URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [sound/] [gus_wave.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * sound/gus_wave.c * * Driver for the Gravis UltraSound wave table synth. */ /* * Copyright (C) by Hannu Savolainen 1993-1996 * * USS/Lite for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL) * Version 2 (June 1991). See the "COPYING" file distributed with this software * for more info. */ #include <linux/config.h> #define GUSPNP_AUTODETECT #include "sound_config.h" #include <linux/ultrasound.h> #include "gus_hw.h" #if defined(CONFIG_GUS) #define MAX_SAMPLE 150 #define MAX_PATCH 256 #define NOT_SAMPLE 0xffff struct voice_info { unsigned long orig_freq; unsigned long current_freq; unsigned long mode; int bender; int bender_range; int panning; int midi_volume; unsigned int initial_volume; unsigned int current_volume; int loop_irq_mode, loop_irq_parm; #define LMODE_FINISH 1 #define LMODE_PCM 2 #define LMODE_PCM_STOP 3 int volume_irq_mode, volume_irq_parm; #define VMODE_HALT 1 #define VMODE_ENVELOPE 2 #define VMODE_START_NOTE 3 int env_phase; unsigned char env_rate[6]; unsigned char env_offset[6]; /* * Volume computation parameters for gus_adagio_vol() */ int main_vol, expression_vol, patch_vol; /* Variables for "Ultraclick" removal */ int dev_pending, note_pending, volume_pending, sample_pending; char kill_pending; long offset_pending; }; static struct voice_alloc_info *voice_alloc; extern int gus_base; extern int gus_irq, gus_dma; extern int gus_pnp_flag; static int gus_dma2 = -1; static int dual_dma_mode = 0; static long gus_mem_size = 0; static long free_mem_ptr = 0; static int gus_busy = 0; static int gus_no_dma = 0; static int nr_voices = 0; static int gus_devnum = 0; static int volume_base, volume_scale, volume_method; static int gus_recmask = SOUND_MASK_MIC; static int recording_active = 0; static int only_read_access = 0; static int only_8_bits = 0; int gus_wave_volume = 60; int gus_pcm_volume = 80; int have_gus_max = 0; static int gus_line_vol = 100, gus_mic_vol = 0; static unsigned char mix_image = 0x00; int gus_timer_enabled = 0; /* * Current version of this driver doesn't allow synth and PCM functions * at the same time. The active_device specifies the active driver */ static int active_device = 0; #define GUS_DEV_WAVE 1 /* Wave table synth */ #define GUS_DEV_PCM_DONE 2 /* PCM device, transfer done */ #define GUS_DEV_PCM_CONTINUE 3 /* PCM device, transfer done ch. 1/2 */ static int gus_audio_speed; static int gus_audio_channels; static int gus_audio_bits; static wait_handle *dram_sleeper = NULL; static volatile struct snd_wait dram_sleep_flag = {0}; /* * Variables and buffers for PCM output */ #define MAX_PCM_BUFFERS (32*MAX_REALTIME_FACTOR) /* Don't change */ static int pcm_bsize, pcm_nblk, pcm_banksize; static int pcm_datasize[MAX_PCM_BUFFERS]; static volatile int pcm_head, pcm_tail, pcm_qlen; static volatile int pcm_active; static volatile int dma_active; static int pcm_opened = 0; static int pcm_current_dev; static int pcm_current_block; static unsigned long pcm_current_buf; static int pcm_current_count; static int pcm_current_intrflag; extern int *gus_osp; struct voice_info voices[32]; static int freq_div_table[] = { 44100, /* 14 */ 41160, /* 15 */ 38587, /* 16 */ 36317, /* 17 */ 34300, /* 18 */ 32494, /* 19 */ 30870, /* 20 */ 29400, /* 21 */ 28063, /* 22 */ 26843, /* 23 */ 25725, /* 24 */ 24696, /* 25 */ 23746, /* 26 */ 22866, /* 27 */ 22050, /* 28 */ 21289, /* 29 */ 20580, /* 30 */ 19916, /* 31 */ 19293 /* 32 */ }; static struct patch_info *samples; static long sample_ptrs[MAX_SAMPLE + 1]; static int sample_map[32]; static int free_sample; static int mixer_type = 0; static int patch_table[MAX_PATCH]; static int patch_map[32]; static struct synth_info gus_info = {"Gravis UltraSound", 0, SYNTH_TYPE_SAMPLE, SAMPLE_TYPE_GUS, 0, 16, 0, MAX_PATCH}; static void gus_poke (long addr, unsigned char data); static void compute_and_set_volume (int voice, int volume, int ramp_time); extern unsigned short gus_adagio_vol (int vel, int mainv, int xpn, int voicev); extern unsigned short gus_linear_vol (int vol, int mainvol); static void compute_volume (int voice, int volume); static void do_volume_irq (int voice); static void set_input_volumes (void); static void gus_tmr_install (int io_base); #define INSTANT_RAMP -1 /* Instant change. No ramping */ #define FAST_RAMP 0 /* Fastest possible ramp */ static void reset_sample_memory (void) { int i; for (i = 0; i <= MAX_SAMPLE; i++) sample_ptrs[i] = -1; for (i = 0; i < 32; i++) sample_map[i] = -1; for (i = 0; i < 32; i++) patch_map[i] = -1; gus_poke (0, 0); /* Put a silent sample to the beginning */ gus_poke (1, 0); free_mem_ptr = 2; free_sample = 0; for (i = 0; i < MAX_PATCH; i++) patch_table[i] = NOT_SAMPLE; } void gus_delay (void) { int i; for (i = 0; i < 7; i++) inb (u_DRAMIO); } static void gus_poke (long addr, unsigned char data) { /* Writes a byte to the DRAM */ unsigned long flags; save_flags (flags); cli (); outb (0x43, u_Command); outb (addr & 0xff, u_DataLo); outb ((addr >> 8) & 0xff, u_DataHi); outb (0x44, u_Command); outb ((addr >> 16) & 0xff, u_DataHi); outb (data, u_DRAMIO); restore_flags (flags); } static unsigned char gus_peek (long addr) { /* Reads a byte from the DRAM */ unsigned long flags; unsigned char tmp; save_flags (flags); cli (); outb (0x43, u_Command); outb (addr & 0xff, u_DataLo); outb ((addr >> 8) & 0xff, u_DataHi); outb (0x44, u_Command); outb ((addr >> 16) & 0xff, u_DataHi); tmp = inb (u_DRAMIO); restore_flags (flags); return tmp; } void gus_write8 (int reg, unsigned int data) { /* Writes to an indirect register (8 bit) */ unsigned long flags; save_flags (flags); cli (); outb (reg, u_Command); outb ((unsigned char) (data & 0xff), u_DataHi); restore_flags (flags); } unsigned char gus_read8 (int reg) { /* Reads from an indirect register (8 bit). Offset 0x80. */ unsigned long flags; unsigned char val; save_flags (flags); cli (); outb (reg | 0x80, u_Command); val = inb (u_DataHi); restore_flags (flags); return val; } unsigned char gus_look8 (int reg) { /* Reads from an indirect register (8 bit). No additional offset. */ unsigned long flags; unsigned char val; save_flags (flags); cli (); outb (reg, u_Command); val = inb (u_DataHi); restore_flags (flags); return val; } void gus_write16 (int reg, unsigned int data) { /* Writes to an indirect register (16 bit) */ unsigned long flags; save_flags (flags); cli (); outb (reg, u_Command); outb ((unsigned char) (data & 0xff), u_DataLo); outb ((unsigned char) ((data >> 8) & 0xff), u_DataHi); restore_flags (flags); } unsigned short gus_read16 (int reg) { /* Reads from an indirect register (16 bit). Offset 0x80. */ unsigned long flags; unsigned char hi, lo; save_flags (flags); cli (); outb (reg | 0x80, u_Command); lo = inb (u_DataLo); hi = inb (u_DataHi); restore_flags (flags); return ((hi << 8) & 0xff00) | lo; } unsigned short gus_look16 (int reg) { /* Reads from an indirect register (16 bit). No additional offset. */ unsigned long flags; unsigned char hi, lo; save_flags (flags); cli (); outb (reg, u_Command); lo = inb (u_DataLo); hi = inb (u_DataHi); restore_flags (flags); return ((hi << 8) & 0xff00) | lo; } void gus_write_addr (int reg, unsigned long address, int frac, int is16bit) { /* Writes an 24 bit memory address */ unsigned long hold_address; unsigned long flags; save_flags (flags); cli (); if (is16bit) { /* * Special processing required for 16 bit patches */ hold_address = address; address = address >> 1; address &= 0x0001ffffL; address |= (hold_address & 0x000c0000L); } gus_write16 (reg, (unsigned short) ((address >> 7) & 0xffff)); gus_write16 (reg + 1, (unsigned short) ((address << 9) & 0xffff) + (frac << 5)); /* Could writing twice fix problems with GUS_VOICE_POS() ? Lets try... */ gus_delay (); gus_write16 (reg, (unsigned short) ((address >> 7) & 0xffff)); gus_write16 (reg + 1, (unsigned short) ((address << 9) & 0xffff) + (frac << 5)); restore_flags (flags); } static void gus_select_voice (int voice) { if (voice < 0 || voice > 31) return; outb (voice, u_Voice); } static void gus_select_max_voices (int nvoices) { if (nvoices < 14) nvoices = 14; if (nvoices > 32) nvoices = 32; voice_alloc->max_voice = nr_voices = nvoices; gus_write8 (0x0e, (nvoices - 1) | 0xc0); } static void gus_voice_on (unsigned int mode) { gus_write8 (0x00, (unsigned char) (mode & 0xfc)); gus_delay (); gus_write8 (0x00, (unsigned char) (mode & 0xfc)); } static void gus_voice_off (void) { gus_write8 (0x00, gus_read8 (0x00) | 0x03); } static void gus_voice_mode (unsigned int m) { unsigned char mode = (unsigned char) (m & 0xff); gus_write8 (0x00, (gus_read8 (0x00) & 0x03) | (mode & 0xfc)); /* Don't touch last two bits */ gus_delay (); gus_write8 (0x00, (gus_read8 (0x00) & 0x03) | (mode & 0xfc)); } static void gus_voice_freq (unsigned long freq) { unsigned long divisor = freq_div_table[nr_voices - 14]; unsigned short fc; fc = (unsigned short) (((freq << 9) + (divisor >> 1)) / divisor); fc = fc << 1; gus_write16 (0x01, fc); } static void gus_voice_volume (unsigned int vol) { gus_write8 (0x0d, 0x03); /* Stop ramp before setting volume */ gus_write16 (0x09, (unsigned short) (vol << 4)); } static void gus_voice_balance (unsigned int balance) { gus_write8 (0x0c, (unsigned char) (balance & 0xff)); } static void gus_ramp_range (unsigned int low, unsigned int high) { gus_write8 (0x07, (unsigned char) ((low >> 4) & 0xff)); gus_write8 (0x08, (unsigned char) ((high >> 4) & 0xff)); } static void gus_ramp_rate (unsigned int scale, unsigned int rate) { gus_write8 (0x06, (unsigned char) (((scale & 0x03) << 6) | (rate & 0x3f))); } static void gus_rampon (unsigned int m) { unsigned char mode = (unsigned char) (m & 0xff); gus_write8 (0x0d, mode & 0xfc); gus_delay (); gus_write8 (0x0d, mode & 0xfc); } static void gus_ramp_mode (unsigned int m) { unsigned char mode = (unsigned char) (m & 0xff); gus_write8 (0x0d, (gus_read8 (0x0d) & 0x03) | (mode & 0xfc)); /* Leave the last 2 bits alone */ gus_delay (); gus_write8 (0x0d, (gus_read8 (0x0d) & 0x03) | (mode & 0xfc)); } static void gus_rampoff (void) { gus_write8 (0x0d, 0x03); } static void gus_set_voice_pos (int voice, long position) { int sample_no; if ((sample_no = sample_map[voice]) != -1) if (position < samples[sample_no].len) if (voices[voice].volume_irq_mode == VMODE_START_NOTE) voices[voice].offset_pending = position; else gus_write_addr (0x0a, sample_ptrs[sample_no] + position, 0, samples[sample_no].mode & WAVE_16_BITS); } static void gus_voice_init (int voice) { unsigned long flags; save_flags (flags); cli (); gus_select_voice (voice); gus_voice_volume (0); gus_voice_off (); gus_write_addr (0x0a, 0, 0, 0); /* Set current position to 0 */ gus_write8 (0x00, 0x03); /* Voice off */ gus_write8 (0x0d, 0x03); /* Ramping off */ voice_alloc->map[voice] = 0; voice_alloc->alloc_times[voice] = 0; restore_flags (flags); } static void gus_voice_init2 (int voice) { voices[voice].panning = 0; voices[voice].mode = 0; voices[voice].orig_freq = 20000; voices[voice].current_freq = 20000; voices[voice].bender = 0; voices[voice].bender_range = 200; voices[voice].initial_volume = 0; voices[voice].current_volume = 0; voices[voice].loop_irq_mode = 0; voices[voice].loop_irq_parm = 0; voices[voice].volume_irq_mode = 0; voices[voice].volume_irq_parm = 0; voices[voice].env_phase = 0; voices[voice].main_vol = 127; voices[voice].patch_vol = 127; voices[voice].expression_vol = 127; voices[voice].sample_pending = -1; } static void step_envelope (int voice) { unsigned vol, prev_vol, phase; unsigned char rate; long int flags; if (voices[voice].mode & WAVE_SUSTAIN_ON && voices[voice].env_phase == 2) { save_flags (flags); cli (); gus_select_voice (voice); gus_rampoff (); restore_flags (flags); return; /* * Sustain phase begins. Continue envelope after receiving note off. */ } if (voices[voice].env_phase >= 5) { /* Envelope finished. Shoot the voice down */ gus_voice_init (voice); return; } prev_vol = voices[voice].current_volume; phase = ++voices[voice].env_phase; compute_volume (voice, voices[voice].midi_volume); vol = voices[voice].initial_volume * voices[voice].env_offset[phase] / 255; rate = voices[voice].env_rate[phase]; save_flags (flags); cli (); gus_select_voice (voice); gus_voice_volume (prev_vol); gus_write8 (0x06, rate); /* Ramping rate */ voices[voice].volume_irq_mode = VMODE_ENVELOPE; if (((vol - prev_vol) / 64) == 0) /* No significant volume change */ { restore_flags (flags); step_envelope (voice); /* Continue the envelope on the next step */ return; } if (vol > prev_vol) { if (vol >= (4096 - 64)) vol = 4096 - 65; gus_ramp_range (0, vol); gus_rampon (0x20); /* Increasing volume, with IRQ */ } else { if (vol <= 64) vol = 65; gus_ramp_range (vol, 4030); gus_rampon (0x60); /* Decreasing volume, with IRQ */ } voices[voice].current_volume = vol; restore_flags (flags); } static void init_envelope (int voice) { voices[voice].env_phase = -1; voices[voice].current_volume = 64; step_envelope (voice); } static void start_release (int voice, long int flags) { if (gus_read8 (0x00) & 0x03) return; /* Voice already stopped */ voices[voice].env_phase = 2; /* Will be incremented by step_envelope */ voices[voice].current_volume = voices[voice].initial_volume = gus_read16 (0x09) >> 4; /* Get current volume */ voices[voice].mode &= ~WAVE_SUSTAIN_ON; gus_rampoff (); restore_flags (flags); step_envelope (voice); } static void gus_voice_fade (int voice) { int instr_no = sample_map[voice], is16bits; long int flags; save_flags (flags); cli (); gus_select_voice (voice); if (instr_no < 0 || instr_no > MAX_SAMPLE) { gus_write8 (0x00, 0x03); /* Hard stop */ voice_alloc->map[voice] = 0; restore_flags (flags); return; } is16bits = (samples[instr_no].mode & WAVE_16_BITS) ? 1 : 0; /* 8 or 16 bits */ if (voices[voice].mode & WAVE_ENVELOPES) { start_release (voice, flags); return; } /* * Ramp the volume down but not too quickly. */ if ((int) (gus_read16 (0x09) >> 4) < 100) /* Get current volume */ { gus_voice_off (); gus_rampoff (); gus_voice_init (voice); return; } gus_ramp_range (65, 4030); gus_ramp_rate (2, 4); gus_rampon (0x40 | 0x20); /* Down, once, with IRQ */ voices[voice].volume_irq_mode = VMODE_HALT; restore_flags (flags); } static void gus_reset (void) { int i; gus_select_max_voices (24); volume_base = 3071; volume_scale = 4; volume_method = VOL_METHOD_ADAGIO; for (i = 0; i < 32; i++) { gus_voice_init (i); /* Turn voice off */ gus_voice_init2 (i); } } static void gus_initialize (void) { unsigned long flags; unsigned char dma_image, irq_image, tmp; static unsigned char gus_irq_map[16] = {0, 0, 0, 3, 0, 2, 0, 4, 0, 1, 0, 5, 6, 0, 0, 7}; static unsigned char gus_dma_map[8] = {0, 1, 0, 2, 0, 3, 4, 5}; save_flags (flags); cli (); gus_write8 (0x4c, 0); /* Reset GF1 */ gus_delay (); gus_delay (); gus_write8 (0x4c, 1); /* Release Reset */ gus_delay (); gus_delay (); /* * Clear all interrupts */ gus_write8 (0x41, 0); /* DMA control */ gus_write8 (0x45, 0); /* Timer control */ gus_write8 (0x49, 0); /* Sample control */ gus_select_max_voices (24); inb (u_Status); /* Touch the status register */ gus_look8 (0x41); /* Clear any pending DMA IRQs */ gus_look8 (0x49); /* Clear any pending sample IRQs */ gus_read8 (0x0f); /* Clear pending IRQs */ gus_reset (); /* Resets all voices */ gus_look8 (0x41); /* Clear any pending DMA IRQs */ gus_look8 (0x49); /* Clear any pending sample IRQs */ gus_read8 (0x0f); /* Clear pending IRQs */ gus_write8 (0x4c, 7); /* Master reset | DAC enable | IRQ enable */ /* * Set up for Digital ASIC */ outb (0x05, gus_base + 0x0f); mix_image |= 0x02; /* Disable line out (for a moment) */ outb (mix_image, u_Mixer); outb (0x00, u_IRQDMAControl); outb (0x00, gus_base + 0x0f); /* * Now set up the DMA and IRQ interface * * The GUS supports two IRQs and two DMAs. * * Just one DMA channel is used. This prevents simultaneous ADC and DAC. * Adding this support requires significant changes to the dmabuf.c, dsp.c * and audio.c also. */ irq_image = 0; tmp = gus_irq_map[gus_irq]; if (!gus_pnp_flag && !tmp) printk ("Warning! GUS IRQ not selected\n"); irq_image |= tmp; irq_image |= 0x40; /* Combine IRQ1 (GF1) and IRQ2 (Midi) */ dual_dma_mode = 1; if (gus_dma2 == gus_dma || gus_dma2 == -1) { dual_dma_mode = 0; dma_image = 0x40; /* Combine DMA1 (DRAM) and IRQ2 (ADC) */ tmp = gus_dma_map[gus_dma]; if (!tmp) printk ("Warning! GUS DMA not selected\n"); dma_image |= tmp; } else /* Setup dual DMA channel mode for GUS MAX */ { dma_image = gus_dma_map[gus_dma]; if (!dma_image) printk ("Warning! GUS DMA not selected\n"); tmp = gus_dma_map[gus_dma2] << 3; if (!tmp) { printk ("Warning! Invalid GUS MAX DMA\n"); tmp = 0x40; /* Combine DMA channels */ dual_dma_mode = 0; } dma_image |= tmp; } /* * For some reason the IRQ and DMA addresses must be written twice */ /* * Doing it first time */ outb (mix_image, u_Mixer); /* Select DMA control */ outb (dma_image | 0x80, u_IRQDMAControl); /* Set DMA address */ outb (mix_image | 0x40, u_Mixer); /* Select IRQ control */ outb (irq_image, u_IRQDMAControl); /* Set IRQ address */ /* * Doing it second time */ outb (mix_image, u_Mixer); /* Select DMA control */ outb (dma_image, u_IRQDMAControl); /* Set DMA address */ outb (mix_image | 0x40, u_Mixer); /* Select IRQ control */ outb (irq_image, u_IRQDMAControl); /* Set IRQ address */ gus_select_voice (0); /* This disables writes to IRQ/DMA reg */ mix_image &= ~0x02; /* Enable line out */ mix_image |= 0x08; /* Enable IRQ */ outb (mix_image, u_Mixer); /* * Turn mixer channels on * Note! Mic in is left off. */ gus_select_voice (0); /* This disables writes to IRQ/DMA reg */ gusintr (gus_irq, NULL, NULL); /* Serve pending interrupts */ inb (u_Status); /* Touch the status register */ gus_look8 (0x41); /* Clear any pending DMA IRQs */ gus_look8 (0x49); /* Clear any pending sample IRQs */ gus_read8 (0x0f); /* Clear pending IRQs */ restore_flags (flags); } static void pnp_mem_init (void) { #include "iwmem.h" #define CHUNK_SIZE (256*1024) #define BANK_SIZE (4*1024*1024) #define CHUNKS_PER_BANK (BANK_SIZE/CHUNK_SIZE) int bank, chunk, addr, total = 0; int bank_sizes[4]; int i, j, bits = -1, nbanks = 0; /* * This routine determines what kind of RAM is installed in each of the four * SIMM banks and configures the DRAM address decode logic accordingly. */ /* * Place the chip into enhanced mode */ gus_write8 (0x19, gus_read8 (0x19) | 0x01); gus_write8 (0x53, gus_look8 (0x53) & ~0x02); /* Select DRAM I/O access */ /* * Set memory configuration to 4 DRAM banks of 4M in each (16M total). */ gus_write16 (0x52, (gus_look16 (0x52) & 0xfff0) | 0x000c); /* * Perform the DRAM size detection for each bank individually. */ for (bank = 0; bank < 4; bank++) { int size = 0; addr = bank * BANK_SIZE; /* Clean check points of each chunk */ for (chunk = 0; chunk < CHUNKS_PER_BANK; chunk++) { gus_poke (addr + chunk * CHUNK_SIZE + 0L, 0x00); gus_poke (addr + chunk * CHUNK_SIZE + 1L, 0x00); } /* Write a value to each chunk point and verify the result */ for (chunk = 0; chunk < CHUNKS_PER_BANK; chunk++) { gus_poke (addr + chunk * CHUNK_SIZE + 0L, 0x55); gus_poke (addr + chunk * CHUNK_SIZE + 1L, 0xAA); if (gus_peek (addr + chunk * CHUNK_SIZE + 0L) == 0x55 && gus_peek (addr + chunk * CHUNK_SIZE + 1L) == 0xAA) { /* OK. There is RAM. Now check for possible shadows */ int ok = 1, chunk2; for (chunk2 = 0; ok && chunk2 < chunk; chunk2++) if (gus_peek (addr + chunk2 * CHUNK_SIZE + 0L) || gus_peek (addr + chunk2 * CHUNK_SIZE + 1L)) ok = 0; /* Addressing wraps */ if (ok) size = (chunk + 1) * CHUNK_SIZE; } gus_poke (addr + chunk * CHUNK_SIZE + 0L, 0x00); gus_poke (addr + chunk * CHUNK_SIZE + 1L, 0x00); } bank_sizes[bank] = size; if (size) nbanks = bank + 1; DDB (printk ("Interwave: Bank %d, size=%dk\n", bank, size / 1024)); } if (nbanks == 0) /* No RAM - Give up */ { printk ("Sound: An Interwave audio chip detected but no DRAM\n"); printk ("Sound: Unable to work with this card.