URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [sound/] [opl3.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * sound/opl3.c * * A low level driver for Yamaha YM3812 and OPL-3 -chips */ /* * Copyright (C) by Hannu Savolainen 1993-1996 * * USS/Lite for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL) * Version 2 (June 1991). See the "COPYING" file distributed with this software * for more info. */ #include <linux/config.h> /* * Major improvements to the FM handling 30AUG92 by Rob Hooft, */ /* * hooft@chem.ruu.nl */ #include "sound_config.h" #if defined(CONFIG_YM3812) #include "opl3.h" #define MAX_VOICE 18 #define OFFS_4OP 11 struct voice_info { unsigned char keyon_byte; long bender; long bender_range; unsigned long orig_freq; unsigned long current_freq; int volume; int mode; }; typedef struct opl_devinfo { int base; int left_io, right_io; int nr_voice; int lv_map[MAX_VOICE]; struct voice_info voc[MAX_VOICE]; struct voice_alloc_info *v_alloc; struct channel_info *chn_info; struct sbi_instrument i_map[SBFM_MAXINSTR]; struct sbi_instrument *act_i[MAX_VOICE]; struct synth_info fm_info; int busy; int model; unsigned char cmask; int is_opl4; int *osp; } opl_devinfo; static struct opl_devinfo *devc = NULL; static int force_opl3_mode = 0; static int detected_model; static int store_instr (int instr_no, struct sbi_instrument *instr); static void freq_to_fnum (int freq, int *block, int *fnum); static void opl3_command (int io_addr, unsigned int addr, unsigned int val); static int opl3_kill_note (int dev, int voice, int note, int velocity); void enable_opl3_mode (int left, int right, int both) { force_opl3_mode = 1; } static void enter_4op_mode (void) { int i; static int v4op[MAX_VOICE] = {0, 1, 2, 9, 10, 11, 6, 7, 8, 15, 16, 17}; devc->cmask = 0x3f; /* Connect all possible 4 OP voice operators */ opl3_command (devc->right_io, CONNECTION_SELECT_REGISTER, 0x3f); for (i = 0; i < 3; i++) pv_map[i].voice_mode = 4; for (i = 3; i < 6; i++) pv_map[i].voice_mode = 0; for (i = 9; i < 12; i++) pv_map[i].voice_mode = 4; for (i = 12; i < 15; i++) pv_map[i].voice_mode = 0; for (i = 0; i < 12; i++) devc->lv_map[i] = v4op[i]; devc->v_alloc->max_voice = devc->nr_voice = 12; } static int opl3_ioctl (int dev, unsigned int cmd, caddr_t arg) { switch (cmd) { case SNDCTL_FM_LOAD_INSTR: { struct sbi_instrument ins; memcpy_fromfs ((char *) &ins, &((char *) arg)[0], sizeof (ins)); if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR) { printk ("FM Error: Invalid instrument number %d\n", ins.channel); return -(EINVAL); } pmgr_inform (dev, PM_E_PATCH_LOADED, ins.channel, 0, 0, 0); return store_instr (ins.channel, &ins); } break; case SNDCTL_SYNTH_INFO: devc->fm_info.nr_voices = (devc->nr_voice == 12) ? 6 : devc->nr_voice; memcpy_tofs (&((char *) arg)[0], &devc->fm_info, sizeof (devc->fm_info)); return 0; break; case SNDCTL_SYNTH_MEMAVL: return 0x7fffffff; break; case SNDCTL_FM_4OP_ENABLE: if (devc->model == 2) enter_4op_mode (); return 0; break; default: return -(EINVAL); } } int opl3_detect (int ioaddr, int *osp) { /* * This function returns 1 if the FM chip is present at the given I/O port * The detection algorithm plays with the timer built in the FM chip and * looks for a change in the status register. * * Note! The timers of the FM chip are not connected to AdLib (and compatible) * boards. * * Note2! The chip is initialized if detected. */ unsigned char stat1, stat2, signature; int i; if (devc != NULL) return 0; devc = (struct opl_devinfo *) (sound_mem_blocks[sound_nblocks] = vmalloc (sizeof (*devc))); if (sound_nblocks < 1024) sound_nblocks++;; if (devc == NULL) { printk ("OPL3: Can't allocate memory for the device control structure\n"); return 0; } devc->osp = osp; devc->base = ioaddr; /* Reset timers 1 and 2 */ opl3_command (ioaddr, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK); /* Reset the IRQ of the FM chip */ opl3_command (ioaddr, TIMER_CONTROL_REGISTER, IRQ_RESET); signature = stat1 = inb (ioaddr); /* Status register */ if ((stat1 & 0xE0) != 0x00) { return 0; /* * Should be 0x00 */ } opl3_command (ioaddr, TIMER1_REGISTER, 0xff); /* Set timer1 to 0xff */ opl3_command (ioaddr, TIMER_CONTROL_REGISTER, TIMER2_MASK | TIMER1_START); /* * Unmask and start timer 1 */ /* * Now we have to delay at least 80 usec */ for (i = 0; i < 50; i++) tenmicrosec (devc->osp); stat2 = inb (ioaddr); /* * Read status after timers have expired */ /* * Stop the timers */ /* Reset timers 1 and 2 */ opl3_command (ioaddr, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK); /* Reset the IRQ of the FM chip */ opl3_command (ioaddr, TIMER_CONTROL_REGISTER, IRQ_RESET); if ((stat2 & 0xE0) != 0xc0) { return 0; /* * There is no YM3812 */ } /* * There is a FM chip in this address. Detect the type (OPL2 to OPL4) */ if (signature == 0x06 && !force_opl3_mode) /* OPL2 */ { detected_model = 2; } else if (signature == 0x00) /* OPL3 or OPL4 */ { unsigned char tmp; detected_model = 3; /* * Detect availability of OPL4 (_experimental_). Works probably * only after a cold boot. In addition the OPL4 port * of the chip may not be connected to the PC bus at all. */ opl3_command (ioaddr + 2, OPL3_MODE_REGISTER, 0x00); opl3_command (ioaddr + 2, OPL3_MODE_REGISTER, OPL3_ENABLE | OPL4_ENABLE); if ((tmp = inb (ioaddr)) == 0x02) /* Have a OPL4 */ { detected_model = 4; } if (!check_region (ioaddr - 8, 2)) /* OPL4 port is free */ { int tmp; outb (0x02, ioaddr - 8); /* Select OPL4 ID register */ tenmicrosec (devc->osp); tmp = inb (ioaddr - 7); /* Read it */ tenmicrosec (devc->osp); if (tmp == 0x20) /* OPL4 should return 0x20 here */ { detected_model = 4; outb (0xF8, ioaddr - 8); /* Select OPL4 FM mixer control */ tenmicrosec (devc->osp); outb (0x1B, ioaddr - 7); /* Write value */ tenmicrosec (devc->osp); } else detected_model = 3; } opl3_command (ioaddr + 2, OPL3_MODE_REGISTER, 0); } for (i = 0; i < 9; i++) opl3_command (ioaddr, KEYON_BLOCK + i, 0); /* * Note off */ opl3_command (ioaddr, TEST_REGISTER, ENABLE_WAVE_SELECT); opl3_command (ioaddr, PERCUSSION_REGISTER, 0x00); /* * Melodic mode. */ return 1; } static int opl3_kill_note (int devno, int voice, int note, int velocity) { struct physical_voice_info *map; if (voice < 0 || voice >= devc->nr_voice) return 0; devc->v_alloc->map[voice] = 0; map = &pv_map[devc->lv_map[voice]]; DEB (printk ("Kill note %d\n", voice)); if (map->voice_mode == 0) return 0; opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, devc->voc[voice].keyon_byte & ~0x20); devc->voc[voice].keyon_byte = 0; devc->voc[voice].bender = 0; devc->voc[voice].volume = 64; devc->voc[voice].bender_range = 200; /* * 200 cents = 2 semitones */ devc->voc[voice].orig_freq = 0; devc->voc[voice].current_freq = 0; devc->voc[voice].mode = 0; return 0; } #define HIHAT 0 #define CYMBAL 1 #define TOMTOM 2 #define SNARE 3 #define BDRUM 4 #define UNDEFINED TOMTOM #define DEFAULT TOMTOM static int store_instr (int instr_no, struct sbi_instrument *instr) { if (instr->key != FM_PATCH && (instr->key != OPL3_PATCH || devc->model != 2)) printk ("FM warning: Invalid patch format field (key) 0x%x\n", instr->key); memcpy ((char *) &(devc->i_map[instr_no]), (char *) instr, sizeof (*instr)); return 0; } static int opl3_set_instr (int dev, int voice, int instr_no) { if (voice < 0 || voice >= devc->nr_voice) return 0; if (instr_no < 0 || instr_no >= SBFM_MAXINSTR) return 0; devc->act_i[voice] = &devc->i_map[instr_no]; return 0; } /* * The next table looks magical, but it certainly is not. Its values have * been calculated as table[i]=8*log(i/64)/log(2) with an obvious exception * for i=0. This log-table converts a linear volume-scaling (0..127) to a * logarithmic scaling as present in the FM-synthesizer chips. so : Volume * 64 = 0 db = relative volume 0 and: Volume 32 = -6 db = relative * volume -8 it was implemented as a table because it is only 128 bytes and * it saves a lot of log() calculations. (RH) */ char fm_volume_table[128] = {-64, -48, -40, -35, -32, -29, -27, -26, -24, -23, -21, -20, -19, -18, -18, -17, -16, -15, -15, -14, -13, -13, -12, -12, -11, -11, -10, -10, -10, -9, -9, -8, -8, -8, -7, -7, -7, -6, -6, -6, -5, -5, -5, -5, -4, -4, -4, -4, -3, -3, -3, -3, -2, -2, -2, -2, -2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8}; static void calc_vol (unsigned char *regbyte, int volume, int main_vol) { int level = (~*regbyte & 0x3f); if (main_vol > 127) main_vol = 127; volume = (volume * main_vol) / 127; if (level) level += fm_volume_table[volume]; if (level > 0x3f) level = 0x3f; if (level < 0) level = 0; *regbyte = (*regbyte & 0xc0) | (~level & 0x3f); } static void set_voice_volume (int voice, int volume, int main_vol) { unsigned char vol1, vol2, vol3, vol4; struct sbi_instrument *instr; struct physical_voice_info *map; if (voice < 0 || voice >= devc->nr_voice) return; map = &pv_map[devc->lv_map[voice]]; instr = devc->act_i[voice]; if (!instr) instr = &devc->i_map[0]; if (instr->channel < 0) return; if (devc->voc[voice].mode == 0) return; if (devc->voc[voice].mode == 2) { vol1 = instr->operators[2]; vol2 = instr->operators[3]; if ((instr->operators[10] & 0x01)) { calc_vol (&vol1, volume, main_vol); calc_vol (&vol2, volume, main_vol); } else { calc_vol (&vol2, volume, main_vol); } opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], vol1); opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], vol2); } else { /* * 4 OP voice */ int connection; vol1 = instr->operators[2]; vol2 = instr->operators[3]; vol3 = instr->operators[OFFS_4OP + 2]; vol4 = instr->operators[OFFS_4OP + 3]; /* * The connection method for 4 OP devc->voc is defined by the rightmost * bits at the offsets 10 and 10+OFFS_4OP */ connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01); switch (connection) { case 0: calc_vol (&vol4, volume, main_vol); break; case 1: calc_vol (&vol2, volume, main_vol); calc_vol (&vol4, volume, main_vol); break; case 2: calc_vol (&vol1, volume, main_vol); calc_vol (&vol4, volume, main_vol); break; case 3: calc_vol (&vol1, volume, main_vol); calc_vol (&vol3, volume, main_vol); calc_vol (&vol4, volume, main_vol); break; default:; } opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], vol1); opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], vol2); opl3_command (map->ioaddr, KSL_LEVEL + map->op[2], vol3); opl3_command (map->ioaddr, KSL_LEVEL + map->op[3], vol4); } } static int