URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [include/] [asm-m68k/] [pgtable.h] - Rev 1633
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef _M68K_PGTABLE_H #define _M68K_PGTABLE_H #ifndef __ASSEMBLY__ /* * This file contains the functions and defines necessary to modify and use * the m68k page table tree. */ #define __flush_tlb() \ do { \ if (m68k_is040or060) \ __asm__ __volatile__(".word 0xf510\n"::); /* pflushan */ \ else \ __asm__ __volatile__("pflusha\n"::); \ } while (0) static inline void __flush_tlb_one(unsigned long addr) { if (m68k_is040or060) { register unsigned long a0 __asm__ ("a0") = addr; __asm__ __volatile__(".word 0xf508" /* pflush (%a0) */ : : "a" (a0)); } else __asm__ __volatile__("pflush #0,#0,(%0)" : : "a" (addr)); } #define flush_tlb() __flush_tlb() #define flush_tlb_all() flush_tlb() static inline void flush_tlb_mm(struct mm_struct *mm) { if (mm == current->mm) __flush_tlb(); } static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { if (vma->vm_mm == current->mm) __flush_tlb_one(addr); } static inline void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm == current->mm) __flush_tlb(); } /* Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT 22 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 25 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the m68k is configured as three-level, * so we do have PMD level physically. */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PMD 8 #define PTRS_PER_PGD 128 /* the no. of pointers that fit on a page: this will go away */ #define PTRS_PER_PAGE (PAGE_SIZE/sizeof(void*)) typedef pgd_t pgd_table[PTRS_PER_PGD]; typedef pmd_t pmd_table[PTRS_PER_PMD]; typedef pte_t pte_table[PTRS_PER_PTE]; #define PGD_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pgd_table)) #define PMD_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pmd_table)) #define PTE_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pte_table)) typedef pgd_table pgd_tablepage[PGD_TABLES_PER_PAGE]; typedef pmd_table pmd_tablepage[PMD_TABLES_PER_PAGE]; typedef pte_table pte_tablepage[PTE_TABLES_PER_PAGE]; /* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_OFFSET (8*1024*1024) #define VMALLOC_START ((high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #endif /* __ASSEMBLY__ */ /* * Definitions for MMU descriptors */ #define _PAGE_PRESENT 0x001 #define _PAGE_SHORT 0x002 #define _PAGE_RONLY 0x004 #define _PAGE_ACCESSED 0x008 #define _PAGE_DIRTY 0x010 #define _PAGE_GLOBAL040 0x400 /* 68040 global bit, used for kva descs */ #define _PAGE_COW 0x800 /* implemented in software */ #define _PAGE_NOCACHE030 0x040 /* 68030 no-cache mode */ #define _PAGE_NOCACHE 0x060 /* 68040 cache mode, non-serialized */ #define _PAGE_NOCACHE_S 0x040 /* 68040 no-cache mode, serialized */ #define _PAGE_CACHE040 0x020 /* 68040 cache mode, cachable, copyback */ #define _PAGE_CACHE040W 0x000 /* 68040 cache mode, cachable, write-through */ #define _DESCTYPE_MASK 0x003 #define _CACHEMASK040 (~0x060) #define _TABLE_MASK (0xfffffff0) #define _PAGE_TABLE (_PAGE_SHORT) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_NOCACHE) #ifndef __ASSEMBLY__ #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | _PAGE_CACHE040) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_CACHE040) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | _PAGE_CACHE040) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | _PAGE_CACHE040) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_CACHE040) /* * The m68k can't do page protection for execute, and considers that the same are read. * Also, write permissions imply read permissions. This is the closest we can get.