URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rtems/] [c/] [src/] [lib/] [libcpu/] [m68k/] [m68040/] [fpsp/] [bindec.S] - Rev 1765
Compare with Previous | Blame | View Log
//// $Id: bindec.S,v 1.2 2001-09-27 12:01:22 chris Exp $//// bindec.sa 3.4 1/3/91//// bindec//// Description:// Converts an input in extended precision format// to bcd format.//// Input:// a0 points to the input extended precision value// value in memory; d0 contains the k-factor sign-extended// to 32-bits. The input may be either normalized,// unnormalized, or denormalized.//// Output: result in the FP_SCR1 space on the stack.//// Saves and Modifies: D2-D7,A2,FP2//// Algorithm://// A1. Set RM and size ext; Set SIGMA = sign of input.// The k-factor is saved for use in d7. Clear the// BINDEC_FLG for separating normalized/denormalized// input. If input is unnormalized or denormalized,// normalize it.//// A2. Set X = abs(input).//// A3. Compute ILOG.// ILOG is the log base 10 of the input value. It is// approximated by adding e + 0.f when the original// value is viewed as 2^^e * 1.f in extended precision.// This value is stored in d6.//// A4. Clr INEX bit.// The operation in A3 above may have set INEX2.//// A5. Set ICTR = 0;// ICTR is a flag used in A13. It must be set before the// loop entry A6.//// A6. Calculate LEN.// LEN is the number of digits to be displayed. The// k-factor can dictate either the total number of digits,// if it is a positive number, or the number of digits// after the decimal point which are to be included as// significant. See the 68882 manual for examples.// If LEN is computed to be greater than 17, set OPERR in// USER_FPSR. LEN is stored in d4.//// A7. Calculate SCALE.// SCALE is equal to 10^ISCALE, where ISCALE is the number// of decimal places needed to insure LEN integer digits// in the output before conversion to bcd. LAMBDA is the// sign of ISCALE, used in A9. Fp1 contains// 10^^(abs(ISCALE)) using a rounding mode which is a// function of the original rounding mode and the signs// of ISCALE and X. A table is given in the code.//// A8. Clr INEX; Force RZ.// The operation in A3 above may have set INEX2.// RZ mode is forced for the scaling operation to insure// only one rounding error. The grs bits are collected in// the INEX flag for use in A10.//// A9. Scale X -> Y.// The mantissa is scaled to the desired number of// significant digits. The excess digits are collected// in INEX2.//// A10. Or in INEX.// If INEX is set, round error occurred. This is// compensated for by 'or-ing' in the INEX2 flag to// the lsb of Y.//// A11. Restore original FPCR; set size ext.// Perform FINT operation in the user's rounding mode.// Keep the size to extended.//// A12. Calculate YINT = FINT(Y) according to user's rounding// mode. The FPSP routine sintd0 is used. The output// is in fp0.//// A13. Check for LEN digits.// If the int operation results in more than LEN digits,// or less than LEN -1 digits, adjust ILOG and repeat from// A6. This test occurs only on the first pass. If the// result is exactly 10^LEN, decrement ILOG and divide// the mantissa by 10.//// A14. Convert the mantissa to bcd.