opl3_start_note (int dev, int voice, int note, int volume) { unsigned char data, fpc; int block, fnum, freq, voice_mode; struct sbi_instrument *instr; struct physical_voice_info *map; if (voice < 0 || voice >= devc->nr_voice) return 0; map = &pv_map[devc->lv_map[voice]]; if (map->voice_mode == 0) return 0; if (note == 255) /* * Just change the volume */ { set_voice_volume (voice, volume, devc->voc[voice].volume); return 0; } /* * Kill previous note before playing */ opl3_command (map->ioaddr, KSL_LEVEL + map->op[1], 0xff); /* * Carrier * volume to * min */ opl3_command (map->ioaddr, KSL_LEVEL + map->op[0], 0xff); /* * Modulator * volume to */ if (map->voice_mode == 4) { opl3_command (map->ioaddr, KSL_LEVEL + map->op[2], 0xff); opl3_command (map->ioaddr, KSL_LEVEL + map->op[3], 0xff); } opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, 0x00); /* * Note * off */ instr = devc->act_i[voice]; if (!instr) instr = &devc->i_map[0]; if (instr->channel < 0) { printk ( "OPL3: Initializing voice %d with undefined instrument\n", voice); return 0; } if (map->voice_mode == 2 && instr->key == OPL3_PATCH) return 0; /* * Cannot play */ voice_mode = map->voice_mode; if (voice_mode == 4) { int voice_shift; voice_shift = (map->ioaddr == devc->left_io) ? 0 : 3; voice_shift += map->voice_num; if (instr->key != OPL3_PATCH) /* * Just 2 OP patch */ { voice_mode = 2; devc->cmask &= ~(1 << voice_shift); } else { devc->cmask |= (1 << voice_shift); } opl3_command (devc->right_io, CONNECTION_SELECT_REGISTER, devc->cmask); } /* * Set Sound Characteristics */ opl3_command (map->ioaddr, AM_VIB + map->op[0], instr->operators[0]); opl3_command (map->ioaddr, AM_VIB + map->op[1], instr->operators[1]); /* * Set Attack/Decay */ opl3_command (map->ioaddr, ATTACK_DECAY + map->op[0], instr->operators[4]); opl3_command (map->ioaddr, ATTACK_DECAY + map->op[1], instr->operators[5]); /* * Set Sustain/Release */ opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[0], instr->operators[6]); opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[1], instr->operators[7]); /* * Set Wave Select */ opl3_command (map->ioaddr, WAVE_SELECT + map->op[0], instr->operators[8]); opl3_command (map->ioaddr, WAVE_SELECT + map->op[1], instr->operators[9]); /* * Set Feedback/Connection */ fpc = instr->operators[10]; if (!(fpc & 0x30)) fpc |= 0x30; /* * Ensure that at least one chn is enabled */ opl3_command (map->ioaddr, FEEDBACK_CONNECTION + map->voice_num, fpc); /* * If the voice is a 4 OP one, initialize the operators 3 and 4 also */ if (voice_mode == 4) { /* * Set Sound Characteristics */ opl3_command (map->ioaddr, AM_VIB + map->op[2], instr->operators[OFFS_4OP + 0]); opl3_command (map->ioaddr, AM_VIB + map->op[3], instr->operators[OFFS_4OP + 1]); /* * Set Attack/Decay */ opl3_command (map->ioaddr, ATTACK_DECAY + map->op[2], instr->operators[OFFS_4OP + 4]); opl3_command (map->ioaddr, ATTACK_DECAY + map->op[3], instr->operators[OFFS_4OP + 5]); /* * Set Sustain/Release */ opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[2], instr->operators[OFFS_4OP + 6]); opl3_command (map->ioaddr, SUSTAIN_RELEASE + map->op[3], instr->operators[OFFS_4OP + 7]); /* * Set Wave Select */ opl3_command (map->ioaddr, WAVE_SELECT + map->op[2], instr->operators[OFFS_4OP + 8]); opl3_command (map->ioaddr, WAVE_SELECT + map->op[3], instr->operators[OFFS_4OP + 9]); /* * Set Feedback/Connection */ fpc = instr->operators[OFFS_4OP + 10]; if (!