URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [include/] [asm-alpha/] [t2.h] - Rev 1765
Compare with Previous | Blame | View Log
#ifndef __ALPHA_T2__H__ #define __ALPHA_T2__H__ #include <linux/config.h> #include <linux/types.h> /* * T2 is the internal name for the core logic chipset which provides * memory controller and PCI access for the SABLE-based systems. * * This file is based on: * * SABLE I/O Specification * Revision/Update Information: 1.3 * * jestabro@amt.tay1.dec.com Initial Version. * */ #define BYTE_ENABLE_SHIFT 5 #define TRANSFER_LENGTH_SHIFT 3 #define MEM_R1_MASK 0x03ffffff /* Mem sparse space region 1 mask is 26 bits */ #ifdef CONFIG_ALPHA_SRM_SETUP /* if we are using the SRM PCI setup, we'll need to use variables instead */ #define T2_DMA_WIN_BASE_DEFAULT (1024*1024*1024) #define T2_DMA_WIN_SIZE_DEFAULT (1024*1024*1024) extern unsigned int T2_DMA_WIN_BASE; extern unsigned int T2_DMA_WIN_SIZE; #else /* SRM_SETUP */ #define T2_DMA_WIN_BASE (1024*1024*1024) #define T2_DMA_WIN_SIZE (1024*1024*1024) #endif /* SRM_SETUP */ /* GAMMA-SABLE is a SABLE with EV5-based CPUs */ #ifdef CONFIG_ALPHA_GAMMA # define GAMMA_BIAS 0x8000000000UL #else /* GAMMA */ # define GAMMA_BIAS 0x0000000000UL #endif /* GAMMA */ /* * Memory spaces: */ #define T2_CONF (IDENT_ADDR + GAMMA_BIAS + 0x390000000UL) #define T2_IO (IDENT_ADDR + GAMMA_BIAS + 0x3a0000000UL) #define T2_SPARSE_MEM (IDENT_ADDR + GAMMA_BIAS + 0x200000000UL) #define T2_DENSE_MEM (IDENT_ADDR + GAMMA_BIAS + 0x3c0000000UL) #define T2_IOCSR (IDENT_ADDR + GAMMA_BIAS + 0x38e000000UL) #define T2_CERR1 (IDENT_ADDR + GAMMA_BIAS + 0x38e000020UL) #define T2_CERR2 (IDENT_ADDR + GAMMA_BIAS + 0x38e000040UL) #define T2_CERR3 (IDENT_ADDR + GAMMA_BIAS + 0x38e000060UL) #define T2_PERR1 (IDENT_ADDR + GAMMA_BIAS + 0x38e000080UL) #define T2_PERR2 (IDENT_ADDR + GAMMA_BIAS + 0x38e0000a0UL) #define T2_PSCR (IDENT_ADDR + GAMMA_BIAS + 0x38e0000c0UL) #define T2_HAE_1 (IDENT_ADDR + GAMMA_BIAS + 0x38e0000e0UL) #define T2_HAE_2 (IDENT_ADDR + GAMMA_BIAS + 0x38e000100UL) #define T2_HBASE (IDENT_ADDR + GAMMA_BIAS + 0x38e000120UL) #define T2_WBASE1 (IDENT_ADDR + GAMMA_BIAS + 0x38e000140UL) #define T2_WMASK1 (IDENT_ADDR + GAMMA_BIAS + 0x38e000160UL) #define T2_TBASE1 (IDENT_ADDR + GAMMA_BIAS + 0x38e000180UL) #define T2_WBASE2 (IDENT_ADDR + GAMMA_BIAS + 0x38e0001a0UL) #define T2_WMASK2 (IDENT_ADDR + GAMMA_BIAS + 0x38e0001c0UL) #define T2_TBASE2 (IDENT_ADDR + GAMMA_BIAS + 0x38e0001e0UL) #define T2_TLBBR (IDENT_ADDR + GAMMA_BIAS + 0x38e000200UL) #define T2_HAE_3 (IDENT_ADDR + GAMMA_BIAS + 0x38e000240UL) #define T2_HAE_4 (IDENT_ADDR + GAMMA_BIAS + 0x38e000260UL) #define HAE_ADDRESS T2_HAE_1 /* T2 CSRs are in the non-cachable primary IO space from 3.8000.0000 to 3.8fff.ffff * * +--------------+ 3 8000 0000 * | CPU 0 CSRs | * +--------------+ 3 8100 0000 * | CPU 1 CSRs | * +--------------+ 3 8200 0000 * | CPU 2 CSRs | * +--------------+ 3 8300 0000 * | CPU 3 CSRs | * +--------------+ 3 8400 0000 * | CPU Reserved | * +--------------+ 3 8700 0000 * | Mem Reserved | * +--------------+ 3 8800 0000 * | Mem 0 CSRs | * +--------------+ 3 8900 0000 * | Mem 1 CSRs | * +--------------+ 3 8a00 0000 * | Mem 2 CSRs | * +--------------+ 3 8b00 0000 * | Mem 3 CSRs | * +--------------+ 3 8c00 0000 * | Mem