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED /* zero page used for uninitialized stuff */ extern unsigned long empty_zero_page; /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t * __bad_pagetable(void); #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE empty_zero_page /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ /* 64-bit machines, beware! SRB. */ #define SIZEOF_PTR_LOG2 2 /* to find an entry in a page-table */ #define PAGE_PTR(address) \ ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) extern unsigned long high_memory; /* For virtual address to physical address conversion */ extern unsigned long mm_vtop(unsigned long addr) __attribute__ ((const)); extern unsigned long mm_ptov(unsigned long addr) __attribute__ ((const)); #define VTOP(addr) (mm_vtop((unsigned long)(addr))) #define PTOV(addr) (mm_ptov((unsigned long)(addr))) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot) { pte_t pte; pte_val(pte) = VTOP(page) | pgprot_val(pgprot); return pte; } extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) { int i; ptep = (pte_t *) VTOP(ptep); for (i = 0; i < 16; i++, ptep += PTRS_PER_PTE/16) pmdp->pmd[i] = _PAGE_TABLE | (unsigned long)ptep; } /* early termination version of the above */ extern inline void pmd_set_et(pmd_t * pmdp, pte_t * ptep) { int i; ptep = (pte_t *) VTOP(ptep); for (i = 0; i < 16; i++, ptep += PTRS_PER_PTE/16) pmdp->pmd[i] = _PAGE_PRESENT | (unsigned long)ptep; } extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp) { pgd_val(*pgdp) = _PAGE_TABLE | VTOP(pmdp); } extern inline unsigned long pte_page(pte_t pte) { return PTOV(pte_val(pte) & PAGE_MASK); } extern inline unsigned long pmd_page2(pmd_t *pmd) { return PTOV(pmd_val(*pmd) & _TABLE_MASK); } #define pmd_page(pmd) pmd_page2(&(pmd)) extern inline unsigned long pgd_page(pgd_t pgd) { return PTOV(pgd_val(pgd) & _TABLE_MASK); } extern inline int pte_none(pte_t pte) { return !pte_val(pte); } extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; } extern inline int pmd_none2(pmd_t *pmd) { return !pmd_val(*pmd); } #define pmd_none(pmd) pmd_none2(&(pmd)) extern inline int pmd_bad2(pmd_t *pmd) { return (pmd_val(*pmd) & _DESCTYPE_MASK) != _PAGE_TABLE || pmd_page(*pmd) > high_memory; } #define pmd_bad(pmd) pmd_bad2(&(pmd)) extern inline int pmd_present2(pmd_t *pmd) { return pmd_val(*pmd) & _PAGE_TABLE; } #define pmd_present(pmd) pmd_present2(&(pmd)) extern inline void pmd_clear(pmd_t * pmdp) { short i; for (i = 15; i >= 0; i--) pmdp->pmd[i] = 0; } extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); } extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & _DESCTYPE_MASK) != _PAGE_TABLE || pgd_page(pgd) > high_memory; } extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_TABLE; } extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return 1; } extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_RONLY); } extern inline int pte_exec(pte_t pte) { return 1; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_RONLY; return pte; } extern inline pte_t pte_rdprotect(pte_t pte) { return pte; } extern inline pte_t pte_exprotect(pte_t pte) { return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_RONLY; return pte; } extern inline pte_t pte_mkread(pte_t pte) { return pte; } extern inline pte_t pte_mkexec(pte_t pte) { return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } extern inline pte_t pte_mknocache(pte_t pte) { pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_pgtable_cachemode; return pte; } extern inline pte_t pte_mkcache(pte_t pte) { pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | _PAGE_CACHE040; return pte; } /* to set the page-dir */ extern inline void SET_PAGE_DIR(struct task_struct * tsk, pgd_t * pgdir) { tsk->tss.pagedir_v = (unsigned long *)pgdir; tsk->tss.pagedir_p = VTOP(pgdir); tsk->tss.crp[0] = 0x80000000 | _PAGE_SHORT; tsk->tss.crp[1] = tsk->tss.pagedir_p; if (tsk == current) { if (m68k_is040or060) __asm__ __volatile__ (".word 0xf510\n\t" /* pflushan */ "movel %0@,%/d0\n\t" ".long 0x4e7b0806\n\t" /* movec d0,urp */ : : "a" (&tsk->tss.crp[1]) : "d0"); else __asm__ __volatile__ ("movec %/cacr,%/d0\n\t" "oriw #0x0808,%/d0\n\t" "movec %/d0,%/cacr\n\t" "pmove %0@,%/crp\n\t" : : "a" (&tsk->tss.crp[0]) : "d0"); } } #define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address)) /* to find an entry in a page-table-directory */ extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address) { return mm->pgd + (address >> PGDIR_SHIFT); } extern pgd_t swapper_pg_dir[128]; extern pgd_t kernel_pg_dir[128]; extern inline pgd_t * pgd_offset_k(unsigned long address) { return kernel_pg_dir + (address >> PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PMD-1)); } /* Find an entry in the third-level page table.. */ extern inline pte_t * pte_offset(pmd_t * pmdp, unsigned long address) { return (pte_t *) pmd_page(*pmdp) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */ extern inline void nocache_page (unsigned long vaddr) { if (m68k_is040or060) { pgd_t *dir; pmd_t *pmdp; pte_t *ptep; dir = pgd_offset_k(vaddr); pmdp = pmd_offset(dir,vaddr); ptep = pte_offset(pmdp,vaddr); *ptep = pte_mknocache(*ptep); } } static inline void cache_page (unsigned long vaddr) { if (m68k_is040or060) { pgd_t *dir; pmd_t *pmdp; pte_t *ptep; dir = pgd_offset_k(vaddr); pmdp = pmd_offset(dir,vaddr); ptep = pte_offset(pmdp,vaddr); *ptep = pte_mkcache(*ptep); } } extern const char PgtabStr_bad_pmd[]; extern const char PgtabStr_bad_pgd[]; extern const char PgtabStr_bad_pmdk[]; extern const char PgtabStr_bad_pgdk[]; extern inline void pte_free(pte_t * pte) { cache_page((unsigned long)pte); free_page((unsigned long) pte); } extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t * page = (pte_t *)get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { nocache_page((unsigned long)page); pmd_set(pmd,page); return page + address; } pmd_set(pmd, BAD_PAGETABLE); return NULL; } free_page((unsigned long)page); } if (pmd_bad(*pmd)) { printk(PgtabStr_bad_pmd, pmd_val(*pmd)); pmd_set(pmd, BAD_PAGETABLE); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } extern pmd_t *get_pointer_table (void); extern void free_pointer_table (pmd_t *); extern pmd_t *get_kpointer_table (void); extern void free_kpointer_table (pmd_t *); extern inline void pmd_free(pmd_t * pmd) { free_pointer_table (pmd); } extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address) { address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); if (pgd_none(*pgd)) { pmd_t *page = get_pointer_table(); if (pgd_none(*pgd)) { if (page) { pgd_set(pgd, page); return page + address; } pgd_set(pgd, (pmd_t *)BAD_PAGETABLE); return NULL; } free_pointer_table(page); } if (pgd_bad(*pgd)) { printk(PgtabStr_bad_pgd, pgd_val(*pgd)); pgd_set(pgd, (pmd_t *)BAD_PAGETABLE); return NULL; } return (pmd_t *) pgd_page(*pgd) + address; } extern inline void pte_free_kernel(pte_t * pte) { cache_page((unsigned long)pte); free_page((unsigned long) pte); } extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t * page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { nocache_page((unsigned long)page); pmd_set(pmd, page); return page + address; } pmd_set(pmd, BAD_PAGETABLE); return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk(PgtabStr_bad_pmdk, pmd_val(*pmd)); pmd_set(pmd, BAD_PAGETABLE); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } extern inline void pmd_free_kernel(pmd_t * pmd) { free_kpointer_table(pmd); } extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address) { address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); if (pgd_none(*pgd)) { pmd_t *page = get_kpointer_table(); if (pgd_none(*pgd)) { if (page) { pgd_set(pgd, page); return page + address; } pgd_set(pgd, (pmd_t *)BAD_PAGETABLE); return NULL; } free_kpointer_table(page); } if (pgd_bad(*pgd)) { printk(PgtabStr_bad_pgdk, pgd_val(*pgd)); pgd_set(pgd, (pmd_t *)BAD_PAGETABLE); return NULL; } return (pmd_t *) pgd_page(*pgd) + address; } extern inline void pgd_free(pgd_t * pgd) { free_pointer_table ((pmd_t *) pgd); } extern inline pgd_t * pgd_alloc(void) { return (pgd_t *)get_pointer_table (); } #define flush_icache() \ do { \ if (m68k_is040or060) \ asm ("nop; .word 0xf498 /* cinva %%ic */"); \ else \ asm ("movec %/cacr,%/d0;" \ "oriw %0,%/d0;" \ "movec %/d0,%/cacr" \ : /* no outputs */ \ : "i" (FLUSH_I) \ : "d0"); \ } while (0) /* * invalidate