(fpc & 0x30)) fpc |= 0x30; /* * Ensure that at least one chn is enabled */ opl3_command (map->ioaddr, FEEDBACK_CONNECTION + map->voice_num + 3, fpc); } devc->voc[voice].mode = voice_mode; set_voice_volume (voice, volume, devc->voc[voice].volume); freq = devc->voc[voice].orig_freq = note_to_freq (note) / 1000; /* * Since the pitch bender may have been set before playing the note, we * have to calculate the bending now. */ freq = compute_finetune (devc->voc[voice].orig_freq, devc->voc[voice].bender, devc->voc[voice].bender_range); devc->voc[voice].current_freq = freq; freq_to_fnum (freq, &block, &fnum); /* * Play note */ data = fnum & 0xff; /* * Least significant bits of fnumber */ opl3_command (map->ioaddr, FNUM_LOW + map->voice_num, data); data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3); devc->voc[voice].keyon_byte = data; opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, data); if (voice_mode == 4) opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num + 3, data); return 0; } static void freq_to_fnum (int freq, int *block, int *fnum) { int f, octave; /* * Converts the note frequency to block and fnum values for the FM chip */ /* * First try to compute the block -value (octave) where the note belongs */ f = freq; octave = 5; if (f == 0) octave = 0; else if (f < 261) { while (f < 261) { octave--; f <<= 1; } } else if (f > 493) { while (f > 493) { octave++; f >>= 1; } } if (octave > 7) octave = 7; *fnum = freq * (1 << (20 - octave)) / 49716; *block = octave; } static void opl3_command (int io_addr, unsigned int addr, unsigned int val) { int i; /* * The original 2-OP synth requires a quite long delay after writing to a * register. The OPL-3 survives with just two INBs */ outb ((unsigned char) (addr & 0xff), io_addr); if (!devc->model != 2) tenmicrosec (devc->osp); else for (i = 0; i < 2; i++) inb (io_addr); outb ((unsigned char) (val & 0xff), io_addr + 1); if (devc->model != 2) { tenmicrosec (devc->osp); tenmicrosec (devc->osp); tenmicrosec (devc->osp); } else for (i = 0; i < 2; i++) inb (io_addr); } static void opl3_reset (int devno) { int i; for (i = 0; i < 18; i++) devc->lv_map[i] = i; for (i = 0; i < devc->nr_voice; i++) { opl3_command (pv_map[devc->lv_map[i]].ioaddr, KSL_LEVEL + pv_map[devc->lv_map[i]].op[0], 0xff); opl3_command (pv_map[devc->lv_map[i]].ioaddr, KSL_LEVEL + pv_map[devc->lv_map[i]].op[1], 0xff); if (pv_map[devc->lv_map[i]].voice_mode == 4) { opl3_command (pv_map[devc->lv_map[i]].ioaddr, KSL_LEVEL + pv_map[devc->lv_map[i]].op[2], 0xff); opl3_command (pv_map[devc->lv_map[i]].ioaddr, KSL_LEVEL + pv_map[devc->lv_map[i]].op[3], 0xff); } opl3_kill_note (devno, i, 0, 64); } if (devc->model == 2) { devc->v_alloc->max_voice = devc->nr_voice = 18; for (i = 0; i < 18; i++) pv_map[i].voice_mode = 2; } } static int opl3_open (int dev, int mode) { int i; if (devc->busy) return -(EBUSY); devc->busy = 1; devc->v_alloc->max_voice = devc->nr_voice = (devc->model == 2) ? 18 : 9; devc->v_alloc->timestamp = 0; for (i = 0; i < 18; i++) { devc->v_alloc->map[i] = 0; devc->v_alloc->alloc_times[i] = 0; } devc->cmask = 0x00; /* * Just 2 OP mode */ if (devc->model == 2) opl3_command (devc->right_io, CONNECTION_SELECT_REGISTER, devc->cmask); return 0; } static void opl3_close (int dev) { devc->busy = 0; devc->v_alloc->max_voice = devc->nr_voice = (devc->model == 2) ? 