URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [drivers/] [sound/] [sequencer.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * sound/sequencer.c * * The sequencer personality manager. */ /* * Copyright (C) by Hannu Savolainen 1993-1996 * * USS/Lite for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL) * Version 2 (June 1991). See the "COPYING" file distributed with this software * for more info. */ #include <linux/config.h> #define SEQUENCER_C #include "sound_config.h" #ifdef CONFIG_SEQUENCER #include "midi_ctrl.h" static int sequencer_ok = 0; static struct sound_timer_operations *tmr; static int tmr_no = -1; /* Currently selected timer */ static int pending_timer = -1; /* For timer change operation */ /* * Local counts for number of synth and MIDI devices. These are initialized * by the sequencer_open. */ static int max_mididev = 0; static int max_synthdev = 0; /* * The seq_mode gives the operating mode of the sequencer: * 1 = level1 (the default) * 2 = level2 (extended capabilities) */ #define SEQ_1 1 #define SEQ_2 2 static int seq_mode = SEQ_1; static wait_handle *seq_sleeper = NULL; static volatile struct snd_wait seq_sleep_flag = {0}; static wait_handle *midi_sleeper = NULL; static volatile struct snd_wait midi_sleep_flag = {0}; static int midi_opened[MAX_MIDI_DEV] = {0}; static int midi_written[MAX_MIDI_DEV] = {0}; unsigned long prev_input_time = 0; int prev_event_time; unsigned long seq_time = 0; #include "tuning.h" #define EV_SZ 8 #define IEV_SZ 8 static unsigned char *queue = NULL; static unsigned char *iqueue = NULL; static volatile int qhead = 0, qtail = 0, qlen = 0; static volatile int iqhead = 0, iqtail = 0, iqlen = 0; static volatile int seq_playing = 0; static volatile int sequencer_busy = 0; static int output_threshold; static int pre_event_timeout; static unsigned synth_open_mask; static int seq_queue (unsigned char *note, char nonblock); static void seq_startplay (void); static int seq_sync (void); static void seq_reset (void); static int pmgr_present[MAX_SYNTH_DEV] = {0}; #if MAX_SYNTH_DEV > 15 #error Too many synthesizer devices enabled. #endif int sequencer_read (int dev, struct fileinfo *file, char *buf, int count) { int c = count, p = 0; int ev_len; unsigned long flags; dev = dev >> 4; ev_len = seq_mode == SEQ_1 ? 4 : 8; if (dev) /* * Patch manager device */ return pmgr_read (dev - 1, file, buf, count); save_flags (flags); cli (); if (!iqlen) { if ((file->flags & (O_NONBLOCK) ? 1 : 0)) { restore_flags (flags); return -(EAGAIN); } { unsigned long tlimit; if (pre_event_timeout) current_set_timeout (tlimit = jiffies + (pre_event_timeout)); else tlimit = (unsigned long) -1; midi_sleep_flag.flags = WK_SLEEP; module_interruptible_sleep_on (&midi_sleeper); if (!(midi_sleep_flag.flags & WK_WAKEUP)) { if (jiffies >= tlimit) midi_sleep_flag.flags |= WK_TIMEOUT; } midi_sleep_flag.flags &= ~WK_SLEEP; }; if (!iqlen) { restore_flags (flags); return 0; } } while (iqlen && c >= ev_len) { memcpy_tofs (&(buf)[p], (char *) &iqueue[iqhead * IEV_SZ], ev_len); p += ev_len; c -= ev_len; iqhead = (iqhead + 1) % SEQ_MAX_QUEUE; iqlen--; } restore_flags (flags); return count - c; } static void sequencer_midi_output (int dev) { /* * Currently NOP */ } void seq_copy_to_input (unsigned char *event_rec, int len) { unsigned long flags; /* * Verify that the len is valid for the current mode. */ if (len != 4 && len != 8) return; if ((seq_mode == SEQ_1) != (len == 4)) return; if (iqlen >= (SEQ_MAX_QUEUE - 1)) return; /* Overflow */ save_flags (flags); cli (); memcpy (&iqueue[iqtail * IEV_SZ], event_rec, len); iqlen++; iqtail = (iqtail + 1) % SEQ_MAX_QUEUE; if ((midi_sleep_flag.flags & WK_SLEEP)) { { midi_sleep_flag.flags = WK_WAKEUP; module_wake_up (&midi_sleeper); }; } restore_flags (flags); } static void sequencer_midi_input (int dev, unsigned char data) { unsigned int tstamp; unsigned char event_rec[4]; if (data == 0xfe) /* Ignore active sensing */ return; tstamp = jiffies - seq_time; if (tstamp != prev_input_time) { tstamp = (tstamp << 8) | SEQ_WAIT; seq_copy_to_input ((unsigned char *) &tstamp, 4); prev_input_time = tstamp; } event_rec[0] = SEQ_MIDIPUTC; event_rec[1] = data; event_rec[2] = dev; event_rec[3] = 0; seq_copy_to_input (event_rec, 4); } void