Reserved | * +--------------+ 3 8e00 0000 * | PCI Bridge | * +--------------+ 3 8f00 0000 * | Expansion IO | * +--------------+ 3 9000 0000 * * */ #define CPU0_BASE (IDENT_ADDR + GAMMA_BIAS + 0x380000000L) #define CPU1_BASE (IDENT_ADDR + GAMMA_BIAS + 0x381000000L) #define CPU2_BASE (IDENT_ADDR + GAMMA_BIAS + 0x382000000L) #define CPU3_BASE (IDENT_ADDR + GAMMA_BIAS + 0x383000000L) #define MEM0_BASE (IDENT_ADDR + GAMMA_BIAS + 0x388000000L) #define MEM1_BASE (IDENT_ADDR + GAMMA_BIAS + 0x389000000L) #define MEM2_BASE (IDENT_ADDR + GAMMA_BIAS + 0x38a000000L) #define MEM3_BASE (IDENT_ADDR + GAMMA_BIAS + 0x38b000000L) #ifdef __KERNEL__ /* * Translate physical memory address as seen on (PCI) bus into * a kernel virtual address and vv. */ extern inline unsigned long virt_to_bus(void * address) { return virt_to_phys(address) + T2_DMA_WIN_BASE; } extern inline void * bus_to_virt(unsigned long address) { return phys_to_virt(address - T2_DMA_WIN_BASE); } /* * I/O functions: * * T2 (the core logic PCI/memory support chipset for the SABLE * series of processors uses a sparse address mapping scheme to * get at PCI memory and I/O. */ #define vuip volatile unsigned int * extern inline unsigned int __inb(unsigned long addr) { long result = *(vuip) ((addr << 5) + T2_IO + 0x00); result >>= (addr & 3) * 8; return 0xffUL & result; } extern inline void __outb(unsigned char b, unsigned long addr) { unsigned int w; asm ("insbl %2,%1,%0" : "r="(w) : "ri"(addr & 0x3), "r"(b)); *(vuip) ((addr << 5) + T2_IO + 0x00) = w; mb(); } extern inline unsigned int __inw(unsigned long addr) { long result = *(vuip) ((addr << 5) + T2_IO + 0x08); result >>= (addr & 3) * 8; return 0xffffUL & result; } extern inline void __outw(unsigned short b, unsigned long addr) { unsigned int w; asm ("inswl %2,%1,%0" : "r="(w) : "ri"(addr & 0x3), "r"(b)); *(vuip) ((addr << 5) + T2_IO + 0x08) = w; mb(); } extern inline unsigned int __inl(unsigned long addr) { return *(vuip) ((addr << 5) + T2_IO + 0x18); } extern inline void __outl(unsigned int b, unsigned long addr) { *(vuip) ((addr << 5) + T2_IO + 0x18) = b; mb(); } /* * Memory functions. 64-bit and 32-bit accesses are done through * dense memory space, everything else through sparse space. * * For reading and writing 8 and 16 bit quantities we need to * go through one of the three sparse address mapping regions * and use the HAE_MEM CSR to provide some bits of the address. * The following few routines use only sparse address region 1 * which gives 1Gbyte of accessible space which relates exactly * to the amount of PCI memory mapping *into* system address space. * See p 6-17 of the specification but it looks something like this: * * 21164 Address: * * 3 2 1 * 9876543210987654321098765432109876543210 * 1ZZZZ0.PCI.QW.Address............BBLL * * ZZ = SBZ * BB = Byte offset * LL = Transfer length * * PCI Address: * * 3 2 1 * 10987654321098765432109876543210 * HHH....PCI.QW.Address........ 