\n"); gus_write8 (0x19, gus_read8 (0x19) & ~0x01); return; } /* * Now we know how much DRAM there is in each bank. The next step is * to find a DRAM size encoding (0 to 12) which is best for the combination * we have. * * First try if any of the possible alternatives matches exactly the amount * of memory we have. */ for (i = 0; bits == -1 && i < 13; i++) { bits = i; for (j = 0; bits != -1 && j < 4; j++) if (mem_decode[i][j] != bank_sizes[j]) bits = -1; /* No hit */ } /* * If necessary, try to find a combination where other than the last * bank matches our configuration and the last bank is left oversized. * In this way we don't leave holes in the middle of memory. */ if (bits == -1) /* No luck yet */ for (i = 0; bits == -1 && i < 13; i++) { bits = i; for (j = 0; bits != -1 && j < nbanks - 1; j++) if (mem_decode[i][j] != bank_sizes[j]) bits = -1; /* No hit */ if (mem_decode[i][nbanks - 1] < bank_sizes[nbanks - 1]) bits = -1; /* The last bank is too small */ } /* * The last resort is to search for a combination where the last bank is * smaller than the actual SIMM. This leaves some memory in the last bank * unused but doesn't leave holes in the DRAM address space. */ if (bits == -1) /* No luck yet */ { for (i = 0; bits == -1 && i < 13; i++) { bits = i; for (j = 0; bits != -1 && j < nbanks - 1; j++) if (mem_decode[i][j] != bank_sizes[j]) bits = -1; /* No hit */ } if (bits != -1) { printk ("Interwave: Can't use all installed RAM.\n"); printk ("Interwave: Try reordering SIMMS.\n"); } } if (bits == -1) { printk ("Interwave: Can't find working DRAM encoding.\n"); printk ("Interwave: Defaulting to 256k. Try reordering SIMMS.\n"); bits = 0; } DDB (printk ("Interwave: Selecting DRAM addressing mode %d\n", bits)); for (bank = 0; bank < 4; bank++) { DDB (printk (" Bank %d, mem=%dk (limit %dk)\n", bank, bank_sizes[bank] / 1024, mem_decode[bits][bank] / 1024)); if (bank_sizes[bank] > mem_decode[bits][bank]) total += mem_decode[bits][bank]; else total += bank_sizes[bank]; } DDB (printk ("Total %dk of DRAM (enhanced mode)\n", total / 1024)); /* * Set the memory addressing mode. */ gus_write16 (0x52, (gus_look16 (0x52) & 0xfff0) | bits); /* * Return the chip back to GUS compatible mode. */ gus_write8 (0x19, gus_read8 (0x19) & ~0x01); } int gus_wave_detect (int baseaddr) { unsigned long i, max_mem = 1024L; unsigned long loc; gus_base = baseaddr; gus_write8 (0x4c, 0); /* Reset GF1 */ gus_delay (); gus_delay (); gus_write8 (0x4c, 1); /* Release Reset */ gus_delay (); gus_delay (); if (gus_pnp_flag) pnp_mem_init (); /* See if there is first block there.... */ gus_poke (0L, 0xaa); if (gus_peek (0L) != 0xaa) return (0); /* Now zero it out so that I can check for mirroring .. */ gus_poke (0L, 0x00); for (i = 1L; i < max_mem; i++) { int n, failed; /* check for mirroring ... */ if (gus_peek (0L) != 0) break; loc = i << 10; for (n = loc - 1, failed = 0; n <= loc; n++) { gus_poke (loc, 0xaa); if (gus_peek (loc) != 0xaa) failed = 1; gus_poke (loc, 0x55); if (gus_peek (loc) != 0x55) failed = 1; } if (failed) break; } gus_mem_size = i << 10; return 1; } static int guswave_ioctl (int dev, unsigned int cmd, caddr_t arg) { switch (cmd) { case SNDCTL_SYNTH_INFO: gus_info.nr_voices = nr_voices; memcpy_tofs (&((char *) arg)[0], &gus_info, sizeof (gus_info)); return 0; break; case SNDCTL_SEQ_RESETSAMPLES: reset_sample_memory (); return 0; break; case SNDCTL_SEQ_PERCMODE: return 0; break; case SNDCTL_SYNTH_MEMAVL: return gus_mem_size - free_mem_ptr - 32; default: return -(EINVAL); } } static int guswave_set_instr (int dev, int voice, int instr_no) { int sample_no; if (instr_no < 0 || instr_no > MAX_PATCH) return -(EINVAL); if (voice < 0 || voice > 31) return -(EINVAL); if (voices[voice].volume_irq_mode == VMODE_START_NOTE) { voices[voice].sample_pending = instr_no; return 0; } sample_no = patch_table[instr_no]; patch_map[voice] = -1; if (sample_no == NOT_SAMPLE) { printk ("GUS: Undefined patch %d for voice %d\n", instr_no, voice); return -(EINVAL); /* Patch not defined */ } if (sample_ptrs[sample_no] == -1) /* Sample not loaded */ { printk ("GUS: Sample #%d not loaded for patch %d (voice %d)\n", sample_no, instr_no, voice); return -(EINVAL); } sample_map[voice] = sample_no; patch_map[voice] = instr_no; return 0; } static int guswave_kill_note (int dev, int voice, int note, int velocity) { unsigned long flags; save_flags (flags); cli (); /* voice_alloc->map[voice] = 0xffff; */ if (voices[voice].volume_irq_mode == VMODE_START_NOTE) { voices[voice].kill_pending = 1; restore_flags (flags); } else { restore_flags (flags); gus_voice_fade (voice); } restore_flags (flags); return 0; } static void guswave_aftertouch (int dev, int voice, int pressure) { } static void guswave_panning (int dev, int voice, int value) { if (voice >= 0 || voice < 32) voices[voice].panning = value; } static void guswave_volume_method (int dev, int mode) { if (mode == VOL_METHOD_LINEAR || mode == VOL_METHOD_ADAGIO) volume_method = mode; } static void compute_volume (int voice, int volume) { if (volume < 128) voices[voice].midi_volume = volume; switch (volume_method) { case VOL_METHOD_ADAGIO: voices[voice].initial_volume = gus_adagio_vol (voices[voice].midi_volume, voices[voice].main_vol, voices[voice].expression_vol, voices[voice].patch_vol); break; case VOL_METHOD_LINEAR: /* Totally ignores patch-volume and expression */ voices[voice].initial_volume = gus_linear_vol (volume, voices[voice].main_vol); break; default: voices[voice].initial_volume = volume_base + (voices[voice].midi_volume * volume_scale); } if (voices[voice].initial_volume > 4030) voices[voice].initial_volume = 4030; } static void compute_and_set_volume (int voice, int volume, int ramp_time) { int curr, target, rate; unsigned long flags; compute_volume (voice, volume); voices[voice].current_volume = voices[voice].initial_volume; save_flags (flags); cli (); /* * CAUTION! Interrupts disabled. Enable them before returning */ gus_select_voice (voice); curr = gus_read16 (0x09) >> 4; target = voices[voice].initial_volume; if (ramp_time == INSTANT_RAMP) { gus_rampoff (); gus_voice_volume (target); restore_flags (flags); return; } if (ramp_time == FAST_RAMP) rate = 63; else rate = 16; gus_ramp_rate (0, rate); if ((target - curr) / 64 == 0) /* Close enough to target. */ { gus_rampoff (); gus_voice_volume (target); restore_flags (flags); return; } if (target > curr) { if (target > (4095 - 65)) target = 4095 - 65; gus_ramp_range (curr, target); gus_rampon (0x00); /* Ramp up, once, no IRQ */ } else { if (target < 65) target = 65; gus_ramp_range (target, curr); gus_rampon (0x40); /* Ramp down, once, no irq */ } restore_flags (flags); } static void dynamic_volume_change (int voice) { unsigned char status; unsigned long flags; save_flags (flags); cli (); gus_select_voice (voice); status = gus_read8 (0x00); /* Get voice status */ restore_flags (flags); if (status & 0x03) return; /* Voice was not running */ if (!