// The binstr routine is used to convert the LEN digit// mantissa to bcd in memory. The input to binstr is// to be a fraction; i.e. (mantissa)/10^LEN and adjusted// such that the decimal point is to the left of bit 63.// The bcd digits are stored in the correct position in// the final string area in memory.//// A15. Convert the exponent to bcd.// As in A14 above, the exp is converted to bcd and the// digits are stored in the final string.// Test the length of the final exponent string. If the// length is 4, set operr.//// A16. Write sign bits to final string.//// Implementation Notes://// The registers are used as follows://// d0: scratch; LEN input to binstr// d1: scratch// d2: upper 32-bits of mantissa for binstr// d3: scratch;lower 32-bits of mantissa for binstr// d4: LEN// d5: LAMBDA/ICTR// d6: ILOG// d7: k-factor// a0: ptr for original operand/final result// a1: scratch pointer// a2: pointer to FP_X; abs(original value) in ext// fp0: scratch// fp1: scratch// fp2: scratch// F_SCR1:// F_SCR2:// L_SCR1:// L_SCR2:// Copyright (C) Motorola, Inc. 1990// All Rights Reserved//// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA// The copyright notice above does not evidence any// actual or intended publication of such source code.//BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package#include "fpsp.defs"|section 8// Constants in extended precisionLOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000LOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000// Constants in single precisionFONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000FTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000FTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000F4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000RBDTBL: .byte 0,0,0,0.byte 3,3,2,2.byte 3,2,2,3.byte 2,3,3,2|xref binstr|xref sintdo|xref ptenrn,ptenrm,ptenrp.global bindec.global sc_mulbindec:moveml %d2-%d7/%a2,-(%a7)fmovemx %fp0-%fp2,-(%a7)// A1. Set RM and size ext. Set SIGMA = sign input;// The k-factor is saved for use in d7. Clear BINDEC_FLG for// separating normalized/denormalized input. If the input// is a denormalized number, set the BINDEC_FLG memory word// to signal denorm. If the input is unnormalized, normalize// the input and test for denormalized result.//fmovel #rm_mode,%FPCR //set RM and extmovel (%a0),L_SCR2(%a6) //save exponent for sign checkmovel %d0,%d7 //move k-factor to d7clrb BINDEC_FLG(%a6) //clr norm/denorm flagmovew STAG(%a6),%d0 //get stagandiw #0xe000,%d0 //isolate stag bitsbeq A2_str //if zero, input is norm//// Normalize the denorm//un_de_norm:movew (%a0),%d0andiw #0x7fff,%d0 //strip sign of normalized expmovel 4(%a0),%d1movel 8(%a0),%d2norm_loop:subw #1,%d0lsll #1,%d2roxll #1,%d1tstl %d1bges norm_loop//// Test if the normalized input is denormalized//tstw %d0bgts pos_exp //if greater than zero, it is a normst BINDEC_FLG(%a6) //set flag for denormpos_exp:andiw #0x7fff,%d0 //strip sign of normalized expmovew %d0,(%a0)movel %d1,4(%a0)movel %d2,8(%a0)// A2. Set X = abs(input).//A2_str:movel (%a0),FP_SCR2(%a6) // move input to work spacemovel 4(%a0),FP_SCR2+4(%a6) // move input to work spacemovel 8(%a0),FP_SCR2+8(%a6) // move input to work spaceandil #0x7fffffff,FP_SCR2(%a6) //create abs(X)// A3. Compute ILOG.