seq_input_event (unsigned char *event_rec, int len) { unsigned long this_time; if (seq_mode == SEQ_2) this_time = tmr->get_time (tmr_no); else this_time = jiffies - seq_time; if (this_time != prev_input_time) { unsigned char tmp_event[8]; tmp_event[0] = EV_TIMING; tmp_event[1] = TMR_WAIT_ABS; tmp_event[2] = 0; tmp_event[3] = 0; *(unsigned int *) &tmp_event[4] = this_time; seq_copy_to_input (tmp_event, 8); prev_input_time = this_time; } seq_copy_to_input (event_rec, len); } int sequencer_write (int dev, struct fileinfo *file, const char *buf, int count) { unsigned char event_rec[EV_SZ], ev_code; int p = 0, c, ev_size; int err; int mode = file->mode & O_ACCMODE; dev = dev >> 4; DEB (printk ("sequencer_write(dev=%d, count=%d)\n", dev, count)); if (mode == OPEN_READ) return -(EIO); if (dev) return pmgr_write (dev - 1, file, buf, count); c = count; while (c >= 4) { memcpy_fromfs ((char *) event_rec, &(buf)[p], 4); ev_code = event_rec[0]; if (ev_code == SEQ_FULLSIZE) { int err; dev = *(unsigned short *) &event_rec[2]; if (dev < 0 || dev >= max_synthdev) return -(ENXIO); if (!(synth_open_mask & (1 << dev))) return -(ENXIO); err = synth_devs[dev]->load_patch (dev, *(short *) &event_rec[0], buf, p + 4, c, 0); if (err < 0) return err; return err; } if (ev_code >= 128) { if (seq_mode == SEQ_2 && ev_code == SEQ_EXTENDED) { printk ("Sequencer: Invalid level 2 event %x\n", ev_code); return -(EINVAL); } ev_size = 8; if (c < ev_size) { if (!seq_playing) seq_startplay (); return count - c; } memcpy_fromfs ((char *) &event_rec[4], &(buf)[p + 4], 4); } else { if (seq_mode == SEQ_2) { printk ("Sequencer: 4 byte event in level 2 mode\n"); return -(EINVAL); } ev_size = 4; } if (event_rec[0] == SEQ_MIDIPUTC) { if (!midi_opened[event_rec[2]]) { int mode; int dev = event_rec[2]; if (dev >= max_mididev) { printk ("Sequencer Error: Nonexistent MIDI device %d\n", dev); return -(ENXIO); } mode = file->mode & O_ACCMODE; if ((err = midi_devs[dev]->open (dev, mode, sequencer_midi_input, sequencer_midi_output)) < 0) { seq_reset (); printk ("Sequencer Error: Unable to open Midi #%d\n", dev); return err; } midi_opened[dev] = 1; } } if (!seq_queue (event_rec, (file->flags & (O_NONBLOCK) ? 1 : 0))) { int processed = count - c; if (!seq_playing) seq_startplay (); if (!processed && (file->flags & (O_NONBLOCK) ? 1 : 0)) return -(EAGAIN); else return processed; } p += ev_size; c -= ev_size; } if (!seq_playing) seq_startplay (); return count; /* This will "eat" chunks shorter than 4 bytes (if written * alone) Should we really do that ? */ } static int seq_queue (unsigned char *note, char nonblock) { /* * Test if there is space in the queue */ if (qlen >= SEQ_MAX_QUEUE) if (!seq_playing) seq_startplay (); /* * Give chance to drain the queue */ if (!nonblock && qlen >= SEQ_MAX_QUEUE && !(seq_sleep_flag.flags & WK_SLEEP)) { /* * Sleep until there is enough space on the queue */ seq_sleep_flag.flags = WK_SLEEP; module_interruptible_sleep_on (&seq_sleeper); seq_sleep_flag.flags &= ~WK_SLEEP;; } if (qlen >= SEQ_MAX_QUEUE) { return 0; /* * To be sure */ } memcpy (&queue[qtail * EV_SZ], note, EV_SZ); qtail = (qtail + 1) % SEQ_MAX_QUEUE; qlen++; return 1; } static int extended_event (unsigned char *q) { int dev = q[2]; if (dev < 0 || dev >= max_synthdev) return -(ENXIO); if (!(synth_open_mask & (1 << dev))) return -(ENXIO); switch (q[1]) { case SEQ_NOTEOFF: synth_devs[dev]->kill_note (dev, q[3], q[4], q[5]); break; case SEQ_NOTEON: if (q[4] > 127 && q[4] != 255) return 0; synth_devs[dev]->start_note (dev, q[3], q[4], q[5]); break; case SEQ_PGMCHANGE: synth_devs[dev]->set_instr (dev, q[3], q[4]); break; case SEQ_AFTERTOUCH: synth_devs[dev]->aftertouch (dev, q[3], q[4]); break; case SEQ_BALANCE: synth_devs[dev]->panning (dev, q[3], (char) q[4]); break; case SEQ_CONTROLLER: synth_devs[dev]->controller (dev, q[3], q[4], (short) (q[5] | (q[6] << 8))); break; case SEQ_VOLMODE: if (synth_devs[dev]->volume_method != NULL) synth_devs[dev]->volume_method (dev, q[3]); break; default: return -(EINVAL); } return 0; } static int find_voice (int dev, int chn, int note) { unsigned short key; int i; key = (chn << 8) | (note + 1); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if (synth_devs[dev]->alloc.map[i] == key) return i; return -1; } static int alloc_voice (int dev, int chn, int note) { unsigned short key; int voice; key = (chn << 8) | (note + 1); voice = synth_devs[dev]->alloc_voice (dev, chn, note, &synth_devs[dev]->alloc); synth_devs[dev]->alloc.map[voice] = key; synth_devs[dev]->alloc.alloc_times[voice] = synth_devs[dev]->alloc.timestamp++; return voice; } static void seq_chn_voice_event (unsigned char *event_rec) { unsigned char dev = event_rec[1]; unsigned char cmd = event_rec[2]; unsigned char chn = event_rec[3]; unsigned char note = event_rec[4]; unsigned char parm = event_rec[5]; int voice = -1; if ((int) dev > max_synthdev) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; if (seq_mode == SEQ_2) { if (synth_devs[dev]->alloc_voice) voice = find_voice (dev, chn, note); if (cmd == MIDI_NOTEON && parm == 0) { cmd = MIDI_NOTEOFF; parm = 64; } } switch (cmd) { case MIDI_NOTEON: if (note > 127 && note != 255) /* Not a seq2 feature */ return; if (voice == -1 && seq_mode == SEQ_2 && synth_devs[dev]->alloc_voice) { /* Internal synthesizer (FM, GUS, etc) */ voice = alloc_voice (dev, chn, note); } if (voice == -1) voice = chn; if (seq_mode == SEQ_2 && (int) dev < num_synths) { /* * The MIDI channel 10 is a percussive channel. Use the note * number to select the proper patch (128 to 255) to play. */ if (chn == 9) { synth_devs[dev]->set_instr (dev, voice, 128 + note); synth_devs[dev]->chn_info[chn].pgm_num = 128 + note; note = 60; /* Middle C */ } } if (seq_mode == SEQ_2) { synth_devs[dev]->setup_voice (dev, voice, chn); } synth_devs[dev]->start_note (dev, voice, note, parm); break; case MIDI_NOTEOFF: if (voice == -1) voice = chn; synth_devs[dev]->kill_note (dev, voice, note, parm); break; case MIDI_KEY_PRESSURE: if (voice == -1) voice = chn; synth_devs[dev]->aftertouch (dev, voice, parm); break; default:; } } static void seq_chn_common_event (unsigned char *event_rec) { unsigned char dev = event_rec[1]; unsigned char cmd = event_rec[2]; unsigned char chn = event_rec[3]; unsigned char p1 = event_rec[4]; /* unsigned char p2 = event_rec[5]; */ unsigned short w14 = *(short *) &event_rec[6]; if ((int) dev > max_synthdev) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; switch (cmd) { case MIDI_PGM_CHANGE: if (seq_mode == SEQ_2) { synth_devs[dev]->chn_info[chn].pgm_num = p1; if ((int) dev >= num_synths) synth_devs[dev]->set_instr (dev, chn, p1); } else synth_devs[dev]->set_instr (dev, chn, p1); break; case MIDI_CTL_CHANGE: if (seq_mode == SEQ_2) { if (chn > 15 || p1 > 127) break; synth_devs[dev]->chn_info[chn].controllers[p1] = w14 & 0x7f; if (p1 < 32) /* Setting MSB should clear LSB to 0 */ synth_devs[dev]->chn_info[chn].controllers[p1 + 32] = 0; if ((int) dev < num_synths) { int val = w14 & 0x7f; int i, key; if (p1 < 64) /* Combine MSB and LSB */ { val = ((synth_devs[dev]-> chn_info[chn].controllers[p1 & ~32] & 0x7f) << 7) | (synth_devs[dev]-> chn_info[chn].controllers[p1 | 32] & 0x7f); p1 &= ~32; } /* Handle all playing notes on this channel */ key = ((int) chn << 8); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key) synth_devs[dev]->controller (dev, i, p1, val); } else synth_devs[dev]->controller (dev, chn, p1, w14); } else /* Mode 1 */ synth_devs[dev]->controller (dev, chn, p1, w14); break; case MIDI_PITCH_BEND: if (seq_mode == SEQ_2) { synth_devs[dev]->chn_info[chn].bender_value = w14; if ((int) dev < num_synths) { /* Handle all playing notes on this channel */ int i, key; key = (chn << 8); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key) synth_devs[dev]->bender (dev, i, w14); } else synth_devs[dev]->bender (dev, chn, w14); } else /* MODE 1 */ synth_devs[dev]->bender (dev, chn, w14); break; default:; } } static int seq_timing_event (unsigned char *event_rec) { unsigned char cmd = event_rec[1]; unsigned int parm = *(int *) &event_rec[4]; if (seq_mode == SEQ_2) { int ret; if ((ret = tmr->event (tmr_no, event_rec)) == TIMER_ARMED) { if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) { unsigned long flags; save_flags (flags); cli (); if ((seq_sleep_flag.flags & WK_SLEEP)) { { seq_sleep_flag.flags = WK_WAKEUP; module_wake_up (&seq_sleeper); }; } restore_flags (flags); } } return ret; } switch (cmd) { case TMR_WAIT_REL: parm += prev_event_time; /* * NOTE! No break here. Execution