(voices[voice].mode & WAVE_ENVELOPES)) { compute_and_set_volume (voice, voices[voice].midi_volume, 1); return; } /* * Voice is running and has envelopes. */ save_flags (flags); cli (); gus_select_voice (voice); status = gus_read8 (0x0d); /* Ramping status */ restore_flags (flags); if (status & 0x03) /* Sustain phase? */ { compute_and_set_volume (voice, voices[voice].midi_volume, 1); return; } if (voices[voice].env_phase < 0) return; compute_volume (voice, voices[voice].midi_volume); } static void guswave_controller (int dev, int voice, int ctrl_num, int value) { unsigned long flags; unsigned long freq; if (voice < 0 || voice > 31) return; switch (ctrl_num) { case CTRL_PITCH_BENDER: voices[voice].bender = value; if (voices[voice].volume_irq_mode != VMODE_START_NOTE) { freq = compute_finetune (voices[voice].orig_freq, value, voices[voice].bender_range); voices[voice].current_freq = freq; save_flags (flags); cli (); gus_select_voice (voice); gus_voice_freq (freq); restore_flags (flags); } break; case CTRL_PITCH_BENDER_RANGE: voices[voice].bender_range = value; break; case CTL_EXPRESSION: value /= 128; case CTRL_EXPRESSION: if (volume_method == VOL_METHOD_ADAGIO) { voices[voice].expression_vol = value; if (voices[voice].volume_irq_mode != VMODE_START_NOTE) dynamic_volume_change (voice); } break; case CTL_PAN: voices[voice].panning = (value * 2) - 128; break; case CTL_MAIN_VOLUME: value = (value * 100) / 16383; case CTRL_MAIN_VOLUME: voices[voice].main_vol = value; if (voices[voice].volume_irq_mode != VMODE_START_NOTE) dynamic_volume_change (voice); break; default: break; } } static int guswave_start_note2 (int dev, int voice, int note_num, int volume) { int sample, best_sample, best_delta, delta_freq; int is16bits, samplep, patch, pan; unsigned long note_freq, base_note, freq, flags; unsigned char mode = 0; if (voice < 0 || voice > 31) { printk ("GUS: Invalid voice\n"); return -(EINVAL); } if (note_num == 255) { if (voices[voice].mode & WAVE_ENVELOPES) { voices[voice].midi_volume = volume; dynamic_volume_change (voice); return 0; } compute_and_set_volume (voice, volume, 1); return 0; } if ((patch = patch_map[voice]) == -1) { return -(EINVAL); } if ((samplep = patch_table[patch]) == NOT_SAMPLE) { return -(EINVAL); } note_freq = note_to_freq (note_num); /* * Find a sample within a patch so that the note_freq is between low_note * and high_note. */ sample = -1; best_sample = samplep; best_delta = 1000000; while (samplep != 0 && samplep != NOT_SAMPLE && sample == -1) { delta_freq = note_freq - samples[samplep].base_note; if (delta_freq < 0) delta_freq = -delta_freq; if (delta_freq < best_delta) { best_sample = samplep; best_delta = delta_freq; } if (samples[samplep].low_note <= note_freq && note_freq <= samples[samplep].high_note) sample = samplep; else samplep = samples[samplep].key; /* Link to next sample */ } if (sample == -1) sample = best_sample; if (sample == -1) { printk ("GUS: Patch %d not defined for note %d\n", patch, note_num); return 0; /* Should play default patch ??? */ } is16bits = (samples[sample].mode & WAVE_16_BITS) ? 1 : 0; voices[voice].mode = samples[sample].mode; voices[voice].patch_vol = samples[sample].volume; if (voices[voice].mode & WAVE_ENVELOPES) { int i; for (i = 0; i < 6; i++) { voices[voice].env_rate[i] = samples[sample].env_rate[i]; voices[voice].env_offset[i] = samples[sample].env_offset[i]; } } sample_map[voice] = sample; base_note = samples[sample].base_note / 100; /* Try to avoid overflows */ note_freq /= 100; freq = samples[sample].base_freq * note_freq / base_note; voices[voice].orig_freq = freq; /* * Since the pitch bender may have been set before playing the note, we * have to calculate the bending now. */ freq = compute_finetune (voices[voice].orig_freq, voices[voice].bender, voices[voice].bender_range); voices[voice].current_freq = freq; pan = (samples[sample].panning + voices[voice].panning) / 32; pan += 7; if (pan < 0) pan = 0; if (pan > 15) pan = 15; if (samples[sample].mode & WAVE_16_BITS) { mode |= 0x04; /* 16 bits */ if ((sample_ptrs[sample] >> 18) != ((sample_ptrs[sample] + samples[sample].len) >> 18)) printk ("GUS: Sample address error\n"); } /************************************************************************* * CAUTION! Interrupts disabled. Don't return before enabling *************************************************************************/ save_flags (flags); cli (); gus_select_voice (voice); gus_voice_off (); gus_rampoff (); restore_flags (flags); if (voices[voice].mode & WAVE_ENVELOPES) { compute_volume (voice, volume); init_envelope (voice); } else { compute_and_set_volume (voice, volume, 0); } save_flags (flags); cli (); gus_select_voice (voice); if (samples[sample].mode & WAVE_LOOP_BACK) gus_write_addr (0x0a, sample_ptrs[sample] + samples[sample].len - voices[voice].offset_pending, 0, is16bits); /* start=end */ else gus_write_addr (0x0a, sample_ptrs[sample] + voices[voice].offset_pending, 0, is16bits); /* Sample start=begin */ if (samples[sample].mode & WAVE_LOOPING) { mode |= 0x08; if (samples[sample].mode & WAVE_BIDIR_LOOP) mode |= 0x10; if (samples[sample].mode & WAVE_LOOP_BACK) { gus_write_addr (0x0a, sample_ptrs[sample] + samples[sample].loop_end - voices[voice].offset_pending, (samples[sample].fractions >> 4) & 0x0f, is16bits); mode |= 0x40; } gus_write_addr (0x02, sample_ptrs[sample] + samples[sample].loop_start, samples[sample].fractions & 0x0f, is16bits); /* Loop start location */ gus_write_addr (0x04, sample_ptrs[sample] + samples[sample].loop_end, (samples[sample].fractions >> 4) & 0x0f, is16bits); /* Loop end location */ } else { mode |= 0x20; /* Loop IRQ at the end */ voices[voice].loop_irq_mode = LMODE_FINISH; /* Ramp down at the end */ voices[voice].loop_irq_parm = 1; gus_write_addr (0x02, sample_ptrs[sample], 0, is16bits); /* Loop start location */ gus_write_addr (0x04, sample_ptrs[sample] + samples[sample].len - 1, (samples[sample].fractions >> 4) & 0x0f, is16bits); /* Loop end location */ } gus_voice_freq (freq); gus_voice_balance (pan); gus_voice_on (mode); restore_flags (flags); return 0; } /* * New guswave_start_note by Andrew J. Robinson attempts to minimize clicking * when the note playing on the voice is changed. It uses volume * ramping. */ static int guswave_start_note (int dev, int voice, int note_num, int volume) { long int flags; int mode; int ret_val = 0; save_flags (flags); cli (); if (note_num == 255) { if (voices[voice].volume_irq_mode == VMODE_START_NOTE) { voices[voice].volume_pending = volume; } else { ret_val = guswave_start_note2 (dev, voice, note_num, volume); } } else { gus_select_voice (voice); mode = gus_read8 (0x00); if (mode & 0x20) gus_write8 (0x00, mode & 0xdf); /* No interrupt! */ voices[voice].offset_pending = 0; voices[voice].kill_pending = 0; voices[voice].volume_irq_mode = 0; voices[voice].loop_irq_mode = 0; if (voices[voice].sample_pending >= 0) { restore_flags (flags); /* Run temporarily with interrupts enabled */ guswave_set_instr (voices[voice].dev_pending, voice, voices[voice].sample_pending); voices[voice].sample_pending = -1; save_flags (flags); cli (); gus_select_voice (voice); /* Reselect the voice (just to be sure) */ } if ((mode & 0x01) || (int) ((gus_read16 (0x09) >> 4) < (unsigned) 2065)) { ret_val = guswave_start_note2 (dev, voice, note_num, volume); } else { voices[voice].dev_pending = dev; voices[voice].note_pending = note_num; voices[voice].volume_pending = volume; voices[voice].volume_irq_mode = VMODE_START_NOTE; gus_rampoff (); gus_ramp_range (2000, 4065); gus_ramp_rate (0, 63); /* Fastest possible rate */ gus_rampon (0x20 | 0x40); /* Ramp down, once, irq */ } } restore_flags (flags); return ret_val; } static void guswave_reset (int dev) { int i; for (i = 0; i < 32; i++) { gus_voice_init (i); gus_voice_init2 (i); } } static int guswave_open (int dev, int mode) { int err; if (gus_busy) return -(EBUSY); voice_alloc->timestamp = 0; if ((err = DMAbuf_open_dma (gus_devnum)) < 0) { /* printk ("GUS: Loading samples without DMA\n"); */ gus_no_dma = 1; /* Upload samples using PIO */ } else gus_no_dma = 0; dram_sleep_flag.flags = WK_NONE; gus_busy = 1; active_device = GUS_DEV_WAVE; gusintr (gus_irq, NULL, NULL); /* Serve pending interrupts */ gus_initialize (); gus_reset (); gusintr (gus_irq, NULL, NULL); /* Serve pending interrupts */ return 0; } static void guswave_close (int dev) { gus_busy = 0; active_device = 0; gus_reset (); if (!gus_no_dma) DMAbuf_close_dma (gus_devnum); } static int guswave_load_patch (int dev, int format, const char *addr, int offs, int count, int pmgr_flag) { struct patch_info patch; int instr; long sizeof_patch; unsigned long blk_sz, blk_end, left, src_offs, target; sizeof_patch = (long) &patch.data[0] - (long) &patch; /* Header size */ if (format != GUS_PATCH) { printk ("GUS Error: Invalid patch format (key) 0x%x\n", format); return -(EINVAL); } if (count < sizeof_patch) { printk ("GUS Error: Patch header too short\n"); return -(EINVAL); } count -= sizeof_patch; if (free_sample >= MAX_SAMPLE) { printk ("GUS: Sample table full\n"); return -(ENOSPC); } /* * Copy the header from user space but ignore the first bytes which have * been transferred already. */ memcpy_fromfs (&((char *) &patch)[offs], &(addr)[offs], sizeof_patch - offs); instr = patch.instr_no; if (instr < 0 || instr > MAX_PATCH) { printk ("GUS: Invalid patch number %d\n", instr); return -(EINVAL); } if (count < patch.len) { printk ("GUS Warning: Patch record too short (%d<%d)\n", count, (int) patch.len); patch.len = count; } if (patch.len <= 0 || patch.len > gus_mem_size) { printk ("GUS: Invalid sample length %d\n", (int) patch.len); return -(EINVAL); } if (patch.mode & WAVE_LOOPING) { if (patch.loop_start < 0 || patch.loop_start >= patch.len) { printk ("GUS: Invalid loop start\n"); return -(EINVAL); } if (patch.loop_end < patch.loop_start || patch.loop_end > patch.len) { printk ("GUS: Invalid loop end\n"); return -(EINVAL); } } free_mem_ptr = (free_mem_ptr + 31) & ~31; /* 32 byte alignment */ #define GUS_BANK_SIZE (256*1024) if (patch.mode & WAVE_16_BITS) { /* * 16 bit samples must fit one 256k bank. */ if (patch.len >= GUS_BANK_SIZE) { printk ("GUS: Sample (16 bit) too long %d\n", (int) patch.len); return -(ENOSPC); } if ((free_mem_ptr / GUS_BANK_SIZE) != ((free_mem_ptr + patch.len) / GUS_BANK_SIZE)) { unsigned long tmp_mem = /* Align to 256K */ ((free_mem_ptr / GUS_BANK_SIZE) + 1) * GUS_BANK_SIZE; if ((tmp_mem + patch.len) > gus_mem_size) return -(ENOSPC); free_mem_ptr = tmp_mem; /* This leaves unusable memory */ } } if ((free_mem_ptr + patch.len) > gus_mem_size) return -(ENOSPC); sample_ptrs[free_sample] = free_mem_ptr; /* * Tremolo is not possible with envelopes */ if (patch.mode & WAVE_ENVELOPES) patch.mode &= ~WAVE_TREMOLO; if (!