// ILOG is the log base 10 of the input value. It is approx-// imated by adding e + 0.f when the original value is viewed// as 2^^e * 1.f in extended precision. This value is stored// in d6.//// Register usage:// Input/Output// d0: k-factor/exponent// d2: x/x// d3: x/x// d4: x/x// d5: x/x// d6: x/ILOG// d7: k-factor/Unchanged// a0: ptr for original operand/final result// a1: x/x// a2: x/x// fp0: x/float(ILOG)// fp1: x/x// fp2: x/x// F_SCR1:x/x// F_SCR2:Abs(X)/Abs(X) with $3fff exponent// L_SCR1:x/x// L_SCR2:first word of X packed/Unchangedtstb BINDEC_FLG(%a6) //check for denormbeqs A3_cont //if clr, continue with normmovel #-4933,%d6 //force ILOG = -4933bras A4_strA3_cont:movew FP_SCR2(%a6),%d0 //move exp to d0movew #0x3fff,FP_SCR2(%a6) //replace exponent with 0x3ffffmovex FP_SCR2(%a6),%fp0 //now fp0 has 1.fsubw #0x3fff,%d0 //strip off biasfaddw %d0,%fp0 //add in expfsubs FONE,%fp0 //subtract off 1.0fbge pos_res //if pos, branchfmulx LOG2UP1,%fp0 //if neg, mul by LOG2UP1fmovel %fp0,%d6 //put ILOG in d6 as a lwordbras A4_str //go move out ILOGpos_res:fmulx LOG2,%fp0 //if pos, mul by LOG2fmovel %fp0,%d6 //put ILOG in d6 as a lword// A4. Clr INEX bit.// The operation in A3 above may have set INEX2.A4_str:fmovel #0,%FPSR //zero all of fpsr - nothing needed// A5. Set ICTR = 0;// ICTR is a flag used in A13. It must be set before the// loop entry A6. The lower word of d5 is used for ICTR.clrw %d5 //clear ICTR// A6. Calculate LEN.// LEN is the number of digits to be displayed. The k-factor// can dictate either the total number of digits, if it is// a positive number, or the number of digits after the// original decimal point which are to be included as// significant. See the 68882 manual for examples.// If LEN is computed to be greater than 17, set OPERR in// USER_FPSR. LEN is stored in d4.//// Register usage:// Input/Output// d0: exponent/Unchanged// d2: x/x/scratch// d3: x/x// d4: exc picture/LEN// d5: ICTR/Unchanged// d6: ILOG/Unchanged// d7: k-factor/Unchanged// a0: ptr for original operand/final result// a1: x/x// a2: x/x// fp0: float(ILOG)/Unchanged// fp1: x/x// fp2: x/x// F_SCR1:x/x// F_SCR2:Abs(X) with $3fff exponent/Unchanged// L_SCR1:x/x// L_SCR2:first word of X packed/UnchangedA6_str:tstl %d7 //branch on sign of kbles k_neg //if k <= 0, LEN = ILOG + 1 - kmovel %d7,%d4 //if k > 0, LEN = kbras len_ck //skip to LEN checkk_neg:movel %d6,%d4 //first load ILOG to d4subl %d7,%d4 //subtract off kaddql #1,%d4 //add in the 1len_ck:tstl %d4 //LEN check: branch on sign of LENbles LEN_ng //if neg, set LEN = 1cmpl #17,%d4 //test if LEN > 17bles A7_str //if not, forget itmovel #17,%d4 //set max LEN = 17tstl %d7 //if negative, never set OPERRbles A7_str //if positive, continueorl #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSRbras A7_str //finished hereLEN_ng:moveql #1,%d4 //min LEN is 1// A7. Calculate SCALE.// SCALE is equal to 10^ISCALE, where ISCALE is the number// of decimal places needed to insure LEN integer digits// in the output before conversion to bcd. LAMBDA is the sign// of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using// the rounding mode as given in the following table (see// Coonen, p. 7.23 as ref.; however, the SCALE variable is// of opposite sign in bindec.sa from Coonen).