URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rc203soc/] [sw/] [uClinux/] [net/] [socket.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * NET An implementation of the SOCKET network access protocol. * * Version: @(#)socket.c 1.1.93 18/02/95 * * Authors: Orest Zborowski, <obz@Kodak.COM> * Ross Biro, <bir7@leland.Stanford.Edu> * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * * Fixes: * Anonymous : NOTSOCK/BADF cleanup. Error fix in * shutdown() * Alan Cox : verify_area() fixes * Alan Cox : Removed DDI * Jonathan Kamens : SOCK_DGRAM reconnect bug * Alan Cox : Moved a load of checks to the very * top level. * Alan Cox : Move address structures to/from user * mode above the protocol layers. * Rob Janssen : Allow 0 length sends. * Alan Cox : Asynchronous I/O support (cribbed from the * tty drivers). * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) * Jeff Uphoff : Made max number of sockets command-line * configurable. * Matti Aarnio : Made the number of sockets dynamic, * to be allocated when needed, and mr. * Uphoff's max is used as max to be * allowed to allocate. * Linus : Argh. removed all the socket allocation * altogether: it's in the inode now. * Alan Cox : Made sock_alloc()/sock_release() public * for NetROM and future kernel nfsd type * stuff. * Alan Cox : sendmsg/recvmsg basics. * Tom Dyas : Export net symbols. * Marcin Dalecki : Fixed problems with CONFIG_NET="n". * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * * This module is effectively the top level interface to the BSD socket * paradigm. Because it is very simple it works well for Unix domain sockets, * but requires a whole layer of substructure for the other protocols. * * In addition it lacks an effective kernel -> kernel interface to go with * the user one. */ #include <linux/config.h> #include <linux/signal.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/kernel.h> #include <linux/major.h> #include <linux/stat.h> #include <linux/socket.h> #include <linux/fcntl.h> #include <linux/file.h> #include <linux/net.h> #include <linux/interrupt.h> #include <linux/netdevice.h> #include <linux/proc_fs.h> #include <linux/firewall.h> #ifdef CONFIG_KERNELD #include <linux/kerneld.h> #endif #include <net/netlink.h> #include <asm/system.h> #include <asm/segment.h> #if defined(CONFIG_MODULES) && defined(CONFIG_NET) extern void export_net_symbols(void); #endif static int sock_lseek(struct inode *inode, struct file *file, off_t offset, int whence); static int sock_read(struct inode *inode, struct file *file, char *buf, int size); static int sock_write(struct inode *inode, struct file *file, const char *buf, int size); static void sock_close(struct inode *inode, struct file *file); static int sock_no_open(struct inode *inode, struct file *file); static int sock_select(struct inode *inode, struct file *file, int which, select_table *seltable); static int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg); static int sock_fasync(struct inode *inode, struct file *filp, int on); /* * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear * in the operation structures but are done directly via the socketcall() multiplexor. */ static struct file_operations socket_file_ops = { sock_lseek, sock_read, sock_write, NULL, /* readdir */ sock_select, sock_ioctl, NULL, /* mmap */ sock_no_open, /* special open code... */ sock_close, NULL, /* no fsync */ sock_fasync }; /* * The protocol list. Each protocol is registered in here. */ static struct proto_ops *pops[NPROTO]; /* * Statistics counters of the socket lists */ static int sockets_in_use = 0; /* * Support routines. Move socket addresses back and forth across the kernel/user * divide and look after the messy bits. */ #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 16 for IP, 16 for IPX, about 80 for AX.25 */ int move_addr_to_kernel(void *uaddr, int ulen, void *kaddr) { int err; if(ulen<0||ulen>MAX_SOCK_ADDR) return -EINVAL; if(ulen==0) return 0; if((err=verify_area(VERIFY_READ,uaddr,ulen))<0) return err; memcpy_fromfs(kaddr,uaddr,ulen); return 0; } int move_addr_to_user(void *kaddr, int klen, void *uaddr, int *ulen) { int err; int len; if((err=verify_area(VERIFY_WRITE,ulen,sizeof(*ulen)))<0) return err; len=get_user(ulen); if(len>klen) len=klen; if(len<0 || len> MAX_SOCK_ADDR) return -EINVAL; if(len) { if((err=verify_area(VERIFY_WRITE,uaddr,len))<0) return err; memcpy_tofs(uaddr,kaddr,len); } put_user(len,ulen); return 0; } /* * Obtains the first available file descriptor and sets it up for use. */ static int get_fd(struct inode *inode) { int fd; /* * Find a file descriptor suitable for return to the user. */ fd = get_unused_fd(); if (fd >= 0) { struct file *file = get_empty_filp(); if (!file) { put_unused_fd(fd); return -ENFILE; } current->files->fd[fd] = file; file->f_op = &socket_file_ops; file->f_mode = 3; file->f_flags = O_RDWR; file->f_count = 1; file->f_inode = inode; if (inode) inode->i_count++; file->f_pos = 0; } return fd; } /* * Go from an inode to its socket slot. * * The original socket implementation wasn't very clever, which is * why this exists at all.. */ __inline struct socket *socki_lookup(struct inode *inode) { return &inode->u.socket_i; } /* * Go from a file number to its socket slot. */ extern __inline struct socket *sockfd_lookup(int fd, int *err) { struct file *file; struct inode *inode; struct socket *sock; if (!(file = fget(fd))) { *err = -EBADF; return NULL; } inode = file->f_inode; if (!inode || !inode->i_sock || !(sock = socki_lookup(inode))) { *err = -ENOTSOCK; fput(file, inode); return NULL; } if (sock->file != file) { printk(KERN_ERR "socki_lookup: socket file changed!\n"); sock->file = file; } return sock; } extern __inline__ void sockfd_put(struct socket *sock) { fput(sock->file, sock->file->f_inode); } /* * Allocate a socket. */ struct socket *sock_alloc(void) { struct inode * inode; struct socket * sock; inode = get_empty_inode(); if (!inode) return NULL; inode->i_mode = S_IFSOCK; inode->i_sock = 1; inode->i_uid = current->uid; inode->i_gid = current->gid; sock = &inode->u.socket_i; sock->state = SS_UNCONNECTED; sock->flags = 0; sock->ops = NULL; sock->data = NULL; sock->conn = NULL; sock->iconn = NULL; sock->next = NULL; sock->file = NULL; sock->wait = &inode->i_wait; sock->inode = inode; /* "backlink": we could use pointer arithmetic instead */ sock->fasync_list = NULL; sock->file = NULL; sockets_in_use++; return sock; } /* * Release a socket. */ static inline void sock_release_peer(struct socket *peer) { peer->state = SS_DISCONNECTING; wake_up_interruptible(peer->wait); sock_wake_async(peer, 1); } /* * In theory you can't get an open on this inode, but /proc provides * a back door. Remember to keep it shut otherwise you'll let the * creepy crawlies in. */ static int sock_no_open(struct inode *inode, struct file *file) { return -ENXIO; } void sock_release(struct socket *sock) { int oldstate; struct socket *peersock, *nextsock; if ((oldstate = sock->state) != SS_UNCONNECTED) sock->state = SS_DISCONNECTING; /* * Wake up anyone waiting for connections. */ for (peersock = sock->iconn; peersock; peersock = nextsock) { nextsock = peersock->next; sock_release_peer(peersock); } /* * Wake up anyone we're connected to. First, we release the * protocol, to give it a chance to flush data, etc. */ peersock = (oldstate == SS_CONNECTED) ? sock->conn : NULL; if (sock->ops) sock->ops->release(sock, peersock); if (peersock) sock_release_peer(peersock); --sockets_in_use; /* Bookkeeping.. */ sock->file=NULL; iput(SOCK_INODE(sock)); } /* * Sockets are not seekable. */ static int sock_lseek(struct inode *inode, struct file *file, off_t offset, int whence) { return(-ESPIPE); } /* * Read data from a socket. ubuf is a user mode pointer. We make sure the user * area ubuf...ubuf+size-1 is writable before asking the protocol. */ static int sock_read(struct inode *inode, struct file *file, char *ubuf, int size) { struct socket *sock; int err; struct iovec iov; struct msghdr msg; sock = socki_lookup(inode); if (sock->flags & SO_ACCEPTCON) return(-EINVAL); if(size<0) return -EINVAL; if(size==0) /* Match SYS5 behaviour */ return 0; if ((err=verify_area(VERIFY_WRITE,ubuf,size))<0) return err; msg.msg_name=NULL; msg.msg_iov=&iov; msg.msg_iovlen=1; msg.msg_control=NULL; iov.iov_base=ubuf; iov.iov_len=size; return(sock->ops->recvmsg(sock, &msg, size,(file->f_flags & O_NONBLOCK), 0,&msg.msg_namelen)); } /* * Write data to a socket. We verify that the user area ubuf..ubuf+size-1 is * readable by the user process. */ static int sock_write(struct inode *inode, struct file *file, const char *ubuf, int size) { struct socket *sock; int err; struct msghdr msg; struct iovec iov; sock = socki_lookup(inode); if (sock->flags & SO_ACCEPTCON) return(-EINVAL); if(size<0) return -EINVAL; if(size==0) /* Match SYS5 behaviour */ return 0; if ((err=verify_area(VERIFY_READ,ubuf,size))<0) return err; msg.msg_name=NULL; msg.msg_iov=&iov; msg.msg_iovlen=1; msg.msg_control=NULL; iov.iov_base=(void *)ubuf; iov.iov_len=size; return(sock->ops->sendmsg(sock, &msg, size,(file->f_flags & O_NONBLOCK),0)); } /* * With an ioctl arg may well be a user mode pointer, but we don't know what to do * with it - that's up to the protocol still. */ int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct socket *sock; sock = socki_lookup(inode); return(sock->ops->ioctl(sock, cmd, arg)); } static int sock_select(struct inode *inode, struct file *file, int sel_type, select_table * wait) { struct socket *sock; sock = socki_lookup(inode); /* * We can't return errors to select, so it's either yes or no. */ if (sock->ops->select) return(sock->ops->select(sock, sel_type, wait)); return(0); } void sock_close(struct inode *inode, struct file *filp) { /* * It's possible the inode is NULL if we're closing an unfinished socket. */ if (!inode) return; sock_fasync(inode, filp, 0); sock_release(socki_lookup(inode)); } /* * Update the socket async list */ static int sock_fasync(struct inode *inode, struct file *filp, int on) { struct fasync_struct *fa, *fna=NULL, **prev; struct socket *sock; unsigned long flags; if (on) { fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); if(fna==NULL) return -ENOMEM; } sock = socki_lookup(inode); prev=&(sock->fasync_list); save_flags(flags); cli(); for(fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) if(fa->fa_file==filp) break; if(on) { if(fa!=NULL) { kfree_s(fna,sizeof(struct fasync_struct)); restore_flags(flags); return 0; } fna->fa_file=filp; fna->magic=FASYNC_MAGIC; fna->fa_next=sock->fasync_list; sock->fasync_list=fna; } else { if(fa!=NULL) { *prev=fa->fa_next; kfree_s(fa,sizeof(struct fasync_struct)); } } restore_flags(flags); return 0; } int sock_wake_async(struct socket *sock, int how) { if (!sock || !sock->fasync_list) return -1; switch (how) { case 0: kill_fasync(sock->fasync_list, SIGIO); break; case 1: if (!