URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [include/] [asm-ppc/] [pgtable.h] - Rev 1633
Go to most recent revision | Compare with Previous | Blame | View Log
/* * Last edited: Nov 7 23:44 1995 (cort) */ #ifndef _PPC_PGTABLE_H #define _PPC_PGTABLE_H #include <asm/page.h> #include <asm/mmu.h> /* * Memory management on the PowerPC is a software emulation of the i386 * MMU folded onto the PowerPC hardware MMU. The emulated version looks * and behaves like the two-level i386 MMU. Entries from these tables * are merged into the PowerPC hashed MMU tables, on demand, treating the * hashed tables like a special cache. * * Since the PowerPC does not have separate kernel and user address spaces, * the user virtual address space must be a [proper] subset of the kernel * space. Thus, all tasks will have a specific virtual mapping for the * user virtual space and a common mapping for the kernel space. The * simplest way to split this was literally in half. Also, life is so * much simpler for the kernel if the machine hardware resources are * always mapped in. Thus, some additional space is given up to the * kernel space to accommodate this. * * CAUTION! Some of the trade-offs make sense for the PreP platform on * which this code was originally developed. When it migrates to other * PowerPC environments, some of the assumptions may fail and the whole * setup may need to be reevaluated. * * On the PowerPC, page translations are kept in a hashed table. There * is exactly one of these tables [although the architecture supports * an arbitrary number]. Page table entries move in/out of this hashed * structure on demand, with the kernel filling in entries as they are * needed. Just where a page table entry hits in the hashed table is a * function of the hashing which is in turn based on the upper 4 bits * of the logical address. These 4 bits address a "virtual segment id" * which is unique per task/page combination for user addresses and * fixed for the kernel addresses. Thus, the kernel space can be simply * shared [indeed at low overhead] among all tasks. * * The basic virtual address space is thus: * * 0x0XXXXXX --+ * 0x1XXXXXX | * 0x2XXXXXX | User address space. * 0x3XXXXXX | * 0x4XXXXXX | * 0x5XXXXXX | * 0x6XXXXXX | * 0x7XXXXXX --+ * 0x8XXXXXX PCI/ISA I/O space * 0x9XXXXXX --+ * 0xAXXXXXX | Kernel virtual memory * 0xBXXXXXX --+ * 0xCXXXXXX PCI/ISA Memory space * 0xDXXXXXX * 0xEXXXXXX * 0xFXXXXXX Board I/O space * * CAUTION! One of the real problems here is keeping the software * managed tables coherent with the hardware hashed tables. When * the software decides to update the table, it's normally easy to * update the hardware table. But when the hardware tables need * changed, e.g. as the result of a page fault, it's more difficult * to reflect those changes back into the software entries. Currently, * this process is quite crude, with updates causing the entire set * of tables to become invalidated. Some performance could certainly * be regained by improving this. * * The Linux memory management assumes a three-level page table setup. On * the i386, we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * i386 mmu expects. * * This file contains the functions and defines necessary to modify and use * the i386 page table tree. */ /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT 22 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 22 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the i386 is two-level, so * we don't really have any PMD directory physically. */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PMD 1 #define PTRS_PER_PGD 1024 /* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ #define VMALLOC_OFFSET (8*1024*1024) #define VMALLOC_START ((high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define _PAGE_PRESENT 0x001 #define _PAGE_RW 0x002 #define _PAGE_USER 0x004 #define _PAGE_PCD 0x010 #define _PAGE_ACCESSED 0x020 #define _PAGE_DIRTY 0x040 #define _PAGE_COW 0x200 /* implemented in software (one of the AVL bits) */ #define _PAGE_NO_CACHE 0x400 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_COW) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) #define PAGE_KERNEL_NO_CACHE __pgprot(_PAGE_NO_CACHE | _PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) /* * The i386 can't do page protection for execute, and considers that the same are read. * Also, write permissions imply read permissions. This is the closest we can get.