(patch.mode & WAVE_FRACTIONS)) { patch.fractions = 0; } memcpy ((char *) &samples[free_sample], &patch, sizeof_patch); /* * Link this_one sample to the list of samples for patch 'instr'. */ samples[free_sample].key = patch_table[instr]; patch_table[instr] = free_sample; /* * Use DMA to transfer the wave data to the DRAM */ left = patch.len; src_offs = 0; target = free_mem_ptr; while (left) /* Not completely transferred yet */ { blk_sz = audio_devs[gus_devnum]->dmap_out->bytes_in_use; if (blk_sz > left) blk_sz = left; /* * DMA cannot cross 256k bank boundaries. Check for that. */ blk_end = target + blk_sz; if ((target >> 18) != (blk_end >> 18)) { /* Split the block */ blk_end &= ~(256 * 1024 - 1); blk_sz = blk_end - target; } if (gus_no_dma) { /* * For some reason the DMA is not possible. We have to use PIO. */ long i; unsigned char data; for (i = 0; i < blk_sz; i++) { data = get_fs_byte (&((addr)[sizeof_patch + i])); if (patch.mode & WAVE_UNSIGNED) if (!(patch.mode & WAVE_16_BITS) || (i & 0x01)) data ^= 0x80; /* Convert to signed */ gus_poke (target + i, data); } } else { unsigned long address, hold_address; unsigned char dma_command; unsigned long flags; if (audio_devs[gus_devnum]->dmap_out->raw_buf == NULL) { printk ("GUS: DMA buffer == NULL\n"); return -(EINVAL); } /* * OK, move now. First in and then out. */ memcpy_fromfs (audio_devs[gus_devnum]->dmap_out->raw_buf, &(addr)[sizeof_patch + src_offs], blk_sz); save_flags (flags); cli (); /******** INTERRUPTS DISABLED NOW ********/ gus_write8 (0x41, 0); /* Disable GF1 DMA */ DMAbuf_start_dma (gus_devnum, audio_devs[gus_devnum]->dmap_out->raw_buf_phys, blk_sz, DMA_MODE_WRITE); /* * Set the DRAM address for the wave data */ address = target; if (audio_devs[gus_devnum]->dmachan1 > 3) { hold_address = address; address = address >> 1; address &= 0x0001ffffL; address |= (hold_address & 0x000c0000L); } gus_write16 (0x42, (address >> 4) & 0xffff); /* DRAM DMA address */ /* * Start the DMA transfer */ dma_command = 0x21; /* IRQ enable, DMA start */ if (patch.mode & WAVE_UNSIGNED) dma_command |= 0x80; /* Invert MSB */ if (patch.mode & WAVE_16_BITS) dma_command |= 0x40; /* 16 bit _DATA_ */ if (audio_devs[gus_devnum]->dmachan1 > 3) dma_command |= 0x04; /* 16 bit DMA _channel_ */ gus_write8 (0x41, dma_command); /* Lets bo luteet (=bugs) */ /* * Sleep here until the DRAM DMA done interrupt is served */ active_device = GUS_DEV_WAVE; { unsigned long tlimit; if (HZ) current_set_timeout (tlimit = jiffies + (HZ)); else tlimit = (unsigned long) -1; dram_sleep_flag.flags = WK_SLEEP; module_interruptible_sleep_on (&dram_sleeper); if (!(dram_sleep_flag.flags & WK_WAKEUP)) { if (jiffies >= tlimit) dram_sleep_flag.flags |= WK_TIMEOUT; } dram_sleep_flag.flags &= ~WK_SLEEP; }; if ((dram_sleep_flag.flags & WK_TIMEOUT)) printk ("GUS: DMA Transfer timed out\n"); restore_flags (flags); } /* * Now the next part */ left -= blk_sz; src_offs += blk_sz; target += blk_sz; gus_write8 (0x41, 0); /* Stop DMA */ } free_mem_ptr += patch.len; if (!pmgr_flag) pmgr_inform (dev, PM_E_PATCH_LOADED, instr, free_sample, 0, 0); free_sample++; return 0; } static void guswave_hw_control (int dev, unsigned char *event_rec) { int voice, cmd; unsigned short p1, p2; unsigned int plong; unsigned flags; cmd = event_rec[2]; voice = event_rec[3]; p1 = *(unsigned short *) &event_rec[4]; p2 = *(unsigned short *) &event_rec[6]; plong = *(unsigned int *) &event_rec[4]; if ((voices[voice].volume_irq_mode == VMODE_START_NOTE) && (cmd != _GUS_VOICESAMPLE) && (cmd != _GUS_VOICE_POS)) do_volume_irq (voice); switch (cmd) { case _GUS_NUMVOICES: save_flags (flags); cli (); gus_select_voice (voice); gus_select_max_voices (p1); restore_flags (flags); break; case _GUS_VOICESAMPLE: guswave_set_instr (dev, voice, p1); break; case _GUS_VOICEON: save_flags (flags); cli (); gus_select_voice (voice); p1 &= ~0x20; /* Don't allow interrupts */ gus_voice_on (p1); restore_flags (flags); break; case _GUS_VOICEOFF: save_flags (flags); cli (); gus_select_voice (voice); gus_voice_off (); restore_flags (flags); break; case _GUS_VOICEFADE: gus_voice_fade (voice); break; case _GUS_VOICEMODE: save_flags (flags); cli (); gus_select_voice (voice); p1 &= ~0x20; /* Don't allow interrupts */ gus_voice_mode (p1); restore_flags (flags); break; case _GUS_VOICEBALA: save_flags (flags); cli (); gus_select_voice (voice); gus_voice_balance (p1); restore_flags (flags); break; case _GUS_VOICEFREQ: save_flags (flags); cli (); gus_select_voice (voice); gus_voice_freq (plong); restore_flags (flags); break; case _GUS_VOICEVOL: save_flags (flags); cli (); gus_select_voice (voice); gus_voice_volume (p1); restore_flags (flags); break; case _GUS_VOICEVOL2: /* Just update the software voice level */ voices[voice].initial_volume = voices[voice].current_volume = p1; break; case _GUS_RAMPRANGE: if (voices[voice].mode & WAVE_ENVELOPES) break; /* NO-NO */ save_flags (flags); cli (); gus_select_voice (voice); gus_ramp_range (p1, p2); restore_flags (flags); break; case _GUS_RAMPRATE: if (voices[voice].mode & WAVE_ENVELOPES) break; /* NJET-NJET */ save_flags (flags); cli (); gus_select_voice (voice); gus_ramp_rate (p1, p2); restore_flags (flags); break; case _GUS_RAMPMODE: if (voices[voice].mode & WAVE_ENVELOPES) break; /* NO-NO */ save_flags (flags); cli (); gus_select_voice (voice); p1 &= ~0x20; /* Don't allow interrupts */ gus_ramp_mode (p1); restore_flags (flags); break; case _GUS_RAMPON: if (voices[voice].mode & WAVE_ENVELOPES) break; /* EI-EI */ save_flags (flags); cli (); gus_select_voice (voice); p1 &= ~0x20; /* Don't allow interrupts */ gus_rampon (p1); restore_flags (flags); break; case _GUS_RAMPOFF: if (voices[voice].mode & WAVE_ENVELOPES) break; /* NEJ-NEJ */ save_flags (flags); cli (); gus_select_voice (voice); gus_rampoff (); restore_flags (flags); break; case _GUS_VOLUME_SCALE: volume_base = p1; volume_scale = p2; break; case _GUS_VOICE_POS: save_flags (flags); cli (); gus_select_voice (voice); gus_set_voice_pos (voice, plong); restore_flags (flags); break; default:; } } static int gus_audio_set_speed (int speed) { if (speed <= 0) speed = gus_audio_speed; if (speed < 4000) speed = 4000; if (speed > 44100) speed = 44100; gus_audio_speed = speed; if (only_read_access) { /* Compute nearest valid recording speed and return it */ /* speed = (9878400 / (gus_audio_speed + 2)) / 16; */ speed = (((9878400 + gus_audio_speed / 2) / (gus_audio_speed + 2)) + 8) / 16; speed = (9878400 / (speed * 16)) - 2; } return speed; } static int gus_audio_set_channels (int channels) { if (!channels) return gus_audio_channels; if (channels > 2) channels = 2; if (channels < 1) channels = 1; gus_audio_channels = channels; return channels; } static int gus_audio_set_bits (int bits) { if (!bits) return gus_audio_bits; if (bits != 8 && bits != 16) bits = 8; if (only_8_bits) bits = 8; gus_audio_bits = bits; return bits; } static int gus_audio_ioctl (int dev, unsigned int cmd, caddr_t arg, int local) { switch (cmd) { case SOUND_PCM_WRITE_RATE: if (local) return gus_audio_set_speed ((int) arg); return snd_ioctl_return ((int *) arg, gus_audio_set_speed (get_user ((int *) arg))); break; case SOUND_PCM_READ_RATE: if (local) return gus_audio_speed; return snd_ioctl_return ((int *) arg, gus_audio_speed); break; case SNDCTL_DSP_STEREO: if (local) return gus_audio_set_channels ((int) arg + 1) - 1; return snd_ioctl_return ((int *) arg, gus_audio_set_channels (get_user ((int *) arg) + 1) - 1); break; case SOUND_PCM_WRITE_CHANNELS: if (local) return gus_audio_set_channels ((int) arg); return snd_ioctl_return ((int *) arg, gus_audio_set_channels (get_user ((int *) arg))); break; case SOUND_PCM_READ_CHANNELS: if (local) return gus_audio_channels; return snd_ioctl_return ((int *) arg, gus_audio_channels); break; case SNDCTL_DSP_SETFMT: if (local) return gus_audio_set_bits ((int) arg); return snd_ioctl_return ((int *) arg, gus_audio_set_bits (get_user ((int *) arg))); break; case SOUND_PCM_READ_BITS: if (local) return gus_audio_bits; return snd_ioctl_return ((int *) arg, gus_audio_bits); case SOUND_PCM_WRITE_FILTER: /* NOT POSSIBLE */ return snd_ioctl_return ((int *) arg, -(EINVAL)); break; case SOUND_PCM_READ_FILTER: return snd_ioctl_return ((int *) arg, -(EINVAL)); break; } return -(EINVAL); } static void gus_audio_reset (int dev) { if (recording_active) { gus_write8 (0x49, 0x00); /* Halt recording */ set_input_volumes (); } } static int gus_audio_open (int dev, int mode) { if (gus_busy) return -(EBUSY); if (gus_pnp_flag && mode & OPEN_READ) { printk ("Sound: This audio device doesn't have recording capability\n"); return -(EIO); } gus_initialize (); gus_busy = 1; active_device = 0; gus_reset (); reset_sample_memory (); gus_select_max_voices (14); pcm_active = 0; dma_active = 0; pcm_opened = 1; if (mode & OPEN_READ) { recording_active = 1; set_input_volumes (); } only_read_access = !