//// Initial USE// FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5]// ----------------------------------------------// RN 00 0 0 00/0 RN// RN 00 0 1 00/0 RN// RN 00 1 0 00/0 RN// RN 00 1 1 00/0 RN// RZ 01 0 0 11/3 RP// RZ 01 0 1 11/3 RP// RZ 01 1 0 10/2 RM// RZ 01 1 1 10/2 RM// RM 10 0 0 11/3 RP// RM 10 0 1 10/2 RM// RM 10 1 0 10/2 RM// RM 10 1 1 11/3 RP// RP 11 0 0 10/2 RM// RP 11 0 1 11/3 RP// RP 11 1 0 11/3 RP// RP 11 1 1 10/2 RM//// Register usage:// Input/Output// d0: exponent/scratch - final is 0// d2: x/0 or 24 for A9// d3: x/scratch - offset ptr into PTENRM array// d4: LEN/Unchanged// d5: 0/ICTR:LAMBDA// d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))// d7: k-factor/Unchanged// a0: ptr for original operand/final result// a1: x/ptr to PTENRM array// a2: x/x// fp0: float(ILOG)/Unchanged// fp1: x/10^ISCALE// fp2: x/x// F_SCR1:x/x// F_SCR2:Abs(X) with $3fff exponent/Unchanged// L_SCR1:x/x// L_SCR2:first word of X packed/UnchangedA7_str:tstl %d7 //test sign of kbgts k_pos //if pos and > 0, skip thiscmpl %d6,%d7 //test k - ILOGblts k_pos //if ILOG >= k, skip thismovel %d7,%d6 //if ((k<0) & (ILOG < k)) ILOG = kk_pos:movel %d6,%d0 //calc ILOG + 1 - LEN in d0addql #1,%d0 //add the 1subl %d4,%d0 //sub off LENswap %d5 //use upper word of d5 for LAMBDAclrw %d5 //set it zero initiallyclrw %d2 //set up d2 for very small casetstl %d0 //test sign of ISCALEbges iscale //if pos, skip next instaddqw #1,%d5 //if neg, set LAMBDA truecmpl #0xffffecd4,%d0 //test iscale <= -4908bgts no_inf //if false, skip restaddil #24,%d0 //add in 24 to iscalemovel #24,%d2 //put 24 in d2 for A9no_inf:negl %d0 //and take abs of ISCALEiscale:fmoves FONE,%fp1 //init fp1 to 1bfextu USER_FPCR(%a6){#26:#2},%d1 //get initial rmode bitslslw #1,%d1 //put them in bits 2:1addw %d5,%d1 //add in LAMBDAlslw #1,%d1 //put them in bits 3:1tstl L_SCR2(%a6) //test sign of original xbges x_pos //if pos, don't set bit 0addql #1,%d1 //if neg, set bit 0x_pos:leal RBDTBL,%a2 //load rbdtbl basemoveb (%a2,%d1),%d3 //load d3 with new rmodelsll #4,%d3 //put bits in proper positionfmovel %d3,%fpcr //load bits into fpulsrl #4,%d3 //put bits in proper positiontstb %d3 //decode new rmode for pten tablebnes not_rn //if zero, it is RNleal PTENRN,%a1 //load a1 with RN table basebras rmode //exit decodenot_rn:lsrb #1,%d3 //get lsb in carrybccs not_rp //if carry clear, it is RMleal PTENRP,%a1 //load a1 with RP table basebras rmode //exit decodenot_rp:leal PTENRM,%a1 //load a1 with RM table basermode:clrl %d3 //clr table indexe_loop:lsrl #1,%d0 //shift next bit into carrybccs e_next //if zero, skip the mulfmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no)e_next:addl #12,%d3 //inc d3 to next pwrten table entrytstl %d0 //test if ISCALE is zerobnes e_loop //if not, loop// A8. Clr INEX; Force RZ.// The operation in A3 above may have set INEX2.// RZ mode is forced for the scaling operation to insure// only one rounding error. The grs bits are collected in// the INEX flag for use in A10.//// Register usage:// Input/Outputfmovel #0,%FPSR //clr INEXfmovel #rz_mode,%FPCR //set RZ rounding mode// A9. Scale X -> Y.