(sock->flags & SO_WAITDATA)) kill_fasync(sock->fasync_list, SIGIO); break; case 2: if (sock->flags & SO_NOSPACE) { kill_fasync(sock->fasync_list, SIGIO); sock->flags &= ~SO_NOSPACE; } break; } return 0; } /* * Perform the socket system call. we locate the appropriate * family, then create a fresh socket. */ static int find_protocol_family(int family) { register int i; for (i = 0; i < NPROTO; i++) { if (pops[i] == NULL) continue; if (pops[i]->family == family) return i; } return -1; } asmlinkage int sys_socket(int family, int type, int protocol) { int i, fd; struct socket *sock; struct proto_ops *ops; /* Locate the correct protocol family. */ i = find_protocol_family(family); #ifdef CONFIG_KERNELD /* Attempt to load a protocol module if the find failed. */ if (i < 0) { char module_name[30]; sprintf(module_name,"net-pf-%d",family); request_module(module_name); i = find_protocol_family(family); } #endif if (i < 0) { return -EINVAL; } ops = pops[i]; /* * Check that this is a type that we know how to manipulate and * the protocol makes sense here. The family can still reject the * protocol later. */ if ((type != SOCK_STREAM && type != SOCK_DGRAM && type != SOCK_SEQPACKET && type != SOCK_RAW && type != SOCK_PACKET) || protocol < 0) return(-EINVAL); /* * Allocate the socket and allow the family to set things up. if * the protocol is 0, the family is instructed to select an appropriate * default. */ if (!(sock = sock_alloc())) { printk(KERN_WARNING "socket: no more sockets\n"); return(-ENOSR); /* Was: EAGAIN, but we are out of system resources! */ } sock->type = type; sock->ops = ops; if ((i = sock->ops->create(sock, protocol)) < 0) { sock_release(sock); return(i); } if ((fd = get_fd(SOCK_INODE(sock))) < 0) { sock_release(sock); return fd; } sock->file=current->files->fd[fd]; return(fd); } /* * Create a pair of connected sockets. */ asmlinkage int sys_socketpair(int family, int type, int protocol, int usockvec[2]) { int fd1, fd2, i; struct socket *sock1, *sock2; int er; /* * Obtain the first socket and check if the underlying protocol * supports the socketpair call. */ if ((fd1 = sys_socket(family, type, protocol)) < 0) return(fd1); sock1 = sockfd_lookup(fd1, &er); if (!sock1->ops->socketpair) { sockfd_put(sock1); sys_close(fd1); return(-EINVAL); } /* * Now grab another socket and try to connect the two together. */ if ((fd2 = sys_socket(family, type, protocol)) < 0) { sockfd_put(sock1); sys_close(fd1); return(-EINVAL); } sock2 = sockfd_lookup(fd2, &er); if ((i = sock1->ops->socketpair(sock1, sock2)) < 0) { sockfd_put(sock1); sys_close(fd1); sockfd_put(sock2); sys_close(fd2); return(i); } sock1->conn = sock2; sock2->conn = sock1; sock1->state = SS_CONNECTED; sock2->state = SS_CONNECTED; er=verify_area(VERIFY_WRITE, usockvec, sizeof(usockvec)); if(er) { sockfd_put(sock1); sys_close(fd1); sockfd_put(sock2); sys_close(fd2); return er; } put_user(fd1, &usockvec[0]); put_user(fd2, &usockvec[1]); sockfd_put(sock1); sockfd_put(sock2); return(0); } /* * Bind a name to a socket. Nothing much to do here since it's * the protocol's responsibility to handle the local address. * * We move the socket address to kernel space before we call * the protocol layer (having also checked the address is ok). */ asmlinkage int sys_bind(int fd, struct sockaddr *umyaddr, int addrlen) { struct socket *sock; char address[MAX_SOCK_ADDR]; int err; if (!(sock = sockfd_lookup(fd, &err))) return err; if((err=move_addr_to_kernel(umyaddr,addrlen,address))<0) goto out; if ((err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen)) > 0) err = 0; out: sockfd_put(sock); return err; } /* * Perform a listen. Basically, we allow the protocol to do anything * necessary for a listen, and if that works, we mark the socket as * ready for listening. */ asmlinkage int sys_listen(int fd, int backlog) { struct socket *sock; int err=-EOPNOTSUPP; if (!