00 * * HHH = 31:29 HAE_MEM CSR * */ #ifdef CONFIG_ALPHA_SRM_SETUP extern unsigned long t2_sm_base; extern inline unsigned long __readb(unsigned long addr) { unsigned long result, shift, work; if ((addr >= t2_sm_base) && (addr <= (t2_sm_base + MEM_R1_MASK))) work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x00); else if ((addr >= 512*1024) && (addr < 1024*1024)) /* check HOLE */ work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x00); else { #if 0 printk("__readb: address 0x%lx not covered by HAE\n", addr); #endif return 0x0ffUL; } shift = (addr & 0x3) << 3; result = *(vuip) work; result >>= shift; return 0x0ffUL & result; } extern inline unsigned long __readw(unsigned long addr) { unsigned long result, shift, work; if ((addr >= t2_sm_base) && (addr <= (t2_sm_base + MEM_R1_MASK))) work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x08); else if ((addr >= 512*1024) && (addr < 1024*1024)) /* check HOLE */ work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x08); else { #if 0 printk("__readw: address 0x%lx not covered by HAE\n", addr); #endif return 0x0ffffUL; } shift = (addr & 0x3) << 3; result = *(vuip) work; result >>= shift; return 0x0ffffUL & result; } /* on SABLE with T2, we must use SPARSE memory even for 32-bit access */ extern inline unsigned long __readl(unsigned long addr) { unsigned long result, work; if ((addr >= t2_sm_base) && (addr <= (t2_sm_base + MEM_R1_MASK))) work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x18); else if ((addr >= 512*1024) && (addr < 1024*1024)) /* check HOLE */ work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x18); else { #if 0 printk("__readl: address 0x%lx not covered by HAE\n", addr); #endif return 0x0ffffffffUL; } result = *(vuip) work; return 0xffffffffUL & result; } extern inline void __writeb(unsigned char b, unsigned long addr) { unsigned long work; if ((addr >= t2_sm_base) && (addr <= (t2_sm_base + MEM_R1_MASK))) work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x00); else if ((addr >= 512*1024) && (addr < 1024*1024)) /* check HOLE */ work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x00); else { #if 0 printk("__writeb: address 0x%lx not covered by HAE\n", addr); #endif return; } *(vuip) work = b * 0x01010101; } extern inline void __writew(unsigned short b, unsigned long addr) { unsigned long work; if ((addr >= t2_sm_base) && (addr <= (t2_sm_base + MEM_R1_MASK))) work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x08); else if ((addr >= 512*1024) && (addr < 1024*1024)) /* check HOLE */ work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x08); else { #if 0 printk("__writew: address 0x%lx not covered by HAE\n", addr); #endif return; } *(vuip) work = b * 0x00010001; } /* on SABLE with T2, we must use SPARSE memory even for 32-bit access */ extern inline void __writel(unsigned int b, unsigned long addr) { unsigned long work; if ((addr >= t2_sm_base) && (addr <= (t2_sm_base + MEM_R1_MASK))) work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x18); else if ((addr >= 512*1024) && (addr < 1024*1024)) /* check HOLE */ work = (((addr & MEM_R1_MASK) << 5) + T2_SPARSE_MEM + 0x18); { #if 0 printk("__writel: address 0x%lx not covered by HAE\n", addr); #endif return; } *(vuip) work = b; } #else /* SRM_SETUP */ extern inline unsigned long __readb(unsigned long addr) { unsigned long result, shift, msb; shift = (addr & 0x3) * 8 ; msb = addr & 0xE0000000 ; addr &= MEM_R1_MASK ; if (msb != hae.cache) { set_hae(msb); } result = *(vuip) ((addr << 5) + T2_SPARSE_MEM + 0x00) ; result >>= shift; return 0xffUL & result; } extern inline unsigned long __readw(unsigned long addr) { unsigned long result, shift, msb; shift = (addr & 0x3) * 8; msb = addr & 0xE0000000 ; addr &= MEM_R1_MASK ; if (msb != hae.cache) { set_hae(msb); } result = *(vuip) ((addr << 5) + T2_SPARSE_MEM + 0x08); result >>= shift; return 0xffffUL & result; } /* on SABLE with T2, we must use SPARSE memory even for 32-bit access */ extern inline unsigned long __readl(unsigned long addr) { unsigned long result, msb; msb = addr & 0xE0000000 ; addr &= MEM_R1_MASK ; if (msb != hae.cache) { set_hae(msb); } result = *(vuip) ((addr << 5) + T2_SPARSE_MEM + 0x18); return 0xffffffffUL & result; } extern inline void __writeb(unsigned char b, unsigned long addr) { unsigned long msb ; msb = addr & 0xE0000000 ; addr &= MEM_R1_MASK ; if (msb != hae.cache) { set_hae(msb); } *(vuip) ((addr << 5) + T2_SPARSE_MEM + 0x00) = b * 0x01010101; } extern inline void __writew(unsigned short b, unsigned long addr) { unsigned long msb ; msb = addr & 0xE0000000 ; addr &= MEM_R1_MASK ; if (msb != hae.cache) { set_hae(msb); } *(vuip) ((addr << 5) + T2_SPARSE_MEM + 0x08) = b * 0x00010001; } /* on SABLE with T2, we must use SPARSE memory even for 32-bit access */ extern inline void __writel(unsigned int b, unsigned long addr) { unsigned long msb ; msb = addr & 0xE0000000 ; addr &= MEM_R1_MASK ; if (msb != hae.cache) { set_hae(msb); } *(vuip) ((addr << 5) + T2_SPARSE_MEM + 0x18) = b; } #endif /* SRM_SETUP */ #define inb(port) \ (__builtin_constant_p((port))?__inb(port):_inb(port)) #define outb(x, port) \ (__builtin_constant_p((port))?__outb((x),(port)):_outb((x),(port))) #define readl(a) __readl((unsigned long)(a)) #define writel(v,a) __writel((v),(unsigned long)(a)) #undef vuip extern unsigned long t2_init (unsigned long mem_start, unsigned long mem_end); #endif /* __KERNEL__ */ /* * Sable CPU Module CSRS * * These are CSRs for hardware other than the CPU chip on the CPU module. * The CPU module has Backup Cache control logic, Cbus control logic, and * interrupt control logic on it. There is a duplicate tag store to speed * up maintaining cache coherency. */ struct sable_cpu_csr { unsigned long bcc; long fill_00[3]; /* Backup Cache Control */ unsigned long bcce; long fill_01[3]; /* Backup Cache Correctable Error */ unsigned long bccea; long fill_02[3]; /* B-Cache Corr Err Address Latch */ unsigned long bcue; long fill_03[3]; /* B-Cache Uncorrectable Error */ unsigned long bcuea; long fill_04[3]; /* B-Cache Uncorr Err Addr Latch */ unsigned long dter; long fill_05[3]; /* Duplicate Tag Error */ unsigned long cbctl; long fill_06[3]; /* CBus Control */ unsigned long cbe; long fill_07[3]; /* CBus Error */ unsigned long cbeal; long fill_08[3]; /* CBus Error Addr Latch low */ unsigned long cbeah; long fill_09[3]; /* CBus Error Addr Latch high */ unsigned long pmbx; long fill_10[3]; /* Processor Mailbox */ unsigned long ipir; long fill_11[3]; /* Inter-Processor Int Request */ unsigned long sic; long fill_12[3]; /* System Interrupt Clear */ unsigned long adlk; long fill_13[3]; /* Address Lock (LDxL/STxC) */ unsigned long madrl; long fill_14[3]; /* CBus Miss Address */ unsigned long rev; long fill_15[3]; /* CMIC Revision */ }; /* * Data structure for handling T2 machine checks: */ struct el_t2_frame_header { unsigned int elcf_fid; /* Frame