// The mantissa is scaled to the desired number of significant// digits. The excess digits are collected in INEX2. If mul,// Check d2 for excess 10 exponential value. If not zero,// the iscale value would have caused the pwrten calculation// to overflow. Only a negative iscale can cause this, so// multiply by 10^(d2), which is now only allowed to be 24,// with a multiply by 10^8 and 10^16, which is exact since// 10^24 is exact. If the input was denormalized, we must// create a busy stack frame with the mul command and the// two operands, and allow the fpu to complete the multiply.//// Register usage:// Input/Output// d0: FPCR with RZ mode/Unchanged// d2: 0 or 24/unchanged// d3: x/x// d4: LEN/Unchanged// d5: ICTR:LAMBDA// d6: ILOG/Unchanged// d7: k-factor/Unchanged// a0: ptr for original operand/final result// a1: ptr to PTENRM array/Unchanged// a2: x/x// fp0: float(ILOG)/X adjusted for SCALE (Y)// fp1: 10^ISCALE/Unchanged// fp2: x/x// F_SCR1:x/x// F_SCR2:Abs(X) with $3fff exponent/Unchanged// L_SCR1:x/x// L_SCR2:first word of X packed/UnchangedA9_str:fmovex (%a0),%fp0 //load X from memoryfabsx %fp0 //use abs(X)tstw %d5 //LAMBDA is in lower word of d5bne sc_mul //if neg (LAMBDA = 1), scale by mulfdivx %fp1,%fp0 //calculate X / SCALE -> Y to fp0bras A10_st //branch to A10sc_mul:tstb BINDEC_FLG(%a6) //check for denormbeqs A9_norm //if norm, continue with mulfmovemx %fp1-%fp1,-(%a7) //load ETEMP with 10^ISCALEmovel 8(%a0),-(%a7) //load FPTEMP with input argmovel 4(%a0),-(%a7)movel (%a0),-(%a7)movel #18,%d3 //load count for busy stackA9_loop:clrl -(%a7) //clear lword on stackdbf %d3,A9_loopmoveb VER_TMP(%a6),(%a7) //write current version numbermoveb #BUSY_SIZE-4,1(%a7) //write current busy sizemoveb #0x10,0x44(%a7) //set fcefpte[15] bitmovew #0x0023,0x40(%a7) //load cmdreg1b with mul commandmoveb #0xfe,0x8(%a7) //load all 1s to cu savepcfrestore (%a7)+ //restore frame to fpu for completionfmulx 36(%a1),%fp0 //multiply fp0 by 10^8fmulx 48(%a1),%fp0 //multiply fp0 by 10^16bras A10_stA9_norm:tstw %d2 //test for small exp casebeqs A9_con //if zero, continue as normalfmulx 36(%a1),%fp0 //multiply fp0 by 10^8fmulx 48(%a1),%fp0 //multiply fp0 by 10^16A9_con:fmulx %fp1,%fp0 //calculate X * SCALE -> Y to fp0// A10. Or in INEX.// If INEX is set, round error occurred. This is compensated// for by 'or-ing' in the INEX2 flag to the lsb of Y.//// Register usage:// Input/Output// d0: FPCR with RZ mode/FPSR with INEX2 isolated// d2: x/x// d3: x/x// d4: LEN/Unchanged// d5: ICTR:LAMBDA// d6: ILOG/Unchanged// d7: k-factor/Unchanged// a0: ptr for original operand/final result// a1: ptr to PTENxx array/Unchanged// a2: x/ptr to FP_SCR2(a6)// fp0: Y/Y with lsb adjusted// fp1: 10^ISCALE/Unchanged// fp2: x/xA10_st:fmovel %FPSR,%d0 //get FPSRfmovex %fp0,FP_SCR2(%a6) //move Y to memoryleal FP_SCR2(%a6),%a2 //load a2 with ptr to FP_SCR2btstl #9,%d0 //check if INEX2 setbeqs A11_st //if clear, skip restoril #1,8(%a2) //or in 1 to lsb of mantissafmovex FP_SCR2(%a6),%fp0 //write adjusted Y back to fpu// A11. Restore original FPCR; set size ext.// Perform FINT operation in the user's rounding mode. Keep// the size to extended. The sintdo entry point in the sint// routine expects the FPCR value to be in USER_FPCR for// mode and precision. The original FPCR is saved in L_SCR1.A11_st:movel USER_FPCR(%a6),L_SCR1(%a6) //save it for laterandil #0x00000030,USER_FPCR(%a6) //set size to ext,// ;block exceptions// A12. Calculate YINT = FINT(Y) according to user's rounding mode.