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED /* * TLB invalidation: * * - invalidate() invalidates the current mm struct TLBs * - invalidate_all() invalidates all processes TLBs * - invalidate_mm(mm) invalidates the specified mm context TLB's * - invalidate_page(mm, vmaddr) invalidates one page * - invalidate_range(mm, start, end) invalidates a range of pages * * FIXME: This could be done much better! */ #define invalidate_all() printk("invalidate_all()\n");invalidate() #if 0 #define invalidate_mm(mm_struct) \ do { if ((mm_struct) == current->mm) invalidate(); else printk("Can't invalidate_mm(%x)\n", mm_struct);} while (0) #define invalidate_page(mm_struct,addr) \ do { if ((mm_struct) == current->mm) invalidate(); else printk("Can't invalidate_page(%x,%x)\n", mm_struct, addr);} while (0) #define invalidate_range(mm_struct,start,end) \ do { if ((mm_struct) == current->mm) invalidate(); else printk("Can't invalidate_range(%x,%x,%x)\n", mm_struct, start, end);} while (0) #endif /* * Define this if things work differently on a i386 and a i486: * it will (on a i486) warn about kernel memory accesses that are * done without a 'verify_area(VERIFY_WRITE,..)' */ #undef CONFIG_TEST_VERIFY_AREA /* page table for 0-4MB for everybody */ extern unsigned long pg0[1024]; /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t * __bad_pagetable(void); extern unsigned long __zero_page(void); #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE __zero_page() /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ /* 64-bit machines, beware! SRB. */ #define SIZEOF_PTR_LOG2 2 /* to find an entry in a page-table */ #define PAGE_PTR(address) \ ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) /* to set the page-dir */ /* tsk is a task_struct and pgdir is a pte_t */ #define SET_PAGE_DIR(tsk,pgdir) \ do { \ (tsk)->tss.pg_tables = (unsigned long *)(pgdir); \ if ((tsk) == current) \ { \ /*_printk("Change page tables = %x\n", pgdir);*/ \ } \ } while (0) extern unsigned long high_memory; extern inline int pte_none(pte_t pte) { return !pte_val(pte); } extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } #if 0 extern inline int pte_inuse(pte_t *ptep) { return mem_map[MAP_NR(ptep)].reserved; } /*extern inline int pte_inuse(pte_t *ptep) { return mem_map[MAP_NR(ptep)] != 1; }*/ #endif extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; } #if 0 extern inline void pte_reuse(pte_t * ptep) { if (!mem_map[MAP_NR(ptep)].reserved) mem_map[MAP_NR(ptep)].count++; } #endif /* extern inline void pte_reuse(pte_t * ptep) { if (!(mem_map[MAP_NR(ptep)] & MAP_PAGE_RESERVED)) mem_map[MAP_NR(ptep)]++; } */ extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); } extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~PAGE_MASK) != _PAGE_TABLE; } extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_PRESENT; } extern inline int pmd_inuse(pmd_t *pmdp) { return 0; } extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; } extern inline void pmd_reuse(pmd_t * pmdp) { } /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */ extern inline int pgd_none(pgd_t pgd) { return 0; } extern inline int pgd_bad(pgd_t pgd) { return 0; } extern inline int pgd_present(pgd_t pgd) { return 1; } #if 0 /*extern inline int pgd_inuse(pgd_t * pgdp) { return mem_map[MAP_NR(pgdp)] != 1; }*/ extern inline int pgd_inuse(pgd_t *pgdp) { return mem_map[MAP_NR(pgdp)].reserved; } #endif extern inline void pgd_clear(pgd_t * pgdp) { } /* extern inline void pgd_reuse(pgd_t * pgdp) { if (!mem_map[MAP_NR(pgdp)].reserved) mem_map[MAP_NR(pgdp)].count++; } */ /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline int pte_cow(pte_t pte) { return pte_val(pte) & _PAGE_COW; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_RW; return pte; } extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; } extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } extern inline pte_t pte_uncow(pte_t pte) { pte_val(pte) &= ~_PAGE_COW; return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; } extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; } extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } extern inline pte_t pte_mkcow(pte_t pte) { pte_val(pte) |= _PAGE_COW; return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot) { pte_t