of TMR_WAIT_REL continues in the * next case (TMR_WAIT_ABS) */ case TMR_WAIT_ABS: if (parm > 0) { long time; seq_playing = 1; time = parm; prev_event_time = time; request_sound_timer (time); if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) { unsigned long flags; save_flags (flags); cli (); if ((seq_sleep_flag.flags & WK_SLEEP)) { { seq_sleep_flag.flags = WK_WAKEUP; module_wake_up (&seq_sleeper); }; } restore_flags (flags); } return TIMER_ARMED; } break; case TMR_START: seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; break; case TMR_STOP: break; case TMR_CONTINUE: break; case TMR_TEMPO: break; case TMR_ECHO: if (seq_mode == SEQ_2) seq_copy_to_input (event_rec, 8); else { parm = (parm << 8 | SEQ_ECHO); seq_copy_to_input ((unsigned char *) &parm, 4); } break; default:; } return TIMER_NOT_ARMED; } static void seq_local_event (unsigned char *event_rec) { unsigned char cmd = event_rec[1]; unsigned int parm = *((unsigned int *) &event_rec[4]); switch (cmd) { case LOCL_STARTAUDIO: #ifdef CONFIG_AUDIO DMAbuf_start_devices (parm); #endif break; default:; } } static void seq_sysex_message (unsigned char *event_rec) { int dev = event_rec[1]; int i, l = 0; unsigned char *buf = &event_rec[2]; if ((int) dev > max_synthdev) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; if (!synth_devs[dev]->send_sysex) return; l = 0; for (i = 0; i < 6 && buf[i] != 0xff; i++) l = i + 1; if (l > 0) synth_devs[dev]->send_sysex (dev, buf, l); } static int play_event (unsigned char *q) { /* * NOTE! This routine returns * 0 = normal event played. * 1 = Timer armed. Suspend playback until timer callback. * 2 = MIDI output buffer full. Restore queue and suspend until timer */ unsigned int *delay; switch (q[0]) { case SEQ_NOTEOFF: if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->kill_note (0, q[1], 255, q[3]); break; case SEQ_NOTEON: if (q[4] < 128 || q[4] == 255) if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->start_note (0, q[1], q[2], q[3]); break; case SEQ_WAIT: delay = (unsigned int *) q; /* * Bytes 1 to 3 are containing the * * delay in 'ticks' */ *delay = (*delay >> 8) & 0xffffff; if (*delay > 0) { long time; seq_playing = 1; time = *delay; prev_event_time = time; request_sound_timer (time); if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) { unsigned long flags; save_flags (flags); cli (); if ((seq_sleep_flag.flags & WK_SLEEP)) { { seq_sleep_flag.flags = WK_WAKEUP; module_wake_up (&seq_sleeper); }; } restore_flags (flags); } /* * The timer is now active and will reinvoke this function * after the timer expires. Return to the caller now. */ return 1; } break; case SEQ_PGMCHANGE: if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->set_instr (0, q[1], q[2]); break; case SEQ_SYNCTIMER: /* * Reset timer */ seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; break; case SEQ_MIDIPUTC: /* * Put a midi character */ if (midi_opened[q[2]]) { int dev; dev = q[2]; if (dev < 0 || dev >= num_midis) break; if (!midi_devs[dev]->putc (dev, q[1])) { /* * Output FIFO is full. Wait one timer cycle and try again. */ seq_playing = 1; request_sound_timer (-1); return 2; } else midi_written[dev] = 1; } break; case SEQ_ECHO: seq_copy_to_input (q, 4); /* * Echo back to the process */ break; case SEQ_PRIVATE: if ((int) q[1] < max_synthdev) synth_devs[q[1]]->hw_control (q[1], q); break; case SEQ_EXTENDED: extended_event (q); break; case EV_CHN_VOICE: seq_chn_voice_event (q); break; case EV_CHN_COMMON: seq_chn_common_event (q); break; case EV_TIMING: if (seq_timing_event (q) == TIMER_ARMED) { return 1; } break; case EV_SEQ_LOCAL: seq_local_event (q); break; case EV_SYSEX: seq_sysex_message (q); break; default:; } return 0; } static void seq_startplay (void) { unsigned long flags; int this_one, action; while (qlen > 0) { save_flags (flags); cli (); qhead = ((this_one = qhead) + 1) % SEQ_MAX_QUEUE; qlen--; restore_flags (flags); seq_playing = 1; if ((action = play_event (&queue[this_one * EV_SZ]))) { /* Suspend playback. Next timer routine invokes this routine again */ if (action == 2) { qlen++; qhead = this_one; } return; } } seq_playing = 0; if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) { unsigned long flags; save_flags (flags); cli (); if ((seq_sleep_flag.flags & WK_SLEEP)) { { seq_sleep_flag.flags = WK_WAKEUP; module_wake_up (&seq_sleeper); }; } restore_flags (flags); } } static void reset_controllers (int dev, unsigned char *controller, int update_dev) { int i; for (i = 0; i < 128; i++) controller[i] = ctrl_def_values[i]; } static void setup_mode2 (void) { int dev; max_synthdev = num_synths; for (dev = 0; dev < num_midis; dev++) if (midi_devs[dev]->converter != NULL) { synth_devs[max_synthdev++] = midi_devs[dev]->converter; } for (dev = 0; dev < max_synthdev; dev++) { int chn; for (chn = 0; chn < 16; chn++) { synth_devs[dev]->chn_info[chn].pgm_num = 0; reset_controllers (dev, synth_devs[dev]->chn_info[chn].controllers, 0); synth_devs[dev]->chn_info[chn].bender_value = (1 << 7); /* Neutral */ } } max_mididev = 0; seq_mode = SEQ_2; } int sequencer_open (int dev, struct fileinfo *file) { int retval, mode, i; int level, tmp; unsigned long flags; level = ((dev & 0x0f) == SND_DEV_SEQ2) ? 2 : 1; dev = dev >> 4; mode = file->mode & O_ACCMODE; DEB (printk ("sequencer_open(dev=%d)\n", dev)); if (!sequencer_ok) { printk ("Soundcard: Sequencer not initialized\n"); return -(ENXIO); } if (dev) /* Patch manager device */ { printk ("Patch manager interface is currently broken. Sorry\n"); return -(ENXIO); } save_flags (flags); cli (); if (sequencer_busy) { printk ("Sequencer busy\n"); restore_flags (flags); return -(EBUSY); } sequencer_busy = 1; restore_flags (flags); max_mididev = num_midis; max_synthdev = num_synths; pre_event_timeout = 0; seq_mode = SEQ_1; if (pending_timer != -1) { tmr_no = pending_timer; pending_timer = -1; } if (tmr_no == -1) /* Not selected yet */ { int i, best; best = -1; for (i = 0; i < num_sound_timers; i++) if (sound_timer_devs[i]->priority > best) { tmr_no = i; best = sound_timer_devs[i]->priority; } if (tmr_no == -1) /* Should not be */ tmr_no = 0; } tmr = sound_timer_devs[tmr_no]; if (level == 2) { if (tmr == NULL) { printk ("sequencer: No timer for level 2\n"); sequencer_busy = 0; return -(ENXIO); } setup_mode2 (); } if (seq_mode == SEQ_1 && (mode == OPEN_READ || mode == OPEN_READWRITE)) if (!max_mididev) { printk ("Sequencer: No Midi devices. Input not possible\n"); sequencer_busy = 0; return -(ENXIO); } if (!max_synthdev && !max_mididev) { sequencer_busy = 0; return -(ENXIO); } synth_open_mask = 0; for (i = 0; i < max_mididev; i++) { midi_opened[i] = 0; midi_written[i] = 0; } /* * if (mode == OPEN_WRITE || mode == OPEN_READWRITE) */ for (i = 0; i < max_synthdev; i++) /* * Open synth devices */ if ((tmp = synth_devs[i]->open (i, mode)) < 0) { printk ("Sequencer: Warning! Cannot open synth device #%d (%d)\n", i, tmp); if (synth_devs[i]->midi_dev) printk ("(Maps to MIDI dev #%d)\n", synth_devs[i]->midi_dev); } else { synth_open_mask |= (1 << i); if (synth_devs[i]->midi_dev) /* * Is a midi interface */ midi_opened[synth_devs[i]->midi_dev] = 1; } seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; if (seq_mode == SEQ_1 && (mode == OPEN_READ || mode == OPEN_READWRITE)) { /* * Initialize midi input devices */ for (i = 0; i < max_mididev; i++) if (!midi_opened[i]) { if ((retval = midi_devs[i]->open (i, mode, sequencer_midi_input, sequencer_midi_output)) >= 0) midi_opened[i] = 1; } } if (seq_mode == SEQ_2) { tmr->open (tmr_no, seq_mode); } seq_sleep_flag.flags = WK_NONE; midi_sleep_flag.flags = WK_NONE; output_threshold = SEQ_MAX_QUEUE / 2; for (i = 0; i < num_synths; i++) if (pmgr_present[i]) pmgr_inform (i, PM_E_OPENED, 0, 0, 0, 0); return 0; } void seq_drain_midi_queues (void) { int i, n; /* * Give the Midi drivers time to drain their output queues */ n = 1; while (!current_got_fatal_signal () && n) { n = 0; for (i = 0; i < max_mididev; i++) if (midi_opened[i] && midi_written[i]) if (midi_devs[i]->buffer_status != NULL) if (midi_devs[i]->buffer_status (i)) n++; /* * Let's have a delay */ if (n) { { unsigned long tlimit; if (HZ / 10) current_set_timeout (tlimit = jiffies + (HZ / 10)); else tlimit = (unsigned long) -1; seq_sleep_flag.flags = WK_SLEEP; module_interruptible_sleep_on (&seq_sleeper); if (!