(sock = sockfd_lookup(fd, &err))) return err; if (sock->state != SS_UNCONNECTED) { err=-EINVAL; goto out; } if (sock->ops && sock->ops->listen) { err=sock->ops->listen(sock, backlog); if(!err) sock->flags |= SO_ACCEPTCON; } out: sockfd_put(sock); return(err); } /* * For accept, we attempt to create a new socket, set up the link * with the client, wake up the client, then return the new * connected fd. We collect the address of the connector in kernel * space and move it to user at the very end. This is buggy because * we open the socket then return an error. */ asmlinkage int sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen) { struct socket *sock, *newsock; int i; char address[MAX_SOCK_ADDR]; int len; if (!(sock = sockfd_lookup(fd, &i))) return i; if (sock->state != SS_UNCONNECTED || (!(sock->flags & SO_ACCEPTCON))) { sockfd_put(sock); return(-EINVAL); } if (!(newsock = sock_alloc())) { printk(KERN_WARNING "accept: no more sockets\n"); sockfd_put(sock); return(-ENOSR); /* Was: EAGAIN, but we are out of system resources! */ } newsock->type = sock->type; newsock->ops = sock->ops; if ((i = sock->ops->dup(newsock, sock)) < 0) { sock_release(newsock); sockfd_put(sock); return(i); } i = newsock->ops->accept(sock, newsock, sock->file->f_flags); if ( i < 0) { sock_release(newsock); sockfd_put(sock); return(i); } if ((fd = get_fd(SOCK_INODE(newsock))) < 0) { sock_release(newsock); sockfd_put(sock); return(-EINVAL); } newsock->file=current->files->fd[fd]; if (upeer_sockaddr) { newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 1); move_addr_to_user(address,len, upeer_sockaddr, upeer_addrlen); } sockfd_put(sock); return(fd); } /* * Attempt to connect to a socket with the server address. The address * is in user space so we verify it is OK and move it to kernel space. */ asmlinkage int sys_connect(int fd, struct sockaddr *uservaddr, int addrlen) { struct socket *sock; char address[MAX_SOCK_ADDR]; int err; if (!(sock = sockfd_lookup(fd, &err))) return(err); if((err=move_addr_to_kernel(uservaddr,addrlen,address))<0) goto out; switch(sock->state) { case SS_UNCONNECTED: /* This is ok... continue with connect */ break; case SS_CONNECTED: /* Socket is already connected */ if(sock->type == SOCK_DGRAM) /* Hack for now - move this all into the protocol */ break; err = -EISCONN; goto out; case SS_CONNECTING: /* Not yet connected... we will check this. */ /* * FIXME: for all protocols what happens if you start * an async connect fork and both children connect. Clean * this up in the protocols! */ break; default: err = -EINVAL; goto out; } err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, sock->file->f_flags); if (err > 0) err = 0; out: sockfd_put(sock); return err; } /* * Get the local address ('name') of a socket object. Move the obtained * name to user space. */ asmlinkage int sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len) { struct socket *sock; char address[MAX_SOCK_ADDR]; int len; int err; if (!(sock = sockfd_lookup(fd, &err))) return err; err=sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); if(err) goto out; if((err=move_addr_to_user(address,len, usockaddr, usockaddr_len))>0) err = 0; out: sockfd_put(sock); return err; } /* * Get the remote address ('name') of a socket object. Move the obtained * name to user space. */ asmlinkage int sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len) { struct socket *sock; char address[MAX_SOCK_ADDR]; int len; int err; if (!