ID (from above) */ unsigned int elcf_size; /* Size of frame in bytes */ }; struct el_t2_procdata_mcheck { unsigned long elfmc_paltemp[32]; /* PAL TEMP REGS. */ /* EV4-specific fields */ unsigned long elfmc_exc_addr; /* Addr of excepting insn. */ unsigned long elfmc_exc_sum; /* Summary of arith traps. */ unsigned long elfmc_exc_mask; /* Exception mask (from exc_sum). */ unsigned long elfmc_iccsr; /* IBox hardware enables. */ unsigned long elfmc_pal_base; /* Base address for PALcode. */ unsigned long elfmc_hier; /* Hardware Interrupt Enable. */ unsigned long elfmc_hirr; /* Hardware Interrupt Request. */ unsigned long elfmc_mm_csr; /* D-stream fault info. */ unsigned long elfmc_dc_stat; /* D-cache status (ECC/Parity Err). */ unsigned long elfmc_dc_addr; /* EV3 Phys Addr for ECC/DPERR. */ unsigned long elfmc_abox_ctl; /* ABox Control Register. */ unsigned long elfmc_biu_stat; /* BIU Status. */ unsigned long elfmc_biu_addr; /* BUI Address. */ unsigned long elfmc_biu_ctl; /* BIU Control. */ unsigned long elfmc_fill_syndrome; /* For correcting ECC errors. */ unsigned long elfmc_fill_addr;/* Cache block which was being read. */ unsigned long elfmc_va; /* Effective VA of fault or miss. */ unsigned long elfmc_bc_tag; /* Backup Cache Tag Probe Results. */ }; /* * Sable processor specific Machine Check Data segment. */ struct el_t2_logout_header { unsigned int elfl_size; /* size in bytes of logout area. */ int elfl_sbz1:31; /* Should be zero. */ char elfl_retry:1; /* Retry flag. */ unsigned int elfl_procoffset; /* Processor-specific offset. */ unsigned int elfl_sysoffset; /* Offset of system-specific. */ unsigned int elfl_error_type; /* PAL error type code. */ unsigned int elfl_frame_rev; /* PAL Frame revision. */ }; struct el_t2_sysdata_mcheck { unsigned long elcmc_bcc; /* CSR 0 */ unsigned long elcmc_bcce; /* CSR 1 */ unsigned long elcmc_bccea; /* CSR 2 */ unsigned long elcmc_bcue; /* CSR 3 */ unsigned long elcmc_bcuea; /* CSR 4 */ unsigned long elcmc_dter; /* CSR 5 */ unsigned long elcmc_cbctl; /* CSR 6 */ unsigned long elcmc_cbe; /* CSR 7 */ unsigned long elcmc_cbeal; /* CSR 8 */ unsigned long elcmc_cbeah; /* CSR 9 */ unsigned long elcmc_pmbx; /* CSR 10 */ unsigned long elcmc_ipir; /* CSR 11 */ unsigned long elcmc_sic; /* CSR 12 */ unsigned long elcmc_adlk; /* CSR 13 */ unsigned long elcmc_madrl; /* CSR 14 */ unsigned long elcmc_crrev4; /* CSR 15 */ }; /* * Sable memory error frame - sable pfms section 3.42 */ struct el_t2_data_memory { struct el_t2_frame_header elcm_hdr; /* ID$MEM-FERR = 0x08 */ unsigned int elcm_module; /* Module id. */ unsigned int elcm_res04; /* Reserved. */ unsigned long elcm_merr; /* CSR0: Error Reg 1. */ unsigned long elcm_mcmd1; /* CSR1: Command Trap 1. */ unsigned long elcm_mcmd2; /* CSR2: Command Trap 2. */ unsigned long elcm_mconf; /* CSR3: Configuration. */ unsigned long elcm_medc1; /* CSR4: EDC Status 1. */ unsigned long elcm_medc2; /* CSR5: EDC Status 2. */ unsigned long elcm_medcc; /* CSR6: EDC Control. */ unsigned long elcm_msctl; /* CSR7: Stream Buffer Control. */ unsigned long elcm_mref; /* CSR8: Refresh Control. */ unsigned long elcm_filter; /* CSR9: CRD Filter Control. */ }; /* * Sable other cpu error frame - sable pfms section 3.43 */ struct el_t2_data_other_cpu { short