #endif } } break; default : printk("scsi%d : unknown phase.\n", hostno); st0x_aborted = DID_ERROR; } #ifdef SLOW_HANDSHAKE /* * I really don't care to deal with borken devices in each single * byte transfer case (ie, message in, message out, status), so * I'll do the wait here if necessary. */ if (borken) borken_wait(); #endif } /* if ends */ } /* while ends */ #if (DEBUG & (PHASE_DATAIN | PHASE_DATAOUT | PHASE_EXIT)) printk("scsi%d : Transfered %d bytes\n", hostno, transfered); #endif #if (DEBUG & PHASE_EXIT) #if 0 /* Doesn't work for scatter / gather */ printk("Buffer : \n"); for (i = 0; i < 20; ++i) printk ("%02x ", ((unsigned char *) data)[i]); /* WDE mod */ printk("\n"); #endif printk("scsi%d : status = ", hostno); print_status(status); printk("message = %02x\n", message); #endif /* We shouldn't reach this until *after* BSY has been deasserted */ #ifdef notyet if (st0x_aborted) { if (STATUS & STAT_BSY) { seagate_st0x_reset(NULL); st0x_aborted = DID_RESET; } abort_confirm = 1; } #endif #ifdef LINKED else { /* * Fix the message byte so that unsuspecting high level drivers don't * puke when they see a LINKED COMMAND message in place of the COMMAND * COMPLETE they may be expecting. Shouldn't be necessary, but it's * better to be on the safe side. * * A non LINKED* message byte will indicate that the command completed, * and we are now disconnected. */ switch (message) { case LINKED_CMD_COMPLETE : case LINKED_FLG_CMD_COMPLETE : message = COMMAND_COMPLETE; linked_target = current_target; linked_lun = current_lun; linked_connected = 1; #if (DEBUG & DEBUG_LINKED) printk("scsi%d : keeping I_T_L nexus established for linked command.\n", hostno); #endif /* * We also will need to adjust status to accommodate intermediate conditions. */ if ((status == INTERMEDIATE_GOOD) || (status == INTERMEDIATE_C_GOOD)) status = GOOD; break; /* * We should also handle what are "normal" termination messages * here (ABORT, BUS_DEVICE_RESET?, and COMMAND_COMPLETE individually, * and flake if things aren't right. */ default : #if (DEBUG & DEBUG_LINKED) printk("scsi%d : closing I_T_L nexus.\n", hostno); #endif linked_connected = 0; } } #endif /* LINKED */ if (should_reconnect) { #if (DEBUG & PHASE_RESELECT) printk("scsi%d : exiting seagate_st0x_queue_command() with reconnect enabled.\n", hostno); #endif CONTROL = BASE_CMD | CMD_INTR ; } else CONTROL = BASE_CMD; return retcode (st0x_aborted); } int seagate_st0x_abort (Scsi_Cmnd * SCpnt) { st0x_aborted = DID_ABORT; return SCSI_ABORT_PENDING; } /* the seagate_st0x_reset function resets the SCSI bus */ int seagate_st0x_reset (Scsi_Cmnd * SCpnt, unsigned int reset_flags) { unsigned clock; /* No timeouts - this command is going to fail because it was reset. */ #ifdef DEBUG printk("In seagate_st0x_reset()\n"); #endif /* assert RESET signal on SCSI bus. */ CONTROL = BASE_CMD | CMD_RST; clock=jiffies+2; /* Wait. */ while (jiffies < clock); CONTROL = BASE_CMD; st0x_aborted = DID_RESET; #ifdef DEBUG printk("SCSI bus reset.\n"); #endif return SCSI_RESET_WAKEUP; } #include <asm/segment.h> #include "sd.h" #include <scsi/scsi_ioctl.h> int seagate_st0x_biosparam(Disk * disk, kdev_t dev, int* ip) { unsigned char buf[256 + sizeof(int) * 2], cmd[6], *data, *page; int *sizes, result, formatted_sectors, total_sectors; int cylinders, heads, sectors; int capacity; /* * Only SCSI-I CCS drives and later implement the necessary mode sense * pages. */ if (disk->device->scsi_level < 2) return -1; sizes = (int *) buf; data = (unsigned char *) (sizes + 2); cmd[0] = MODE_SENSE; cmd[1] = (disk->device->lun << 5) & 0xe5; cmd[2] = 0x04; /* Read page 4, rigid disk geometry page current values */ cmd[3] = 0; cmd[4] = 255; cmd[5] = 0; /* * We are transferring 0 bytes in the out direction, and expect to get back * 24 bytes for each mode page. */ sizes[0] = 0; sizes[1] = 256; memcpy (data, cmd, 6); if (!(result = kernel_scsi_ioctl (disk->device, SCSI_IOCTL_SEND_COMMAND, (void *) buf))) { /* * The mode page lies beyond the MODE SENSE header, with length 4, and * the BLOCK DESCRIPTOR, with length header[3]. */ page = data + 4 + data[3]; heads = (int) page[5]; cylinders = (page[2] << 16) | (page[3] << 8) | page[4]; cmd[2] = 0x03; /* Read page 3, format page current values */ memcpy (data, cmd, 6); if (!(result = kernel_scsi_ioctl (disk->device, SCSI_IOCTL_SEND_COMMAND, (void *) buf))) { page = data + 4 + data[3]; sectors = (page[10] << 8) | page[11]; /* * Get the total number of formatted sectors from the block descriptor, * so we can tell how many are being used for alternates. */ formatted_sectors = (data[4 + 1] << 16) | (data[4 + 2] << 8) | data[4 + 3] ; total_sectors = (heads * cylinders * sectors); /* * Adjust the real geometry by subtracting * (spare sectors / (heads * tracks)) cylinders from the number of cylinders. * * It appears that the CE cylinder CAN be a partial cylinder. */ printk("scsi%d : heads = %d cylinders = %d sectors = %d total = %d formatted = %d\n", hostno, heads, cylinders, sectors, total_sectors, formatted_sectors); if (!heads || !sectors || !cylinders) result = -1; else cylinders -= ((total_sectors - formatted_sectors) / (heads * sectors)); /* * Now, we need to do a sanity check on the geometry to see if it is * BIOS compatible. The maximum BIOS geometry is 1024 cylinders * * 256 heads * 64 sectors. */ if ((cylinders > 1024) || (sectors > 64)) { /* The Seagate's seem to have some mapping * Multiple heads * sectors * cyl to get capacity * Then start rounding down. */ capacity = heads * sectors * cylinders; sectors = 17; /* Old MFM Drives use this, so does the Seagate */ heads = 2; capacity = capacity / sectors; while (cylinders > 1024) { heads *= 2; /* For some reason, they go in multiples */ cylinders = capacity / heads; } } ip[0] = heads; ip[1] = sectors; ip[2] = cylinders; /* * There should be an alternate mapping for things the seagate doesn't * understand, but I couldn't say what it is with reasonable certainty. */ } } return result; } #ifdef MODULE /* Eventually this will go into an include file, but this will be later */ Scsi_Host_Template driver_template = SEAGATE_ST0X; #include "scsi_module.c" #endif