the cache for the specified memory range. * It starts at the physical address specified for * the given number of bytes. */ extern void cache_clear (unsigned long paddr, int len); /* * push any dirty cache in the specified memory range. * It starts at the physical address specified for * the given number of bytes. */ extern void cache_push (unsigned long paddr, int len); /* * push and invalidate pages in the specified user virtual * memory range. */ extern void cache_push_v (unsigned long vaddr, int len); /* cache code */ #define FLUSH_I_AND_D (0x00000808) #define FLUSH_I (0x00000008) /* This is needed whenever the virtual mapping of the current process changes. */ #define __flush_cache_all() \ do { \ if (m68k_is040or060) \ __asm__ __volatile__ ("nop; .word 0xf478\n" ::); \ else \ __asm__ __volatile__ ("movec %%cacr,%%d0\n\t" \ "orw %0,%%d0\n\t" \ "movec %%d0,%%cacr" \ : : "di" (FLUSH_I_AND_D) : "d0"); \ } while (0) #define __flush_cache_030() \ do { \ if (m68k_is040or060 == 0) \ __asm__ __volatile__ ("movec %%cacr,%%d0\n\t" \ "orw %0,%%d0\n\t" \ "movec %%d0,%%cacr" \ : : "di" (FLUSH_I_AND_D) : "d0"); \ } while (0) #define flush_cache_all() __flush_cache_all() extern inline void flush_cache_mm(struct mm_struct *mm) { if (mm == current->mm) __flush_cache_all(); } extern inline void flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm == current->mm){ if (m68k_is040or060) cache_push_v(start, end-start); else __flush_cache_030(); } } extern inline void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr) { if (vma->vm_mm == current->mm){ if (m68k_is040or060) cache_push_v(vmaddr, PAGE_SIZE); else __flush_cache_030(); } } /* Push the page at kernel virtual address and clear the icache */ extern inline void flush_page_to_ram (unsigned long address) { if (m68k_is040or060) { register unsigned long tmp __asm ("a0") = VTOP(address); __asm__ __volatile__ ("nop\n\t" ".word 0xf470 /* cpushp %%dc,(%0) */\n\t" ".word 0xf490 /* cinvp %%ic,(%0) */" : : "a" (tmp)); } else __asm volatile ("movec %%cacr,%%d0\n\t" "orw %0,%%d0\n\t" "movec %%d0,%%cacr" : : "di" (FLUSH_I) : "d0"); } /* Push n pages at kernel virtual address and clear the icache */ extern inline void flush_pages_to_ram (unsigned long address, int n) { if (m68k_is040or060) { while (n--) { register unsigned long tmp __asm ("a0") = VTOP(address); __asm__ __volatile__ ("nop\n\t" ".word 0xf470 /* cpushp %%dc,(%0) */\n\t" ".word 0xf490 /* cinvp %%ic,(%0) */" : : "a" (tmp)); address += PAGE_SIZE; } } else __asm volatile ("movec %%cacr,%%d0\n\t" "orw %0,%%d0\n\t" "movec %%d0,%%cacr" : : "di" (FLUSH_I) : "d0"); } /* * Check if the addr/len goes up to the end of a physical * memory chunk. Used for DMA functions. */ int mm_end_of_chunk (unsigned long addr, int len); /* * Map some physical address range into the kernel address space. The * code is copied and adapted from map_chunk(). */ extern unsigned long kernel_map(unsigned long paddr, unsigned long size, int nocacheflag, unsigned long *memavailp ); /* * Change the cache mode of some kernel address range. */ extern void kernel_set_cachemode( unsigned long address, unsigned long size, unsigned cmode ); /* Values for nocacheflag and cmode */ #define KERNELMAP_FULL_CACHING 0 #define KERNELMAP_NOCACHE_SER 1 #define KERNELMAP_NOCACHE_NONSER 2 #define KERNELMAP_NO_COPYBACK 3 /* * The m68k doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ extern inline void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) { } /* * I don't know what is going on here, but since these were changed, * swapping hasn't been working on the 68040. */ #define SWP_TYPE(entry) (((entry) >> 2) & 0x7f) #if 0 #define SWP_OFFSET(entry) ((entry) >> 9) #define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 9)) #else #define SWP_OFFSET(entry) ((entry) >> PAGE_SHIFT) #define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << PAGE_SHIFT)) #endif #endif /* __ASSEMBLY__ */ #endif /* _M68K_PGTABLE_H */
Go to most recent revision | Compare with Previous | Blame | View Log