18 : 9; devc->fm_info.nr_drums = 0; devc->fm_info.perc_mode = 0; opl3_reset (dev); } static void opl3_hw_control (int dev, unsigned char *event) { } static int opl3_load_patch (int dev, int format, const char *addr, int offs, int count, int pmgr_flag) { struct sbi_instrument ins; if (count < sizeof (ins)) { printk ("FM Error: Patch record too short\n"); return -(EINVAL); } memcpy_fromfs (&((char *) &ins)[offs], &(addr)[offs], sizeof (ins) - offs); if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR) { printk ("FM Error: Invalid instrument number %d\n", ins.channel); return -(EINVAL); } ins.key = format; return store_instr (ins.channel, &ins); } static void opl3_panning (int dev, int voice, int pressure) { } static void opl3_volume_method (int dev, int mode) { } #define SET_VIBRATO(cell) { \ tmp = instr->operators[(cell-1)+(((cell-1)/2)*OFFS_4OP)]; \ if (pressure > 110) \ tmp |= 0x40; /* Vibrato on */ \ opl3_command (map->ioaddr, AM_VIB + map->op[cell-1], tmp);} static void opl3_aftertouch (int dev, int voice, int pressure) { int tmp; struct sbi_instrument *instr; struct physical_voice_info *map; if (voice < 0 || voice >= devc->nr_voice) return; map = &pv_map[devc->lv_map[voice]]; DEB (printk ("Aftertouch %d\n", voice)); if (map->voice_mode == 0) return; /* * Adjust the amount of vibrato depending the pressure */ instr = devc->act_i[voice]; if (!instr) instr = &devc->i_map[0]; if (devc->voc[voice].mode == 4) { int connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01); switch (connection) { case 0: SET_VIBRATO (4); break; case 1: SET_VIBRATO (2); SET_VIBRATO (4); break; case 2: SET_VIBRATO (1); SET_VIBRATO (4); break; case 3: SET_VIBRATO (1); SET_VIBRATO (3); SET_VIBRATO (4); break; } /* * Not implemented yet */ } else { SET_VIBRATO (1); if ((instr->operators[10] & 0x01)) /* * Additive synthesis */ SET_VIBRATO (2); } } #undef SET_VIBRATO static void bend_pitch (int dev, int voice, int value) { unsigned char data; int block, fnum, freq; struct physical_voice_info *map; map = &pv_map[devc->lv_map[voice]]; if (map->voice_mode == 0) return; devc->voc[voice].bender = value; if (!value) return; if (!(devc->voc[voice].keyon_byte & 0x20)) return; /* * Not keyed on */ freq = compute_finetune (devc->voc[voice].orig_freq, devc->voc[voice].bender, devc->voc[voice].bender_range); devc->voc[voice].current_freq = freq; freq_to_fnum (freq, &block, &fnum); data = fnum & 0xff; /* * Least significant bits of fnumber */ opl3_command (map->ioaddr, FNUM_LOW + map->voice_num, data); data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3); /* * * * KEYON|OCTAVE|MS * * * bits * * * of * f-num * */ devc->voc[voice].keyon_byte = data; opl3_command (map->ioaddr, KEYON_BLOCK + map->voice_num, data); } static void opl3_controller (int dev, int voice, int ctrl_num, int value) { if (voice < 0 || voice >= devc->nr_voice) return; switch (ctrl_num) { case CTRL_PITCH_BENDER: bend_pitch (dev, voice, value); break; case CTRL_PITCH_BENDER_RANGE: devc->voc[voice].bender_range = value; break; case CTL_MAIN_VOLUME: devc->voc[voice].volume = value / 128; break; } } static int opl3_patchmgr (int dev, struct patmgr_info *rec) { return -(EINVAL); } static void opl3_bender (int dev, int voice, int value) { if (voice < 0 || voice >= devc->nr_voice) return; bend_pitch (dev, voice, value - 8192); } static int opl3_alloc_voice (int dev, int chn, int note, struct voice_alloc_info *alloc) { int i, p, best, first, avail, best_time = 0x7fffffff; struct sbi_instrument *instr; int is4op; int instr_no; if (chn < 0 || chn > 15) instr_no = 0; else