(mode & OPEN_WRITE); only_8_bits = mode & OPEN_READ; if (only_8_bits) audio_devs[dev]->format_mask = AFMT_U8; else audio_devs[dev]->format_mask = AFMT_U8 | AFMT_S16_LE; return 0; } static void gus_audio_close (int dev) { gus_reset (); gus_busy = 0; pcm_opened = 0; active_device = 0; if (recording_active) { gus_write8 (0x49, 0x00); /* Halt recording */ set_input_volumes (); } recording_active = 0; } static void gus_audio_update_volume (void) { unsigned long flags; int voice; if (pcm_active && pcm_opened) for (voice = 0; voice < gus_audio_channels; voice++) { save_flags (flags); cli (); gus_select_voice (voice); gus_rampoff (); gus_voice_volume (1530 + (25 * gus_pcm_volume)); gus_ramp_range (65, 1530 + (25 * gus_pcm_volume)); restore_flags (flags); } } static void play_next_pcm_block (void) { unsigned long flags; int speed = gus_audio_speed; int this_one, is16bits, chn; unsigned long dram_loc; unsigned char mode[2], ramp_mode[2]; if (!pcm_qlen) return; this_one = pcm_head; for (chn = 0; chn < gus_audio_channels; chn++) { mode[chn] = 0x00; ramp_mode[chn] = 0x03; /* Ramping and rollover off */ if (chn == 0) { mode[chn] |= 0x20; /* Loop IRQ */ voices[chn].loop_irq_mode = LMODE_PCM; } if (gus_audio_bits != 8) { is16bits = 1; mode[chn] |= 0x04; /* 16 bit data */ } else is16bits = 0; dram_loc = this_one * pcm_bsize; dram_loc += chn * pcm_banksize; if (this_one == (pcm_nblk - 1)) /* Last fragment of the DRAM buffer */ { mode[chn] |= 0x08; /* Enable loop */ ramp_mode[chn] = 0x03; /* Disable rollover bit */ } else { if (chn == 0) ramp_mode[chn] = 0x04; /* Enable rollover bit */ } save_flags (flags); cli (); gus_select_voice (chn); gus_voice_freq (speed); if (gus_audio_channels == 1) gus_voice_balance (7); /* mono */ else if (chn == 0) gus_voice_balance (0); /* left */ else gus_voice_balance (15); /* right */ if (!pcm_active) /* Playback not already active */ { /* * The playback was not started yet (or there has been a pause). * Start the voice (again) and ask for a rollover irq at the end of * this_one block. If this_one one is last of the buffers, use just * the normal loop with irq. */ gus_voice_off (); gus_rampoff (); gus_voice_volume (1530 + (25 * gus_pcm_volume)); gus_ramp_range (65, 1530 + (25 * gus_pcm_volume)); gus_write_addr (0x0a, dram_loc, 0, is16bits); /* Starting position */ gus_write_addr (0x02, chn * pcm_banksize, 0, is16bits); /* Loop start */ if (chn != 0) gus_write_addr (0x04, pcm_banksize + (pcm_bsize * pcm_nblk) - 1, 0, is16bits); /* Loop end location */ } if (chn == 0) gus_write_addr (0x04, dram_loc + pcm_datasize[this_one] - 1, 0, is16bits); /* Loop end location */ else mode[chn] |= 0x08; /* Enable looping */ if (pcm_datasize[this_one] != pcm_bsize) { /* * Incompletely filled block. Possibly the last one. */ if (chn == 0) { mode[chn] &= ~0x08; /* Disable looping */ mode[chn] |= 0x20; /* Enable IRQ at the end */ voices[0].loop_irq_mode = LMODE_PCM_STOP; ramp_mode[chn] = 0x03; /* No rollover bit */ } else { gus_write_addr (0x04, dram_loc + pcm_datasize[this_one], 0, is16bits); /* Loop end location */ mode[chn] &= ~0x08; /* Disable looping */ } } restore_flags (flags); } for (chn = 0; chn < gus_audio_channels; chn++) { save_flags (flags); cli (); gus_select_voice (chn); gus_write8 (0x0d, ramp_mode[chn]); gus_voice_on (mode[chn]); restore_flags (flags); } pcm_active = 1; } static void gus_transfer_output_block (int dev, unsigned long buf, int total_count, int intrflag, int chn) { /* * This routine transfers one block of audio data to the DRAM. In mono mode * it's called just once. When in stereo mode, this_one routine is called * once for both channels. * * The left/mono channel data is transferred to the beginning of dram and the * right data to the area pointed by gus_page_size. */ int this_one, count; unsigned long flags; unsigned char dma_command; unsigned long address, hold_address; save_flags (flags); cli (); count = total_count / gus_audio_channels; if (chn == 0) { if (pcm_qlen >= pcm_nblk) printk ("GUS Warning: PCM buffers out of sync\n"); this_one = pcm_current_block = pcm_tail; pcm_qlen++; pcm_tail = (pcm_tail + 1) % pcm_nblk; pcm_datasize[this_one] = count; } else this_one = pcm_current_block; gus_write8 (0x41, 0); /* Disable GF1 DMA */ DMAbuf_start_dma (dev, buf + (chn * count), count, DMA_MODE_WRITE); address = this_one * pcm_bsize; address += chn * pcm_banksize; if (audio_devs[dev]->dmachan1 > 3) { hold_address = address; address = address >> 1; address &= 0x0001ffffL; address |= (hold_address & 0x000c0000L); } gus_write16 (0x42, (address >> 4) & 0xffff); /* DRAM DMA address */ dma_command = 0x21; /* IRQ enable, DMA start */ if (gus_audio_bits != 8) dma_command |= 0x40; /* 16 bit _DATA_ */ else dma_command |= 0x80; /* Invert MSB */ if (audio_devs[dev]->dmachan1 > 3) dma_command |= 0x04; /* 16 bit DMA channel */ gus_write8 (0x41, dma_command); /* Kick start */ if (chn == (gus_audio_channels - 1)) /* Last channel */ { /* * Last (right or mono) channel data */ dma_active = 1; /* DMA started. There is a unacknowledged buffer */ active_device = GUS_DEV_PCM_DONE; if (!pcm_active && (pcm_qlen > 0 || count < pcm_bsize)) { play_next_pcm_block (); } } else { /* * Left channel data. The right channel * is transferred after DMA interrupt */ active_device = GUS_DEV_PCM_CONTINUE; } restore_flags (flags); } static void gus_audio_output_block (int dev, unsigned long buf, int total_count, int intrflag, int restart_dma) { pcm_current_buf = buf; pcm_current_count = total_count; pcm_current_intrflag = intrflag; pcm_current_dev = dev; gus_transfer_output_block (dev, buf, total_count, intrflag, 0); } static void gus_audio_start_input (int dev, unsigned long buf, int count, int intrflag, int restart_dma) { unsigned long flags; unsigned char mode; save_flags (flags); cli (); DMAbuf_start_dma (dev, buf, count, DMA_MODE_READ); mode = 0xa0; /* DMA IRQ enabled, invert MSB */ if (audio_devs[dev]->dmachan2 > 3) mode |= 0x04; /* 16 bit DMA channel */ if (gus_audio_channels > 1) mode |= 0x02; /* Stereo */ mode |= 0x01; /* DMA enable */ gus_write8 (0x49, mode); restore_flags (flags); } static int gus_audio_prepare_for_input (int dev, int bsize, int bcount) { unsigned int rate; rate = (((9878400 + gus_audio_speed / 2) / (gus_audio_speed + 2)) + 8) / 16; gus_write8 (0x48, rate & 0xff); /* Set sampling rate */ if (gus_audio_bits != 8) { printk ("GUS Error: 16 bit recording not supported\n"); return -(EINVAL); } return 0; } static int gus_audio_prepare_for_output (int dev, int bsize, int bcount) { int i; long mem_ptr, mem_size; mem_ptr = 0; mem_size = gus_mem_size / gus_audio_channels; if (mem_size > (256 * 1024)) mem_size = 256 * 1024; pcm_bsize = bsize / gus_audio_channels; pcm_head = pcm_tail = pcm_qlen = 0; pcm_nblk = MAX_PCM_BUFFERS; if ((pcm_bsize * pcm_nblk) > mem_size) pcm_nblk = mem_size / pcm_bsize; for (i = 0; i < pcm_nblk; i++) pcm_datasize[i] = 0; pcm_banksize = pcm_nblk * pcm_bsize; if (gus_audio_bits != 8 && pcm_banksize == (256 * 1024)) pcm_nblk--; return 0; } static int gus_local_qlen (int dev) { return pcm_qlen; } static void gus_copy_from_user (int dev, char *localbuf, int localoffs, const char *userbuf, int useroffs, int len) { if (gus_audio_channels == 1) { memcpy_fromfs (&localbuf[localoffs], &(userbuf)[useroffs], len); } else if (gus_audio_bits == 8) { int in_left = useroffs; int in_right = useroffs + 1; char *out_left, *out_right; int i; len /= 2; localoffs /= 2; out_left = localbuf + localoffs; out_right = out_left + pcm_bsize; for (i = 0; i < len; i++) { *out_left++ = get_fs_byte (&((userbuf)[in_left])); in_left += 2; *out_right++ = get_fs_byte (&((userbuf)[in_right])); in_right += 2; } } else { int in_left = useroffs; int in_right = useroffs + 2; short *out_left, *out_right; int i; len /= 4; localoffs /= 4; out_left = ((short *) localbuf) + localoffs; out_right = out_left + (pcm_bsize / 2); for (i = 0; i < len; i++) { *out_left++ = get_fs_word (&((userbuf)[in_left])); in_left += 4; *out_right++ = get_fs_word (&((userbuf)[in_right])); in_right += 4; } } } static struct audio_driver gus_audio_driver = { gus_audio_open, gus_audio_close, gus_audio_output_block, gus_audio_start_input, gus_audio_ioctl, gus_audio_prepare_for_input, gus_audio_prepare_for_output, gus_audio_reset, gus_audio_reset, gus_local_qlen, gus_copy_from_user }; static struct audio_operations gus_audio_operations = { "Gravis UltraSound", NEEDS_RESTART, AFMT_U8 | AFMT_S16_LE, NULL, &gus_audio_driver }; static void guswave_setup_voice (int dev, int voice, int chn) { struct channel_info *info = &synth_devs[dev]->chn_info[chn]; guswave_set_instr (dev, voice, info->pgm_num); voices[voice].expression_vol = info->controllers[CTL_EXPRESSION]; /* Just MSB */ voices[voice].main_vol = (info->controllers[CTL_MAIN_VOLUME] * 100) / (unsigned) 128; voices[voice].panning = (info->controllers[CTL_PAN] * 2) - 128; voices[voice].bender = info->bender_value; } static void guswave_bender (int dev, int voice, int value) { int freq; unsigned long flags; voices[voice].bender = value - 8192; freq = compute_finetune (voices[voice].orig_freq, value - 8192, voices[voice].bender_range); voices[voice].current_freq = freq; save_flags (flags); cli (); gus_select_voice (voice); gus_voice_freq (freq); restore_flags (flags); } static int guswave_patchmgr (int dev, struct patmgr_info *rec) { int i, n; switch (rec->command) { case PM_GET_DEVTYPE: rec->parm1 = PMTYPE_WAVE; return 0; break; case PM_GET_NRPGM: rec->parm1 = MAX_PATCH; return 0; break; case PM_GET_PGMMAP: rec->parm1 = MAX_PATCH; for (i = 0; i < MAX_PATCH; i++) { int ptr = patch_table[i]; rec->data.data8[i] = 0; while (ptr >= 0 && ptr < free_sample && ptr != NOT_SAMPLE) { rec->data.data8[i]++; ptr = samples[ptr].key; /* Follow link */ } } return 0; break; case PM_GET_PGM_PATCHES: { int ptr = patch_table[rec->parm1]; n = 0; while (ptr >= 0 && ptr < free_sample && ptr != NOT_SAMPLE) { rec->data.data32[n++] = ptr; ptr = samples[ptr].key; /* Follow link */ } } rec->parm1 = n; return 0; break; case PM_GET_PATCH: { int ptr = rec->parm1; struct patch_info *pat; if (ptr < 0 || ptr >= free_sample) return -(EINVAL); memcpy (rec->data.data8, (char *) &samples[ptr], sizeof (struct patch_info)); pat = (struct patch_info *) rec->data.data8; pat->key = GUS_PATCH; /* Restore patch type */ rec->parm1 = sample_ptrs[ptr]; /* DRAM location */ rec->parm2 = sizeof (struct patch_info); } return 0; break; case PM_SET_PATCH: { int ptr = rec->parm1; struct patch_info *pat; if (ptr < 0 || ptr >= free_sample) return -(EINVAL); pat = (struct patch_info *) rec->data.data8; if (pat->len > samples[ptr].len) /* Cannot expand sample */ return -(EINVAL); pat->key = samples[ptr].key; /* Ensure the link is correct */ memcpy ((char *) &samples[ptr], rec->data.data8, sizeof (struct patch_info)); pat->key = GUS_PATCH; } return 0; break; case PM_READ_PATCH: /* Returns a block of wave data from the DRAM */ { int sample = rec->parm1; int n; long offs = rec->parm2; int l = rec->parm3; if (sample < 0 || sample >= free_sample) return -(EINVAL); if (offs < 0 || offs >= samples[sample].len) return -(EINVAL); /* Invalid offset */ n = samples[sample].len - offs; /* Num of bytes left */ if (l > n) l = n; if (l > sizeof (rec->data.data8)) l = sizeof (rec->data.data8); if (l <= 0) return -(EINVAL); /* * Was there a bug? */ offs += sample_ptrs[sample]; /* * Begin offsets + offset to DRAM */ for (n = 0; n < l; n++) rec->data.data8[n] = gus_peek (offs++); rec->parm1 = n; /* * Nr of bytes copied */ } return 0; break; case PM_WRITE_PATCH: /* * Writes a block of wave data to the DRAM */ { int sample = rec->parm1; int n; long offs = rec->parm2; int l = rec->parm3; if (sample < 0 || sample >= free_sample) return -(EINVAL); if (offs < 0 || offs >= samples[sample].len) return -(EINVAL); /* * Invalid offset */ n = samples[sample].len - offs; /* * Nr of bytes left */ if (l > n) l = n; if (l > sizeof (rec->data.data8)) l = sizeof (rec->data.data8); if (l <= 0) return -(EINVAL); /* * Was there a bug? */ offs += sample_ptrs[sample]; /* * Begin offsets + offset to DRAM */ for (n = 0; n < l; n++) gus_poke (offs++, rec->data.data8[n]); rec->parm1 = n; /* * Nr of bytes copied */ } return 0; break; default: return -(EINVAL); } } static int guswave_alloc (int dev, int chn, int note, struct voice_alloc_info *alloc) { int i, p, best = -1, best_time = 0x7fffffff; p = alloc->ptr; /* * First look for a completely stopped voice */ for (i = 0; i < alloc->max_voice; i++) { if (alloc->map[p] == 0) { alloc->ptr = p; return p; } if (alloc->alloc_times[p] < best_time) { best = p; best_time = alloc->alloc_times[p]; } p = (p + 1) % alloc->max_voice; } /* * Then look for a releasing voice */ for (i = 0; i < alloc->max_voice; i++) { if (alloc->map[p] == 0xffff) { alloc->ptr = p; return p; } p = (p + 1) % alloc->max_voice; } if (best >= 0) p = best; alloc->ptr = p; return p; } static struct synth_operations guswave_operations = { &gus_info, 0, SYNTH_TYPE_SAMPLE, SAMPLE_TYPE_GUS, guswave_open, guswave_close, guswave_ioctl, guswave_kill_note, guswave_start_note, guswave_set_instr, guswave_reset, guswave_hw_control, guswave_load_patch, guswave_aftertouch, guswave_controller, guswave_panning, guswave_volume_method, guswave_patchmgr, guswave_bender, guswave_alloc, guswave_setup_voice }; static void set_input_volumes (void) { unsigned long flags; unsigned char mask = 0xff & ~0x06; /* Just line out enabled */ if (have_gus_max) /* Don't disturb GUS MAX */ return; save_flags (flags); cli (); /* * Enable channels having vol > 10% * Note! bit 0x01 means the line in DISABLED while 0x04 means * the mic in ENABLED. */ if (gus_line_vol > 10) mask &= ~0x01; if (gus_mic_vol > 10) mask |= 0x04; if (recording_active) { /* * Disable channel, if not selected for recording */ if (!(gus_recmask & SOUND_MASK_LINE)) mask |= 0x01; if (!(gus_recmask & SOUND_MASK_MIC)) mask &= ~0x04; } mix_image &= ~0x07; mix_image |= mask & 0x07; outb (mix_image, u_Mixer); restore_flags (flags); } int gus_default_mixer_ioctl (int dev, unsigned int cmd, caddr_t arg) { #define MIX_DEVS (SOUND_MASK_MIC|SOUND_MASK_LINE| \ SOUND_MASK_SYNTH|SOUND_MASK_PCM) if (((cmd >> 8) & 0xff) == 'M') { if (_IOC_DIR (cmd) & _IOC_WRITE) switch (cmd & 0xff) { case SOUND_MIXER_RECSRC: gus_recmask = get_user ((int *) arg) & MIX_DEVS; if (!(gus_recmask & (SOUND_MASK_MIC | SOUND_MASK_LINE))) gus_recmask = SOUND_MASK_MIC; /* Note! Input volumes are updated during next open for recording */ return snd_ioctl_return ((int *) arg, gus_recmask); break; case SOUND_MIXER_MIC: { int vol = get_user ((int *) arg) & 0xff; if (vol < 0) vol = 0; if (vol > 100) vol = 100; gus_mic_vol = vol; set_input_volumes (); return snd_ioctl_return ((int *) arg, vol | (vol << 8)); } break; case SOUND_MIXER_LINE: { int vol = get_user ((int *) arg) & 0xff; if (vol < 0) vol = 0; if (vol > 100) vol = 100; gus_line_vol = vol; set_input_volumes (); return snd_ioctl_return ((int *) arg, vol | (vol << 8)); } break; case SOUND_MIXER_PCM: gus_pcm_volume = get_user ((int *) arg) & 0xff; if (gus_pcm_volume < 0) gus_pcm_volume = 0; if (gus_pcm_volume > 100) gus_pcm_volume = 100; gus_audio_update_volume (); return snd_ioctl_return ((int *) arg, gus_pcm_volume | (gus_pcm_volume << 8)); break; case SOUND_MIXER_SYNTH: { int voice; gus_wave_volume = get_user ((int *) arg) & 0xff; if (gus_wave_volume < 0) gus_wave_volume = 0; if (gus_wave_volume > 100) gus_wave_volume = 100; if (active_device == GUS_DEV_WAVE) for (voice = 0; voice < nr_voices; voice++) dynamic_volume_change (voice); /* Apply the new vol */ return snd_ioctl_return ((int *) arg, gus_wave_volume | (gus_wave_volume << 8)); } break; default: return -(EINVAL); } else switch (cmd & 0xff) /* * Return parameters */ { case SOUND_MIXER_RECSRC: return snd_ioctl_return ((int *) arg, gus_recmask); break; case SOUND_MIXER_DEVMASK: return snd_ioctl_return ((int *) arg, MIX_DEVS); break; case SOUND_MIXER_STEREODEVS: return snd_ioctl_return ((int *) arg, 0); break; case SOUND_MIXER_RECMASK: return snd_ioctl_return ((int *) arg, SOUND_MASK_MIC | SOUND_MASK_LINE); break; case SOUND_MIXER_CAPS: return snd_ioctl_return ((int *) arg, 0); break; case SOUND_MIXER_MIC: return snd_ioctl_return ((int *) arg, gus_mic_vol | (gus_mic_vol << 8)); break; case SOUND_MIXER_LINE: return snd_ioctl_return ((int *) arg, gus_line_vol | (gus_line_vol << 8)); break; case SOUND_MIXER_PCM: return snd_ioctl_return ((int *) arg, gus_pcm_volume | (gus_pcm_volume << 8)); break; case SOUND_MIXER_SYNTH: return snd_ioctl_return ((int *) arg, gus_wave_volume | (gus_wave_volume << 8)); break; default: return -(EINVAL); } } else return -(EINVAL); } static struct mixer_operations gus_mixer_operations = { "GUS", "Gravis Ultrasound", gus_default_mixer_ioctl }; static void gus_default_mixer_init (void) { if (num_mixers < MAX_MIXER_DEV) /* * Don't install if there is another * mixer */ mixer_devs[num_mixers++] = &gus_mixer_operations; if (have_gus_max) { /* * Enable all mixer channels on the GF1 side. Otherwise recording will * not be possible using GUS MAX. */ mix_image &= ~0x07; mix_image |= 0x04; /* All channels enabled */ outb (mix_image, u_Mixer); } } void gus_wave_init (struct address_info *hw_config) { unsigned long flags; unsigned char val; char *model_num = "2.4"; int gus_type = 0x24; /* 2.4 */ int irq = hw_config->irq, dma = hw_config->dma, dma2 = hw_config->dma2; if (!gus_pnp_flag) if (irq < 0 || irq > 15) { printk ("ERROR! Invalid IRQ#%d. GUS Disabled", irq); return; } if (dma < 0 || dma > 7 || dma == 4) { printk ("ERROR! Invalid DMA#%d. GUS Disabled", dma); return; } gus_irq = irq; gus_dma = dma; gus_dma2 = dma2; if (gus_dma2 == -1) gus_dma2 = dma; /* * Try to identify the GUS model. * * Versions < 3.6 don't have the digital ASIC. Try to probe it first. */ #ifdef GUSPNP_AUTODETECT val = gus_look8 (0x5b); /* Version number register */ gus_write8 (0x5b, ~val); /* Invert all bits */ if ((gus_look8 (0x5b) & 0xf0) == (val & 0xf0)) /* No change */ if ((gus_look8 (0x5b) & 0x0f) == ((~val) & 0x0f)) /* Change */ { DDB (printk ("Interwave chip version %d detected\n", (val & 0xf0) >> 4)); gus_pnp_flag = 1; } else { DDB (printk ("Not an Interwave chip\n")); gus_pnp_flag = 0; } gus_write8 (0x5b, val); /* Restore all bits */ #endif save_flags (flags); cli (); outb (0x20, gus_base + 0x0f); val = inb (gus_base + 0x0f); restore_flags (flags); if (gus_pnp_flag || (val != 0xff && (val & 0x06))) /* Should be 0x02?? */ { int ad_flags = 0; if (gus_pnp_flag) ad_flags = 0x12345678; /* Interwave "magic" */ /* * It has the digital ASIC so the card is at least v3.4. * Next try to detect the true model. */ if (gus_pnp_flag) /* Hack hack hack */ val = 10; else val = inb (u_MixSelect); /* * Value 255 means pre-3.7 which don't have mixer. * Values 5 thru 9 mean v3.7 which has a ICS2101 mixer. * 10 and above is GUS MAX which has the CS4231 codec/mixer. * */ if (val == 255 || val < 5) { model_num = "3.4"; gus_type = 0x34; } else if (val < 10) { model_num = "3.7"; gus_type = 0x37; mixer_type = ICS2101; request_region (u_MixSelect, 1, "GUS mixer"); } else { model_num = "MAX"; gus_type = 0x40; mixer_type = CS4231; #ifdef CONFIG_GUSMAX { unsigned char max_config = 0x40; /* Codec enable */ if (gus_dma2 == -1) gus_dma2 = gus_dma; if (gus_dma > 3) max_config |= 0x10; /* 16 bit capture DMA */ if (gus_dma2 > 3) max_config |= 0x20; /* 16 bit playback DMA */ max_config |= (gus_base >> 4) & 0x0f; /* Extract the X from 2X0 */ outb (max_config, gus_base + 0x106); /* UltraMax control */ } if (ad1848_detect (gus_base + 0x10c, &ad_flags, hw_config->osp)) { char *name = "GUS MAX"; gus_mic_vol = gus_line_vol = gus_pcm_volume = 100; gus_wave_volume = 90; have_gus_max = 1; if (hw_config->name) name = hw_config->name; ad1848_init (name, gus_base + 0x10c, -irq, gus_dma2, /* Playback DMA */ gus_dma, /* Capture DMA */ 1, /* Share DMA channels with GF1 */ hw_config->osp); } else printk ("[Where's the CS4231?]"); #else printk ("\n\n\nGUS MAX support was not compiled in!!!