// The FPSP routine sintd0 is used. The output is in fp0.//// Register usage:// Input/Output// d0: FPSR with AINEX cleared/FPCR with size set to ext// d2: x/x/scratch// d3: x/x// d4: LEN/Unchanged// d5: ICTR:LAMBDA/Unchanged// d6: ILOG/Unchanged// d7: k-factor/Unchanged// a0: ptr for original operand/src ptr for sintdo// a1: ptr to PTENxx array/Unchanged// a2: ptr to FP_SCR2(a6)/Unchanged// a6: temp pointer to FP_SCR2(a6) - orig value saved and restored// fp0: Y/YINT// fp1: 10^ISCALE/Unchanged// fp2: x/x// F_SCR1:x/x// F_SCR2:Y adjusted for inex/Y with original exponent// L_SCR1:x/original USER_FPCR// L_SCR2:first word of X packed/UnchangedA12_st:moveml %d0-%d1/%a0-%a1,-(%a7) //save regs used by sintd0movel L_SCR1(%a6),-(%a7)movel L_SCR2(%a6),-(%a7)leal FP_SCR2(%a6),%a0 //a0 is ptr to F_SCR2(a6)fmovex %fp0,(%a0) //move Y to memory at FP_SCR2(a6)tstl L_SCR2(%a6) //test sign of original operandbges do_fint //if pos, use Yorl #0x80000000,(%a0) //if neg, use -Ydo_fint:movel USER_FPSR(%a6),-(%a7)bsr sintdo //sint routine returns int in fp0moveb (%a7),USER_FPSR(%a6)addl #4,%a7movel (%a7)+,L_SCR2(%a6)movel (%a7)+,L_SCR1(%a6)moveml (%a7)+,%d0-%d1/%a0-%a1 //restore regs used by sintmovel L_SCR2(%a6),FP_SCR2(%a6) //restore original exponentmovel L_SCR1(%a6),USER_FPCR(%a6) //restore user's FPCR// A13. Check for LEN digits.// If the int operation results in more than LEN digits,// or less than LEN -1 digits, adjust ILOG and repeat from// A6. This test occurs only on the first pass. If the// result is exactly 10^LEN, decrement ILOG and divide// the mantissa by 10. The calculation of 10^LEN cannot// be inexact, since all powers of ten upto 10^27 are exact// in extended precision, so the use of a previous power-of-ten// table will introduce no error.////// Register usage:// Input/Output// d0: FPCR with size set to ext/scratch final = 0// d2: x/x// d3: x/scratch final = x// d4: LEN/LEN adjusted// d5: ICTR:LAMBDA/LAMBDA:ICTR// d6: ILOG/ILOG adjusted// d7: k-factor/Unchanged// a0: pointer into memory for packed bcd string formation// a1: ptr to PTENxx array/Unchanged// a2: ptr to FP_SCR2(a6)/Unchanged// fp0: int portion of Y/abs(YINT) adjusted// fp1: 10^ISCALE/Unchanged// fp2: x/10^LEN// F_SCR1:x/x// F_SCR2:Y with original exponent/Unchanged// L_SCR1:original USER_FPCR/Unchanged// L_SCR2:first word of X packed/UnchangedA13_st:swap %d5 //put ICTR in lower word of d5tstw %d5 //check if ICTR = 0bne not_zr //if non-zero, go to second test//// Compute 10^(LEN-1)//fmoves FONE,%fp2 //init fp2 to 1.0movel %d4,%d0 //put LEN in d0subql #1,%d0 //d0 = LEN -1clrl %d3 //clr table indexl_loop:lsrl #1,%d0 //shift next bit into carrybccs l_next //if zero, skip the mulfmulx (%a1,%d3),%fp2 //mul by 10**(d3_bit_no)l_next:addl #12,%d3 //inc d3 to next pwrten table entrytstl %d0 //test if LEN is zerobnes l_loop //if not, loop//// 10^LEN-1 is computed for this test and A14. If the input was// denormalized, check only the case in which YINT > 10^LEN.