pte; pte_val(pte) = page | pgprot_val(pgprot); return pte; } extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } /*extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) { pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } */ extern inline unsigned long pte_page(pte_t pte) { return pte_val(pte) & PAGE_MASK; } extern inline unsigned long pmd_page(pmd_t pmd) { return pmd_val(pmd) & PAGE_MASK; } /* to find an entry in a page-table-directory */ extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address) { return mm->pgd + (address >> PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any, and marks the page tables reserved. */ extern inline void pte_free_kernel(pte_t * pte) { free_page((unsigned long) pte); } /*extern inline void pte_free_kernel(pte_t * pte) { mem_map[MAP_NR(pte)] = 1; free_page((unsigned long) pte); } */ /* extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t * page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page; mem_map[MAP_NR(page)] = MAP_PAGE_RESERVED; return page + address; } pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } return (pte_t *) pmd_page(*pmd) + address; }*/ /* extern inline pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address) { printk("pte_alloc_kernel pmd = %08X, address = %08X\n", pmd, address); address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); printk("address now = %08X\n", address); if (pmd_none(*pmd)) { pte_t *page; printk("pmd_none(*pmd) true\n"); page = (pte_t *) get_free_page(GFP_KERNEL); printk("page = %08X after get_free_page(%08X)\n",page,GFP_KERNEL); if (pmd_none(*pmd)) { printk("pmd_none(*pmd=%08X) still\n",*pmd); if (page) { printk("page true = %08X\n",page); pmd_set(pmd, page); printk("pmd_set(%08X,%08X)\n",pmd,page); mem_map[MAP_NR(page)].reserved = 1; printk("did mem_map\n",pmd,page); return page + address; } printk("did pmd_set(%08X, %08X\n",pmd,BAD_PAGETABLE); pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } printk("did free_page(%08X)\n",page); free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } printk("returning pmd_page(%08X) + %08X\n",pmd_page(*pmd) , address); return (pte_t *) pmd_page(*pmd) + address; } */ extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t * page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { /* pmd_set(pmd,page);*/ pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page; return page + address; } /* pmd_set(pmd, BAD_PAGETABLE);*/ pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); /* pmd_set(pmd, (pte_t *) BAD_PAGETABLE); */ pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } return (pte_t *) pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free_kernel(pmd_t * pmd) { } extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } extern inline void pte_free(pte_t * pte) { free_page((unsigned long) pte); } extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t * page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page; return page + address; } pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE; return NULL; } return (pte_t *) pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free(pmd_t * pmd) { } extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } extern inline void pgd_free(pgd_t * pgd) { free_page((unsigned long) pgd); } extern inline pgd_t * pgd_alloc(void) { return (pgd_t *) get_free_page(GFP_KERNEL); } extern pgd_t swapper_pg_dir[1024*8]; /*extern pgd_t *swapper_pg_dir;*/ /* * Software maintained MMU tables may have changed -- update the * hardware [aka cache] */ extern inline void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t _pte) { #if 0 printk("Update MMU cache - VMA: %x, Addr: %x, PTE: %x\n", vma, address, *(long *)&_pte); _printk("Update MMU cache - VMA: %x, Addr: %x, PTE: %x\n", vma, address, *(long *)&_pte); /* MMU_hash_page(&(vma->vm_task)->tss, address & PAGE_MASK, (pte *)&_pte);*/ #endif MMU_hash_page(&(current)->tss, address & PAGE_MASK, (pte *)&_pte); } #ifdef _SCHED_INIT_ #define INIT_MMAP { &init_task, 0, 0x40000000, PAGE_SHARED, VM_READ | VM_WRITE | VM_EXEC } #endif #define SWP_TYPE(entry) (((entry) >> 1) & 0x7f) #define SWP_OFFSET(entry) ((entry) >> 8) #define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8)) #endif /* _PPC_PAGE_H */
Go to most recent revision | Compare with Previous | Blame | View Log