(sock = sockfd_lookup(fd, &err))) return err; err=sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); if(err) goto out; if((err=move_addr_to_user(address,len, usockaddr, usockaddr_len))>0) err = 0; out: sockfd_put(sock); return err; } /* * Send a datagram down a socket. The datagram as with write() is * in user space. We check it can be read. */ asmlinkage int sys_send(int fd, void * buff, int len, unsigned flags) { struct socket *sock; int err; struct msghdr msg; struct iovec iov; if(len<0) return -EINVAL; err=verify_area(VERIFY_READ, buff, len); if(err) return err; if (!(sock = sockfd_lookup(fd, &err))) return err; iov.iov_base=buff; iov.iov_len=len; msg.msg_name=NULL; msg.msg_iov=&iov; msg.msg_iovlen=1; msg.msg_control=NULL; err=sock->ops->sendmsg(sock, &msg, len, (sock->file->f_flags & O_NONBLOCK), flags); sockfd_put(sock); return err; } /* * Send a datagram to a given address. We move the address into kernel * space and check the user space data area is readable before invoking * the protocol. */ asmlinkage int sys_sendto(int fd, void * buff, int len, unsigned flags, struct sockaddr *addr, int addr_len) { struct socket *sock; char address[MAX_SOCK_ADDR]; int err; struct msghdr msg; struct iovec iov; if(len<0) return -EINVAL; err=verify_area(VERIFY_READ,buff,len); if(err) return err; if (!(sock = sockfd_lookup(fd, &err))) return err; iov.iov_base=buff; iov.iov_len=len; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov=&iov; msg.msg_iovlen=1; msg.msg_control=NULL; if (addr && addr_len) { err=move_addr_to_kernel(addr,addr_len,address); if (err < 0) { sockfd_put(sock); return err; } msg.msg_name=address; msg.msg_namelen=addr_len; } err=sock->ops->sendmsg(sock, &msg, len, (sock->file->f_flags & O_NONBLOCK), flags); sockfd_put(sock); return err; } /* * Receive a datagram from a socket. Call the protocol recvmsg method */ asmlinkage int sys_recv(int fd, void * ubuf, int size, unsigned flags) { struct iovec iov; struct msghdr msg; struct socket *sock; int err; if(size<0) return -EINVAL; if(size==0) return 0; err=verify_area(VERIFY_WRITE, ubuf, size); if(err) return err; if (!(sock = sockfd_lookup(fd, &err))) return err; msg.msg_name=NULL; msg.msg_iov=&iov; msg.msg_iovlen=1; msg.msg_control=NULL; iov.iov_base=ubuf; iov.iov_len=size; err=sock->ops->recvmsg(sock, &msg, size,(sock->file->f_flags & O_NONBLOCK), flags,&msg.msg_namelen); sockfd_put(sock); return err; } /* * Receive a frame from the socket and optionally record the address of the * sender. We verify the buffers are writable and if needed move the * sender address from kernel to user space. */ asmlinkage int sys_recvfrom(int fd, void * ubuf, int size, unsigned flags, struct sockaddr *addr, int *addr_len) { struct socket *sock; struct iovec iov; struct msghdr msg; char address[MAX_SOCK_ADDR]; int err; int alen; if(size<0) return -EINVAL; if(size==0) return 0; err=verify_area(VERIFY_WRITE,ubuf,size); if(err) return err; if (!(sock = sockfd_lookup(fd, &err))) return err; msg.msg_control=NULL; msg.msg_iovlen=1; msg.msg_iov=&iov; iov.iov_len=size; iov.iov_base=ubuf; msg.msg_name=address; msg.msg_namelen=MAX_SOCK_ADDR; size=sock->ops->recvmsg(sock, &msg, size, (sock->file->f_flags & O_NONBLOCK), flags, &alen); sockfd_put(sock); if(size<0) return size; if(addr!=NULL && (err=move_addr_to_user(address,alen, addr, addr_len))<0) return err; return size; } /* * Set a socket option. Because we don't know the option lengths we have * to pass the user mode parameter for the protocols to sort out. */ asmlinkage int sys_setsockopt(int fd, int level, int optname, char *optval, int optlen) { struct socket *sock; int err; if (!(sock = sockfd_lookup(fd, &err))) return err; err=sock->ops->setsockopt(sock, level, optname, optval, optlen); sockfd_put(sock); return err; } /* * Get a socket option. Because we don't know the option lengths we have * to pass a user mode parameter for the protocols to sort out. */ asmlinkage int sys_getsockopt(int fd, int level, int optname, char *optval, int *optlen) { struct socket *sock; int err; if (!