elco_cpuid; /* CPU ID */ short elco_res02[3]; unsigned long elco_bcc; /* CSR 0 */ unsigned long elco_bcce; /* CSR 1 */ unsigned long elco_bccea; /* CSR 2 */ unsigned long elco_bcue; /* CSR 3 */ unsigned long elco_bcuea; /* CSR 4 */ unsigned long elco_dter; /* CSR 5 */ unsigned long elco_cbctl; /* CSR 6 */ unsigned long elco_cbe; /* CSR 7 */ unsigned long elco_cbeal; /* CSR 8 */ unsigned long elco_cbeah; /* CSR 9 */ unsigned long elco_pmbx; /* CSR 10 */ unsigned long elco_ipir; /* CSR 11 */ unsigned long elco_sic; /* CSR 12 */ unsigned long elco_adlk; /* CSR 13 */ unsigned long elco_madrl; /* CSR 14 */ unsigned long elco_crrev4; /* CSR 15 */ }; /* * Sable other cpu error frame - sable pfms section 3.44 */ struct el_t2_data_t2{ struct el_t2_frame_header elct_hdr; /* ID$T2-FRAME */ unsigned long elct_iocsr; /* IO Control and Status Register */ unsigned long elct_cerr1; /* Cbus Error Register 1 */ unsigned long elct_cerr2; /* Cbus Error Register 2 */ unsigned long elct_cerr3; /* Cbus Error Register 3 */ unsigned long elct_perr1; /* PCI Error Register 1 */ unsigned long elct_perr2; /* PCI Error Register 2 */ unsigned long elct_hae0_1; /* High Address Extension Register 1 */ unsigned long elct_hae0_2; /* High Address Extension Register 2 */ unsigned long elct_hbase; /* High Base Register */ unsigned long elct_wbase1; /* Window Base Register 1 */ unsigned long elct_wmask1; /* Window Mask Register 1 */ unsigned long elct_tbase1; /* Translated Base Register 1 */ unsigned long elct_wbase2; /* Window Base Register 2 */ unsigned long elct_wmask2; /* Window Mask Register 2 */ unsigned long elct_tbase2; /* Translated Base Register 2 */ unsigned long elct_tdr0; /* TLB Data Register 0 */ unsigned long elct_tdr1; /* TLB Data Register 1 */ unsigned long elct_tdr2; /* TLB Data Register 2 */ unsigned long elct_tdr3; /* TLB Data Register 3 */ unsigned long elct_tdr4; /* TLB Data Register 4 */ unsigned long elct_tdr5; /* TLB Data Register 5 */ unsigned long elct_tdr6; /* TLB Data Register 6 */ unsigned long elct_tdr7; /* TLB Data Register 7 */ }; /* * Sable error log data structure - sable pfms section 3.40 */ struct el_t2_data_corrected { unsigned long elcpb_biu_stat; unsigned long elcpb_biu_addr; unsigned long elcpb_biu_ctl; unsigned long elcpb_fill_syndrome; unsigned long elcpb_fill_addr; unsigned long elcpb_bc_tag; }; /* * Sable error log data structure * Note there are 4 memory slots on sable (see t2.h) */ struct el_t2_frame_mcheck { struct el_t2_frame_header elfmc_header; /* ID$P-FRAME_MCHECK */ struct el_t2_logout_header elfmc_hdr; struct el_t2_procdata_mcheck elfmc_procdata; struct el_t2_sysdata_mcheck elfmc_sysdata; struct el_t2_data_t2 elfmc_t2data; struct el_t2_data_memory elfmc_memdata[4]; struct el_t2_frame_header elfmc_footer; /* empty */ }; /* * Sable error log data structures on memory errors */ struct el_t2_frame_corrected { struct el_t2_frame_header elfcc_header; /* ID$P-BC-COR */ struct el_t2_logout_header elfcc_hdr; struct el_t2_data_corrected elfcc_procdata; /* struct el_t2_data_t2 elfcc_t2data; */ /* struct el_t2_data_memory elfcc_memdata[4]; */ struct el_t2_frame_header elfcc_footer; /* empty */ }; #define RTC_PORT(x) (0x70 + (x)) #define RTC_ADDR(x) (0x80 | (x)) #define RTC_ALWAYS_BCD 0 #endif /* __ALPHA_T2__H__ */