(seq_sleep_flag.flags & WK_WAKEUP)) { if (jiffies >= tlimit) seq_sleep_flag.flags |= WK_TIMEOUT; } seq_sleep_flag.flags &= ~WK_SLEEP; }; } } } void sequencer_release (int dev, struct fileinfo *file) { int i; int mode = file->mode & O_ACCMODE; dev = dev >> 4; DEB (printk ("sequencer_release(dev=%d)\n", dev)); if (dev) /* * Patch manager device */ { dev--; pmgr_release (dev); pmgr_present[dev] = 0; return; } /* * * Wait until the queue is empty (if we don't have nonblock) */ if (mode != OPEN_READ && !(file->flags & (O_NONBLOCK) ? 1 : 0)) while (!current_got_fatal_signal () && qlen) { seq_sync (); } if (mode != OPEN_READ) seq_drain_midi_queues (); /* * Ensure the output queues are empty */ seq_reset (); if (mode != OPEN_READ) seq_drain_midi_queues (); /* * Flush the all notes off messages */ for (i = 0; i < max_synthdev; i++) if (synth_open_mask & (1 << i)) /* * Actually opened */ if (synth_devs[i]) { synth_devs[i]->close (i); if (synth_devs[i]->midi_dev) midi_opened[synth_devs[i]->midi_dev] = 0; } for (i = 0; i < num_synths; i++) if (pmgr_present[i]) pmgr_inform (i, PM_E_CLOSED, 0, 0, 0, 0); for (i = 0; i < max_mididev; i++) if (midi_opened[i]) midi_devs[i]->close (i); if (seq_mode == SEQ_2) tmr->close (tmr_no); sequencer_busy = 0; } static int seq_sync (void) { unsigned long flags; if (qlen && !seq_playing && !current_got_fatal_signal ()) seq_startplay (); save_flags (flags); cli (); if (qlen && !(seq_sleep_flag.flags & WK_SLEEP)) { { unsigned long tlimit; if (HZ) current_set_timeout (tlimit = jiffies + (HZ)); else tlimit = (unsigned long) -1; seq_sleep_flag.flags = WK_SLEEP; module_interruptible_sleep_on (&seq_sleeper); if (!(seq_sleep_flag.flags & WK_WAKEUP)) { if (jiffies >= tlimit) seq_sleep_flag.flags |= WK_TIMEOUT; } seq_sleep_flag.flags &= ~WK_SLEEP; }; } restore_flags (flags); return qlen; } static void midi_outc (int dev, unsigned char data) { /* * NOTE! Calls sleep(). Don't call this from interrupt. */ int n; unsigned long flags; /* * This routine sends one byte to the Midi channel. * If the output FIFO is full, it waits until there * is space in the queue */ n = 3 * HZ; /* Timeout */ save_flags (flags); cli (); while (n && !midi_devs[dev]->putc (dev, data)) { { unsigned long tlimit; if (4) current_set_timeout (tlimit = jiffies + (4)); else tlimit = (unsigned long) -1; seq_sleep_flag.flags = WK_SLEEP; module_interruptible_sleep_on (&seq_sleeper); if (!(seq_sleep_flag.flags & WK_WAKEUP)) { if (jiffies >= tlimit) seq_sleep_flag.flags |= WK_TIMEOUT; } seq_sleep_flag.flags &= ~WK_SLEEP; }; n--; } restore_flags (flags); } static void seq_reset (void) { /* * NOTE! Calls sleep(). Don't call this from interrupt. */ int i; int chn; unsigned long flags; sound_stop_timer (); seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; qlen = qhead = qtail = 0; iqlen = iqhead = iqtail = 0; for (i = 0; i < max_synthdev; i++) if (synth_open_mask & (1 << i)) if (synth_devs[i]) synth_devs[i]->reset (i); if (seq_mode == SEQ_2) { for (chn = 0; chn < 16; chn++) for (i = 0; i < max_synthdev; i++) if (synth_open_mask & (1 << i)) if (synth_devs[i]) { synth_devs[i]->controller (i, chn, 123, 0); /* All notes off */ synth_devs[i]->controller (i, chn, 121, 0); /* Reset all ctl */ synth_devs[i]->bender (i, chn, 1 << 13); /* Bender off */ } } else /* seq_mode == SEQ_1 */ { for (i = 0; i < max_mididev; i++) if (midi_written[i]) /* * Midi used. Some notes may still be playing */ { /* * Sending just a ACTIVE SENSING message should be enough to stop all * playing notes. Since there are devices not recognizing the * active sensing, we have to send some all notes off messages also. */ midi_outc (i, 0xfe); for (chn = 0; chn < 16; chn++) { midi_outc (i, (unsigned char) (0xb0 + (chn & 0x0f))); /* control change */ midi_outc (i, 0x7b); /* All notes off */ midi_outc (i, 0); /* Dummy parameter */ } midi_devs[i]->close (i); midi_written[i] = 0; midi_opened[i] = 0; } } seq_playing = 0; save_flags (flags); cli (); if ((seq_sleep_flag.flags & WK_SLEEP)) { /* printk ("Sequencer Warning: Unexpected sleeping process - Waking up\n"); */ { seq_sleep_flag.flags = WK_WAKEUP; module_wake_up (&seq_sleeper); }; } restore_flags (flags); } static void seq_panic (void) { /* * This routine is called by the application in case the user * wants to reset the system to the default state. */ seq_reset (); /* * Since some of the devices don't recognize the active sensing and * all notes off messages, we have to shut all notes manually. * * TO