(sock = sockfd_lookup(fd, &err))) return err; if (!sock->ops->getsockopt) { sockfd_put(sock); return(0); } err=sock->ops->getsockopt(sock, level, optname, optval, optlen); sockfd_put(sock); return err; } /* * Shutdown a socket. */ asmlinkage int sys_shutdown(int fd, int how) { struct socket *sock; int err; if (!(sock = sockfd_lookup(fd, &err))) return err; err=sock->ops->shutdown(sock, how); sockfd_put(sock); return err; } /* * BSD sendmsg interface */ asmlinkage int sys_sendmsg(int fd, struct msghdr *msg, unsigned int flags) { struct socket *sock; char address[MAX_SOCK_ADDR]; struct iovec iov[UIO_MAXIOV]; struct msghdr msg_sys; int err; int total_len; err=verify_area(VERIFY_READ, msg,sizeof(struct msghdr)); if(err) return err; if (!(sock = sockfd_lookup(fd, &err))) return err; if(sock->ops->sendmsg==NULL) { err = -EOPNOTSUPP; goto out; } memcpy_fromfs(&msg_sys,msg,sizeof(struct msghdr)); /* do not move before msg_sys is valid */ if(msg_sys.msg_iovlen>UIO_MAXIOV) { err = -EINVAL; goto out; } /* This will also move the address data into kernel space */ err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); if (err < 0) goto out; total_len=err; err=sock->ops->sendmsg(sock, &msg_sys, total_len, (sock->file->f_flags&O_NONBLOCK), flags); out: sockfd_put(sock); return err; } /* * BSD recvmsg interface */ asmlinkage int sys_recvmsg(int fd, struct msghdr *msg, unsigned int flags) { struct socket *sock; struct iovec iov[UIO_MAXIOV]; struct msghdr msg_sys; int err; int total_len; int len; /* kernel mode address */ char addr[MAX_SOCK_ADDR]; int addr_len; /* user mode address pointers */ struct sockaddr *uaddr; int *uaddr_len; err=verify_area(VERIFY_READ, msg,sizeof(struct msghdr)); if(err) return err; memcpy_fromfs(&msg_sys,msg,sizeof(struct msghdr)); if(msg_sys.msg_iovlen>UIO_MAXIOV) return -EINVAL; if (!(sock = sockfd_lookup(fd, &err))) return err; /* * save the user-mode address (verify_iovec will change the * kernel msghdr to use the kernel address space) */ uaddr = msg_sys.msg_name; uaddr_len = &msg->msg_namelen; err=verify_iovec(&msg_sys,iov,addr, VERIFY_WRITE); if(err<0) goto out; total_len=err; if(sock->ops->recvmsg==NULL) { err = -EOPNOTSUPP; goto out; } err=sock->ops->recvmsg(sock, &msg_sys, total_len, (sock->file->f_flags&O_NONBLOCK), flags, &addr_len); if(err<0) goto out; len=err; if (uaddr != NULL) { err = move_addr_to_user(addr, addr_len, uaddr, uaddr_len); if (err) goto out; } sockfd_put(sock); return len; out: sockfd_put(sock); return err; } /* * Perform a file control on a socket file descriptor. */ int sock_fcntl(struct file *filp, unsigned int cmd, unsigned long arg) { struct socket *sock; sock = socki_lookup (filp->f_inode); if (sock != NULL && sock->ops != NULL && sock->ops->fcntl != NULL) return(sock->ops->fcntl(sock, cmd, arg)); return(-EINVAL); } /* * System call vectors. Since I (RIB) want to rewrite sockets as streams, * we have this level of indirection. Not a lot of overhead, since more of * the work is done via read/write/select directly. * * I'm now expanding this up to a higher level to separate the assorted * kernel/user space manipulations and global assumptions from the protocol * layers proper - AC. * * Argument checking cleaned up. Saved 20% in size. */ asmlinkage int sys_socketcall(int call, unsigned long *args) { int er; unsigned char nargs[18]={0,3,3,3,2,3,3,3, 4,4,4,6,6,2,5,5,3,3}; unsigned long a0,a1; if(call<1||call>SYS_RECVMSG) return -EINVAL; er=verify_area(VERIFY_READ, args, nargs[call] * sizeof(unsigned