instr_no = devc->chn_info[chn].pgm_num; instr = &devc->i_map[instr_no]; if (instr->channel < 0 || /* Instrument not loaded */ devc->nr_voice != 12) /* Not in 4 OP mode */ is4op = 0; else if (devc->nr_voice == 12) /* 4 OP mode */ is4op = (instr->key == OPL3_PATCH); else is4op = 0; if (is4op) { first = p = 0; avail = 6; } else { if (devc->nr_voice == 12) /* 4 OP mode. Use the '2 OP only' operators first */ first = p = 6; else first = p = 0; avail = devc->nr_voice; } /* * Now try to find a free voice */ best = first; for (i = 0; i < avail; i++) { if (alloc->map[p] == 0) { return p; } if (alloc->alloc_times[p] < best_time) /* Find oldest playing note */ { best_time = alloc->alloc_times[p]; best = p; } p = (p + 1) % avail; } /* * Insert some kind of priority mechanism here. */ if (best < 0) best = 0; if (best > devc->nr_voice) best -= devc->nr_voice; return best; /* All devc->voc in use. Select the first one. */ } static void opl3_setup_voice (int dev, int voice, int chn) { struct channel_info *info = &synth_devs[dev]->chn_info[chn]; opl3_set_instr (dev, voice, info->pgm_num); devc->voc[voice].bender = info->bender_value; devc->voc[voice].volume = info->controllers[CTL_MAIN_VOLUME]; } static struct synth_operations opl3_operations = { NULL, 0, SYNTH_TYPE_FM, FM_TYPE_ADLIB, opl3_open, opl3_close, opl3_ioctl, opl3_kill_note, opl3_start_note, opl3_set_instr, opl3_reset, opl3_hw_control, opl3_load_patch, opl3_aftertouch, opl3_controller, opl3_panning, opl3_volume_method, opl3_patchmgr, opl3_bender, opl3_alloc_voice, opl3_setup_voice }; void opl3_init (int ioaddr, int *osp) { int i; if (num_synths >= MAX_SYNTH_DEV) { printk ("OPL3 Error: Too many synthesizers\n"); return; } if (devc == NULL) { printk ("OPL3: Device control structure not initialized.\n"); return; } memset ((char *) devc, 0x00, sizeof (*devc)); devc->osp = osp; devc->base = ioaddr; devc->nr_voice = 9; strcpy (devc->fm_info.name, "OPL2"); devc->fm_info.device = 0; devc->fm_info.synth_type = SYNTH_TYPE_FM; devc->fm_info.synth_subtype = FM_TYPE_ADLIB; devc->fm_info.perc_mode = 0; devc->fm_info.nr_voices = 9; devc->fm_info.nr_drums = 0; devc->fm_info.instr_bank_size = SBFM_MAXINSTR; devc->fm_info.capabilities = 0; devc->left_io = ioaddr; devc->right_io = ioaddr + 2; if (detected_model <= 2) devc->model = 1; else { devc->model = 2; if (detected_model == 4) devc->is_opl4 = 1; } opl3_operations.info = &devc->fm_info; synth_devs[num_synths++] = &opl3_operations; devc->v_alloc = &opl3_operations.alloc; devc->chn_info = &opl3_operations.chn_info[0]; if (devc->model == 2) { if (devc->is_opl4) conf_printf2 ("Yamaha OPL4/OPL3 FM", ioaddr, 0, -1, -1); else conf_printf2 ("Yamaha OPL3 FM", ioaddr, 0, -1, -1); devc->v_alloc->max_voice = devc->nr_voice = 18; devc->fm_info.nr_drums = 0; devc->fm_info.synth_subtype = FM_TYPE_OPL3; devc->fm_info.capabilities |= SYNTH_CAP_OPL3; strcpy (devc->fm_info.name, "Yamaha OPL-3"); for (i = 0; i < 18; i++) if (pv_map[i].ioaddr == USE_LEFT) pv_map[i].ioaddr = devc->left_io; else pv_map[i].ioaddr = devc->right_io; opl3_command (devc->right_io, OPL3_MODE_REGISTER, OPL3_ENABLE); opl3_command (devc->right_io, CONNECTION_SELECT_REGISTER, 0x00); } else { conf_printf2 ("Yamaha OPL2 FM", ioaddr, 0, -1, -1); devc->v_alloc->max_voice = devc->nr_voice = 9; devc->fm_info.nr_drums = 0; for (i = 0; i < 18; i++) pv_map[i].ioaddr = devc->left_io; }; for (i = 0; i < SBFM_MAXINSTR; i++) devc->i_map[i].channel = -1; } #endif