\n\n\n\n"); #endif } } else { /* * ASIC not detected so the card must be 2.2 or 2.4. * There could still be the 16-bit/mixer daughter card. */ } if (hw_config->name) { char tmp[20]; strncpy (tmp, hw_config->name, 20); tmp[19] = 0; sprintf (gus_info.name, "%s (%dk)", tmp, (int) gus_mem_size / 1024); gus_info.name[sizeof (gus_info.name) - 1] = 0; } else sprintf (gus_info.name, "Gravis UltraSound %s (%dk)", model_num, (int) gus_mem_size / 1024); samples = (struct patch_info *) (sound_mem_blocks[sound_nblocks] = vmalloc ((MAX_SAMPLE + 1) * sizeof (*samples))); if (sound_nblocks < 1024) sound_nblocks++;; if (samples == NULL) { printk ("GUS Error: Cant allocate memory for instrument tables\n"); return; } conf_printf (gus_info.name, hw_config); if (num_synths >= MAX_SYNTH_DEV) printk ("GUS Error: Too many synthesizers\n"); else { voice_alloc = &guswave_operations.alloc; synth_devs[num_synths++] = &guswave_operations; #ifdef CONFIG_SEQUENCER gus_tmr_install (gus_base + 8); #endif } reset_sample_memory (); gus_initialize (); if (num_audiodevs < MAX_AUDIO_DEV) { audio_devs[gus_devnum = num_audiodevs++] = &gus_audio_operations; audio_devs[gus_devnum]->dmachan1 = dma; audio_devs[gus_devnum]->dmachan2 = dma2; audio_devs[gus_devnum]->buffsize = DSP_BUFFSIZE; audio_devs[gus_devnum]->min_fragment = 9; audio_devs[gus_devnum]->mixer_dev = num_mixers; /* Next mixer# */ audio_devs[gus_devnum]->flags |= DMA_HARDSTOP; if (dma2 != dma && dma2 != -1) audio_devs[gus_devnum]->flags |= DMA_DUPLEX; } else printk ("GUS: Too many PCM devices available\n"); /* * Mixer dependent initialization. */ switch (mixer_type) { case ICS2101: gus_mic_vol = gus_line_vol = gus_pcm_volume = 100; gus_wave_volume = 90; request_region (u_MixSelect, 1, "GUS mixer"); ics2101_mixer_init (); return; case CS4231: /* Initialized elsewhere (ad1848.c) */ default: gus_default_mixer_init (); return; } } void gus_wave_unload (void) { #ifdef CONFIG_GUSMAX if (have_gus_max) { ad1848_unload (gus_base + 0x10c, -gus_irq, gus_dma2, /* Playback DMA */ gus_dma, /* Capture DMA */ 1); /* Share DMA channels with GF1 */ } #endif if (mixer_type == ICS2101) { release_region (u_MixSelect, 1); } } static void do_loop_irq (int voice) { unsigned char tmp; int mode, parm; unsigned long flags; save_flags (flags); cli (); gus_select_voice (voice); tmp = gus_read8 (0x00); tmp &= ~0x20; /* * Disable wave IRQ for this_one voice */ gus_write8 (0x00, tmp); if (tmp & 0x03) /* Voice stopped */ voice_alloc->map[voice] = 0; mode = voices[voice].loop_irq_mode; voices[voice].loop_irq_mode = 0; parm = voices[voice].loop_irq_parm; switch (mode) { case LMODE_FINISH: /* * Final loop finished, shoot volume down */ if ((int) (gus_read16 (0x09) >> 4) < 100) /* * Get current volume */ { gus_voice_off (); gus_rampoff (); gus_voice_init (voice); break; } gus_ramp_range (65, 4065); gus_ramp_rate (0, 63); /* * Fastest possible rate */ gus_rampon (0x20 | 0x40); /* * Ramp down, once, irq */ voices[voice].volume_irq_mode = VMODE_HALT; break; case LMODE_PCM_STOP: pcm_active = 0; /* Signal to the play_next_pcm_block routine */ case LMODE_PCM: { int flag; /* 0 or 2 */ pcm_qlen--; pcm_head = (pcm_head + 1) % pcm_nblk; if (pcm_qlen && pcm_active) { play_next_pcm_block (); } else { /* Underrun. Just stop the voice */ gus_select_voice (0); /* Left channel */ gus_voice_off (); gus_rampoff (); gus_select_voice (1); /* Right channel */ gus_voice_off (); gus_rampoff (); pcm_active = 0; } /* * If the queue was full before this interrupt, the DMA transfer was * suspended. Let it continue now. */ if (dma_active) { if (pcm_qlen == 0) flag = 1; /* Underflow */ else flag = 0; dma_active = 0; } else flag = 2; /* Just notify the dmabuf.c */ DMAbuf_outputintr (gus_devnum, flag); } break; default:; } restore_flags (flags); } static void do_volume_irq (int voice) { unsigned char tmp; int mode, parm; unsigned long flags; save_flags (flags); cli (); gus_select_voice (voice); tmp = gus_read8 (0x0d); tmp &= ~0x20; /* * Disable volume ramp IRQ */ gus_write8 (0x0d, tmp); mode = voices[voice].volume_irq_mode; voices[voice].volume_irq_mode = 0; parm = voices[voice].volume_irq_parm; switch (mode) { case VMODE_HALT: /* * Decay phase finished */ restore_flags (flags); gus_voice_init (voice); break; case VMODE_ENVELOPE: gus_rampoff (); restore_flags (flags); step_envelope (voice); break; case VMODE_START_NOTE: restore_flags (flags); guswave_start_note2 (voices[voice].dev_pending, voice, voices[voice].note_pending, voices[voice].volume_pending); if (voices[voice].kill_pending) guswave_kill_note (voices[voice].dev_pending, voice, voices[voice].note_pending, 0); if (voices[voice].sample_pending >= 0) { guswave_set_instr (voices[voice].dev_pending, voice, voices[voice].sample_pending); voices[voice].sample_pending = -1; } break; default:; } } void gus_voice_irq (void) { unsigned long wave_ignore = 0, volume_ignore = 0; unsigned long voice_bit; unsigned char src, voice; while (1) { src = gus_read8 (0x0f); /* * Get source info */ voice = src & 0x1f; src &= 0xc0; if (src == (0x80 | 0x40)) return; /* * No interrupt */ voice_bit = 1 << voice; if (!(src & 0x80)) /* * Wave IRQ pending */ if (!(wave_ignore & voice_bit) && (int) voice < nr_voices) /* * Not done * yet */ { wave_ignore |= voice_bit; do_loop_irq (voice); } if (!(src & 0x40)) /* * Volume IRQ pending */ if (!(volume_ignore & voice_bit) && (int) voice < nr_voices) /* * Not done * yet */ { volume_ignore |= voice_bit; do_volume_irq (voice); } } } void guswave_dma_irq (void) { unsigned char status; status = gus_look8 (0x41); /* Get DMA IRQ Status */ if (status & 0x40) /* DMA interrupt pending */ switch (active_device) { case GUS_DEV_WAVE: if ((dram_sleep_flag.flags & WK_SLEEP)) { dram_sleep_flag.flags = WK_WAKEUP; module_wake_up (&dram_sleeper); }; break; case GUS_DEV_PCM_CONTINUE: /* Left channel data transferred */ gus_transfer_output_block (pcm_current_dev, pcm_current_buf, pcm_current_count, pcm_current_intrflag, 1); break; case GUS_DEV_PCM_DONE: /* Right or mono channel data transferred */ if (pcm_qlen < pcm_nblk) { int flag = (1 - dma_active) * 2; /* 0 or 2 */ if (pcm_qlen == 0) flag = 1; /* Underrun */ dma_active = 0; if (gus_busy) DMAbuf_outputintr (gus_devnum, flag); } break; default:; } status = gus_look8 (0x49); /* * Get Sampling IRQ Status */ if (status & 0x40) /* * Sampling Irq pending */ { DMAbuf_inputintr (gus_devnum); } } #ifdef CONFIG_SEQUENCER /* * Timer stuff */ static volatile int select_addr, data_addr; static volatile int curr_timer = 0; void gus_timer_command (unsigned int addr, unsigned int val) { int i; outb ((unsigned char) (addr & 0xff), select_addr); for (i = 0; i < 2; i++) inb (select_addr); outb ((unsigned char) (val & 0xff), data_addr); for (i = 0; i < 2; i++) inb (select_addr); } static void arm_timer (int timer, unsigned int interval) { curr_timer = timer; if (timer == 1) { gus_write8 (0x46, 256 - interval); /* Set counter for timer 1 */ gus_write8 (0x45, 0x04); /* Enable timer 1 IRQ */ gus_timer_command (0x04, 0x01); /* Start timer 1 */ } else { gus_write8 (0x47, 256 - interval); /* Set counter for timer 2 */ gus_write8 (0x45, 0x08); /* Enable timer 2 IRQ */ gus_timer_command (0x04, 0x02); /* Start timer 2 */ } gus_timer_enabled = 1; } static unsigned int gus_tmr_start (int dev, unsigned int usecs_per_tick) { int timer_no, resolution; int divisor; if (usecs_per_tick > (256 * 80)) { timer_no = 2; resolution = 320; /* usec */ } else { timer_no = 1; resolution = 80; /* usec */ } divisor = (usecs_per_tick + (resolution / 2)) / resolution; arm_timer (timer_no, divisor); return divisor * resolution; } static void gus_tmr_disable (int dev) { gus_write8 (0x45, 0); /* Disable both timers */ gus_timer_enabled = 0; } static void gus_tmr_restart (int dev) { if (curr_timer == 1) gus_write8 (0x45, 0x04); /* Start timer 1 again */ else gus_write8 (0x45, 0x08); /* Start timer 2 again */ gus_timer_enabled = 1; } static struct sound_lowlev_timer gus_tmr = { 0, gus_tmr_start, gus_tmr_disable, gus_tmr_restart }; static void gus_tmr_install (int io_base) { struct sound_lowlev_timer *tmr; select_addr = io_base; data_addr = io_base + 1; tmr = &gus_tmr; #ifdef THIS_GETS_FIXED sound_timer_init (&gus_tmr, "GUS"); #endif } #endif #endif