long)); if(er) return er; a0=get_user(args); a1=get_user(args+1); switch(call) { case SYS_SOCKET: return(sys_socket(a0,a1,get_user(args+2))); case SYS_BIND: return(sys_bind(a0,(struct sockaddr *)a1, get_user(args+2))); case SYS_CONNECT: return(sys_connect(a0, (struct sockaddr *)a1, get_user(args+2))); case SYS_LISTEN: return(sys_listen(a0,a1)); case SYS_ACCEPT: return(sys_accept(a0,(struct sockaddr *)a1, (int *)get_user(args+2))); case SYS_GETSOCKNAME: return(sys_getsockname(a0,(struct sockaddr *)a1, (int *)get_user(args+2))); case SYS_GETPEERNAME: return(sys_getpeername(a0, (struct sockaddr *)a1, (int *)get_user(args+2))); case SYS_SOCKETPAIR: return(sys_socketpair(a0,a1, get_user(args+2), (int *)get_user(args+3))); case SYS_SEND: return(sys_send(a0, (void *)a1, get_user(args+2), get_user(args+3))); case SYS_SENDTO: return(sys_sendto(a0,(void *)a1, get_user(args+2), get_user(args+3), (struct sockaddr *)get_user(args+4), get_user(args+5))); case SYS_RECV: return(sys_recv(a0, (void *)a1, get_user(args+2), get_user(args+3))); case SYS_RECVFROM: return(sys_recvfrom(a0, (void *)a1, get_user(args+2), get_user(args+3), (struct sockaddr *)get_user(args+4), (int *)get_user(args+5))); case SYS_SHUTDOWN: return(sys_shutdown(a0,a1)); case SYS_SETSOCKOPT: return(sys_setsockopt(a0, a1, get_user(args+2), (char *)get_user(args+3), get_user(args+4))); case SYS_GETSOCKOPT: return(sys_getsockopt(a0, a1, get_user(args+2), (char *)get_user(args+3), (int *)get_user(args+4))); case SYS_SENDMSG: return sys_sendmsg(a0, (struct msghdr *) a1, get_user(args+2)); case SYS_RECVMSG: return sys_recvmsg(a0, (struct msghdr *) a1, get_user(args+2)); } return -EINVAL; /* to keep gcc happy */ } /* * This function is called by a protocol handler that wants to * advertise its address family, and have it linked into the * SOCKET module. */ int sock_register(int family, struct proto_ops *ops) { int i; cli(); for(i = 0; i < NPROTO; i++) { if (pops[i] != NULL) continue; pops[i] = ops; pops[i]->family = family; sti(); return(i); } sti(); return(-ENOMEM); } /* * This function is called by a protocol handler that wants to * remove its address family, and have it unlinked from the * SOCKET module. */ int sock_unregister(int family) { int i; cli(); for(i = 0; i < NPROTO; i++) { if (pops[i] == NULL) continue; if (pops[i]->family == family) { pops[i]=NULL; sti(); return(i); } } sti(); return(-ENOENT); } void proto_init(void) { extern struct net_proto protocols[]; /* Network protocols */ struct net_proto *pro; /* Kick all configured protocols. */ pro = protocols; while (pro->name != NULL) { (*pro->init_func)(pro); pro++; } /* We're all done... */ } void sock_init(void) { int i; printk(KERN_INFO "Swansea University Computer Society NET3.035 for Linux 2.0\n"); /* * Initialize all address (protocol) families. */ for (i = 0; i < NPROTO; ++i) pops[i] = NULL; /* * The netlink device handler may be needed early. */ #ifdef CONFIG_NETLINK init_netlink(); #endif /* * Attach the routing/device information port. */ #if defined(CONFIG_RTNETLINK) netlink_attach(NETLINK_ROUTE, netlink_donothing); #endif /* * Attach the firewall module if configured */ #ifdef CONFIG_FIREWALL fwchain_init(); #endif /* * Initialize the protocols module. */ proto_init(); /* * Export networking symbols to the world. */ #if defined(CONFIG_MODULES) && defined(CONFIG_NET) export_net_symbols(); #endif } int socket_get_info(char *buffer, char **start, off_t offset, int length) { int len = sprintf(buffer, "sockets: used %d\n", sockets_in_use); if (offset >= len) { *start = buffer; return 0; } *start = buffer + offset; len -= offset; if (len > length) len = length; return len; }