BE IMPLEMENTED LATER */ /* * Also return the controllers to their default states */ } int sequencer_ioctl (int dev, struct fileinfo *file, unsigned int cmd, caddr_t arg) { int midi_dev, orig_dev; int mode = file->mode & O_ACCMODE; orig_dev = dev = dev >> 4; switch (cmd) { case SNDCTL_TMR_TIMEBASE: case SNDCTL_TMR_TEMPO: case SNDCTL_TMR_START: case SNDCTL_TMR_STOP: case SNDCTL_TMR_CONTINUE: case SNDCTL_TMR_METRONOME: case SNDCTL_TMR_SOURCE: if (dev) /* Patch manager */ return -(EIO); if (seq_mode != SEQ_2) return -(EINVAL); return tmr->ioctl (tmr_no, cmd, arg); break; case SNDCTL_TMR_SELECT: if (dev) /* Patch manager */ return -(EIO); if (seq_mode != SEQ_2) return -(EINVAL); pending_timer = get_user ((int *) arg); if (pending_timer < 0 || pending_timer >= num_sound_timers) { pending_timer = -1; return -(EINVAL); } return snd_ioctl_return ((int *) arg, pending_timer); break; case SNDCTL_SEQ_PANIC: seq_panic (); break; case SNDCTL_SEQ_SYNC: if (dev) /* * Patch manager */ return -(EIO); if (mode == OPEN_READ) return 0; while (qlen && !current_got_fatal_signal ()) seq_sync (); if (qlen) return -(EINTR); else return 0; break; case SNDCTL_SEQ_RESET: if (dev) /* * Patch manager */ return -(EIO); seq_reset (); return 0; break; case SNDCTL_SEQ_TESTMIDI: if (dev) /* * Patch manager */ return -(EIO); midi_dev = get_user ((int *) arg); if (midi_dev < 0 || midi_dev >= max_mididev) return -(ENXIO); if (!midi_opened[midi_dev]) { int err, mode; mode = file->mode & O_ACCMODE; if ((err = midi_devs[midi_dev]->open (midi_dev, mode, sequencer_midi_input, sequencer_midi_output)) < 0) return err; } midi_opened[midi_dev] = 1; return 0; break; case SNDCTL_SEQ_GETINCOUNT: if (dev) /* * Patch manager */ return -(EIO); if (mode == OPEN_WRITE) return 0; return snd_ioctl_return ((int *) arg, iqlen); break; case SNDCTL_SEQ_GETOUTCOUNT: if (mode == OPEN_READ) return 0; return snd_ioctl_return ((int *) arg, SEQ_MAX_QUEUE - qlen); break; case SNDCTL_SEQ_CTRLRATE: if (dev) /* Patch manager */ return -(EIO); /* * If *arg == 0, just return the current rate */ if (seq_mode == SEQ_2) return tmr->ioctl (tmr_no, cmd, arg); if (get_user ((int *) arg) != 0) return -(EINVAL); return snd_ioctl_return ((int *) arg, HZ); break; case SNDCTL_SEQ_RESETSAMPLES: { int err; dev = get_user ((int *) arg); if (dev < 0 || dev >= num_synths) { return -(ENXIO); } if (!(synth_open_mask & (1 << dev)) && !orig_dev) { return -(EBUSY); } if (!orig_dev && pmgr_present[dev]) pmgr_inform (dev, PM_E_PATCH_RESET, 0, 0, 0, 0); err = synth_devs[dev]->ioctl (dev, cmd, arg); return err; } break; case SNDCTL_SEQ_NRSYNTHS: return snd_ioctl_return ((int *) arg, max_synthdev); break; case SNDCTL_SEQ_NRMIDIS: return snd_ioctl_return ((int *) arg, max_mididev); break; case SNDCTL_SYNTH_MEMAVL: { int dev = get_user ((int *) arg); if (dev < 0 || dev >= num_synths) return -(ENXIO); if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -(EBUSY); return snd_ioctl_return ((int *) arg, synth_devs[dev]->ioctl (dev, cmd, arg)); } break; case SNDCTL_FM_4OP_ENABLE: { int dev = get_user ((int *) arg); if (dev < 0 || dev >= num_synths) return -(ENXIO); if (!(synth_open_mask & (1 << dev))) return -(ENXIO); synth_devs[dev]->ioctl (dev, cmd, arg); return 0; } break; case SNDCTL_SYNTH_INFO: { struct synth_info inf; int dev; memcpy_fromfs ((char *) &inf, &((char *) arg)[0], sizeof (inf)); dev = inf.device; if (dev < 0 || dev >= max_synthdev) return -(ENXIO); if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -(EBUSY); return synth_devs[dev]->ioctl (dev, cmd, arg); } break; case SNDCTL_SEQ_OUTOFBAND: { struct seq_event_rec event_rec; unsigned long flags; memcpy_fromfs ((char *) &event_rec, &((char *) arg)[0], sizeof (event_rec)); save_flags (flags); cli (); play_event (event_rec.arr); restore_flags (flags); return 0; } break; case SNDCTL_MIDI_INFO: { struct midi_info inf; int dev; memcpy_fromfs ((char *) &inf, &((char *) arg)[0], sizeof (inf)); dev = inf.device; if (dev < 0 || dev >= max_mididev) return -(ENXIO); memcpy_tofs (&((char *) arg)[0], (char *) &(midi_devs[dev]->info), sizeof (inf)); return 0; } break; case SNDCTL_PMGR_IFACE: { struct patmgr_info *inf; int dev, err; if ((inf = (struct patmgr_info *) vmalloc (sizeof (*inf))) == NULL) { printk ("patmgr: Can't allocate memory for a message\n"); return -(EIO); } memcpy_fromfs ((char *) inf, &((char *) arg)[0], sizeof (*inf)); dev = inf->device; if (dev < 0 || dev >= num_synths) { vfree (inf); return -(ENXIO); } if (!synth_devs[dev]->pmgr_interface) { vfree (inf); return -(ENXIO); } if ((err = synth_devs[dev]->pmgr_interface (dev, inf)) == -1) { vfree (inf); return err; } memcpy_tofs (&((char *) arg)[0], (char *) inf, sizeof (*inf)); vfree (inf); return 0; } break; case SNDCTL_PMGR_ACCESS: { struct patmgr_info *inf; int dev, err; if ((inf = (struct patmgr_info *) vmalloc (sizeof (*inf))) == NULL) { printk ("patmgr: Can't allocate memory for a message\n"); return -(EIO); } memcpy_fromfs ((char *) inf, &((char *) arg)[0], sizeof (*inf)); dev = inf->device; if (dev < 0 || dev >= num_synths) { vfree (inf); return -(ENXIO); } if (!pmgr_present[dev]) { vfree (inf); return -(ESRCH); } if ((err = pmgr_access (dev, inf)) < 0) { vfree (inf); return err; } memcpy_tofs (&((char *) arg)[0], (char *) inf, sizeof (*inf)); vfree (inf); return 0; } break; case SNDCTL_SEQ_THRESHOLD: { int tmp = get_user ((int *) arg); if (dev) /* * Patch manager */ return -(EIO); if (tmp < 1) tmp = 1; if (tmp >= SEQ_MAX_QUEUE) tmp = SEQ_MAX_QUEUE - 1; output_threshold = tmp; return 0; } break; case SNDCTL_MIDI_PRETIME: { int val = get_user ((int *) arg); if (val < 0) val = 0; val = (HZ * val) / 10; pre_event_timeout = val; return snd_ioctl_return ((int *) arg, val); } break; default: if (dev) /* * Patch manager */ return -(EIO); if (mode == OPEN_READ) return -(EIO); if (!synth_devs[0]) return -(ENXIO); if (!(synth_open_mask & (1 << 0))) return -(ENXIO); return synth_devs[0]->ioctl (0, cmd, arg); break; } return -(EINVAL); } int sequencer_select (int dev, struct fileinfo *file, int sel_type, select_table_handle * wait) { unsigned long flags; dev = dev >> 4; switch (sel_type) { case SEL_IN: save_flags (flags); cli (); if (!iqlen) { midi_sleep_flag.flags = WK_SLEEP; module_select_wait (&midi_sleeper, wait); restore_flags (flags); return 0; } restore_flags (flags); return 1; break; case SEL_OUT: save_flags (flags); cli (); if ((SEQ_MAX_QUEUE - qlen) < output_threshold) { seq_sleep_flag.flags = WK_SLEEP; module_select_wait (&seq_sleeper, wait); restore_flags (flags); return 0; } restore_flags (flags); return 1; break; case SEL_EX: return 0; } return 0; } void sequencer_timer (unsigned long dummy) { seq_startplay (); } int note_to_freq (int note_num) { /* * This routine converts a midi note to a frequency (multiplied by 1000) */ int note, octave, note_freq; int notes[] = { 261632, 277189, 293671, 311132, 329632, 349232, 369998, 391998, 415306, 440000, 466162, 493880 }; #define BASE_OCTAVE 5 octave = note_num / 12; note = note_num % 12; note_freq = notes[note]; if (octave < BASE_OCTAVE) note_freq >>= (BASE_OCTAVE - octave); else if (octave > BASE_OCTAVE) note_freq <<= (octave - BASE_OCTAVE); /* * note_freq >>= 1; */ return note_freq; } unsigned long compute_finetune (unsigned long base_freq, int bend, int range) { unsigned long amount; int negative, semitones, cents, multiplier = 1; if (!bend) return base_freq; if (!range) return base_freq; if (!base_freq) return base_freq; if (range >= 8192) range = 8192; bend = bend * range / 8192; if (!bend) return base_freq; negative = bend < 0 ? 1 : 0; if (bend < 0) bend *= -1; if (bend > range) bend = range; /* if (bend > 2399) bend = 2399; */ while (bend > 2399) { multiplier *= 4; bend -= 2400; } semitones = bend / 100; cents = bend % 100; amount = (int) (semitone_tuning[semitones] * multiplier * cent_tuning[cents]) / 10000; if (negative) return (base_freq * 10000) / amount; /* Bend down */ else return (base_freq * amount) / 10000; /* Bend up */ } void sequencer_init (void) { queue = (unsigned char *) (sound_mem_blocks[sound_nblocks] = vmalloc (SEQ_MAX_QUEUE * EV_SZ)); if (sound_nblocks < 1024) sound_nblocks++;; if (queue == NULL) { printk ("Sound: Can't allocate memory for sequencer output queue\n"); return; } iqueue = (unsigned char *) (sound_mem_blocks[sound_nblocks] = vmalloc (SEQ_MAX_QUEUE * IEV_SZ)); if (sound_nblocks < 1024) sound_nblocks++;; if (iqueue == NULL) { printk ("Sound: Can't allocate memory for sequencer input queue\n"); return; } sequencer_ok = 1; } #endif