//tstb BINDEC_FLG(%a6) //check if input was normbeqs A13_con //if norm, continue with checkingfabsx %fp0 //take abs of YINTbra test_2//// Compare abs(YINT) to 10^(LEN-1) and 10^LEN//A13_con:fabsx %fp0 //take abs of YINTfcmpx %fp2,%fp0 //compare abs(YINT) with 10^(LEN-1)fbge test_2 //if greater, do next testsubql #1,%d6 //subtract 1 from ILOGmovew #1,%d5 //set ICTRfmovel #rm_mode,%FPCR //set rmode to RMfmuls FTEN,%fp2 //compute 10^LENbra A6_str //return to A6 and recompute YINTtest_2:fmuls FTEN,%fp2 //compute 10^LENfcmpx %fp2,%fp0 //compare abs(YINT) with 10^LENfblt A14_st //if less, all is ok, go to A14fbgt fix_ex //if greater, fix and redofdivs FTEN,%fp0 //if equal, divide by 10addql #1,%d6 // and inc ILOGbras A14_st // and continue elsewherefix_ex:addql #1,%d6 //increment ILOG by 1movew #1,%d5 //set ICTRfmovel #rm_mode,%FPCR //set rmode to RMbra A6_str //return to A6 and recompute YINT//// Since ICTR <> 0, we have already been through one adjustment,// and shouldn't have another; this is to check if abs(YINT) = 10^LEN// 10^LEN is again computed using whatever table is in a1 since the// value calculated cannot be inexact.//not_zr:fmoves FONE,%fp2 //init fp2 to 1.0movel %d4,%d0 //put LEN in d0clrl %d3 //clr table indexz_loop:lsrl #1,%d0 //shift next bit into carrybccs z_next //if zero, skip the mulfmulx (%a1,%d3),%fp2 //mul by 10**(d3_bit_no)z_next:addl #12,%d3 //inc d3 to next pwrten table entrytstl %d0 //test if LEN is zerobnes z_loop //if not, loopfabsx %fp0 //get abs(YINT)fcmpx %fp2,%fp0 //check if abs(YINT) = 10^LENfbne A14_st //if not, skip thisfdivs FTEN,%fp0 //divide abs(YINT) by 10addql #1,%d6 //and inc ILOG by 1addql #1,%d4 // and inc LENfmuls FTEN,%fp2 // if LEN++, the get 10^^LEN// A14. Convert the mantissa to bcd.// The binstr routine is used to convert the LEN digit// mantissa to bcd in memory. The input to binstr is// to be a fraction; i.e. (mantissa)/10^LEN and adjusted// such that the decimal point is to the left of bit 63.// The bcd digits are stored in the correct position in// the final string area in memory.////// Register usage:// Input/Output// d0: x/LEN call to binstr - final is 0// d1: x/0// d2: x/ms 32-bits of mant of abs(YINT)// d3: x/ls 32-bits of mant of abs(YINT)// d4: LEN/Unchanged// d5: ICTR:LAMBDA/LAMBDA:ICTR// d6: ILOG// d7: k-factor/Unchanged// a0: pointer into memory for packed bcd string formation// /ptr to first mantissa byte in result string// a1: ptr to PTENxx array/Unchanged// a2: ptr to FP_SCR2(a6)/Unchanged// fp0: int portion of Y/abs(YINT) adjusted// fp1: 10^ISCALE/Unchanged// fp2: 10^LEN/Unchanged// F_SCR1:x/Work area for final result// F_SCR2:Y with original exponent/Unchanged// L_SCR1:original USER_FPCR/Unchanged// L_SCR2:first word of X packed/UnchangedA14_st:fmovel #rz_mode,%FPCR //force rz for conversionfdivx %fp2,%fp0 //divide abs(YINT) by 10^LENleal FP_SCR1(%a6),%a0fmovex %fp0,(%a0) //move abs(YINT)/10^LEN to memorymovel 4(%a0),%d2 //move 2nd word of FP_RES to d2movel 8(%a0),%d3 //move 3rd word of FP_RES to d3clrl 4(%a0) //zero word 2 of FP_RESclrl 8(%a0) //zero word 3 of FP_RESmovel (%a0),%d0 //move exponent to d0swap %d0 //put exponent in lower wordbeqs no_sft //if zero, don't shiftsubil #0x3ffd,%d0 //sub bias less 2 to make fracttstl %d0 //check if > 1bgts no_sft //if so, don't shiftnegl %d0 //make exp positivem_loop:lsrl #1,%d2 //shift d2:d3 right, add 0sroxrl #1,%d3 //the number of placesdbf %d0,m_loop //given in d0no_sft:tstl %d2 //check for mantissa of zerobnes no_zr //if not, go ontstl %d3 //continue zero checkbeqs zer_m //if zero, go directly to binstrno_zr:clrl %d1 //put zero in d1 for addxaddil #0x00000080,%d3 //inc at bit 7addxl %d1,%d2 //continue incandil #0xffffff80,%d3 //strip off lsb not used by 882zer_m:movel %d4,%d0 //put LEN in d0 for binstr calladdql #3,%a0 //a0 points to M16 byte in resultbsr binstr //call binstr to convert mant// A15. Convert the exponent to bcd.// As in A14 above, the exp is converted to bcd and the// digits are stored in the final string.//// Digits are stored in L_SCR1(a6) on return from BINDEC as://// 32 16 15 0// -----------------------------------------// | 0 | e3 | e2 | e1 | e4 | X | X | X |// -----------------------------------------//// And are moved into their proper places in FP_SCR1. If digit e4// is non-zero, OPERR is signaled. In all cases, all 4 digits are// written as specified in the 881/882 manual for packed decimal.//// Register usage:// Input/Output// d0: x/LEN call to binstr - final is 0// d1: x/scratch (0);shift count for final exponent packing// d2: x/ms 32-bits of exp fraction/scratch// d3: x/ls 32-bits of exp fraction// d4: LEN/Unchanged// d5: ICTR:LAMBDA/LAMBDA:ICTR// d6: ILOG// d7: k-factor/Unchanged// a0: ptr to result string/ptr to L_SCR1(a6)// a1: ptr to PTENxx array/Unchanged// a2: ptr to FP_SCR2(a6)/Unchanged// fp0: abs(YINT) adjusted/float(ILOG)// fp1: 10^ISCALE/Unchanged// fp2: 10^LEN/Unchanged// F_SCR1:Work area for final result/BCD result// F_SCR2:Y with original exponent/ILOG/10^4// L_SCR1:original USER_FPCR/Exponent digits on return from binstr// L_SCR2:first word of X packed/UnchangedA15_st:tstb BINDEC_FLG(%a6) //check for denormbeqs not_denormftstx %fp0 //test for zerofbeq den_zero //if zero, use k-factor or 4933fmovel %d6,%fp0 //float ILOGfabsx %fp0 //get abs of ILOGbras convrtden_zero:tstl %d7 //check sign of the k-factorblts use_ilog //if negative, use ILOGfmoves F4933,%fp0 //force exponent to 4933bras convrt //do ituse_ilog:fmovel %d6,%fp0 //float ILOGfabsx %fp0 //get abs of ILOGbras convrtnot_denorm:ftstx %fp0 //test for zerofbne not_zero //if zero, force exponentfmoves FONE,%fp0 //force exponent to 1bras convrt //do itnot_zero:fmovel %d6,%fp0 //float ILOGfabsx %fp0 //get abs of ILOGconvrt:fdivx 24(%a1),%fp0 //compute ILOG/10^4fmovex %fp0,FP_SCR2(%a6) //store fp0 in memorymovel 4(%a2),%d2 //move word 2 to d2movel 8(%a2),%d3 //move word 3 to d3movew (%a2),%d0 //move exp to d0beqs x_loop_fin //if zero, skip the shiftsubiw #0x3ffd,%d0 //subtract off biasnegw %d0 //make exp positivex_loop:lsrl #1,%d2 //shift d2:d3 rightroxrl #1,%d3 //the number of placesdbf %d0,x_loop //given in d0x_loop_fin:clrl %d1 //put zero in d1 for addxaddil #0x00000080,%d3 //inc at bit 6addxl %d1,%d2 //continue incandil #0xffffff80,%d3 //strip off lsb not used by 882movel #4,%d0 //put 4 in d0 for binstr callleal L_SCR1(%a6),%a0 //a0 is ptr to L_SCR1 for exp digitsbsr binstr //call binstr to convert expmovel L_SCR1(%a6),%d0 //load L_SCR1 lword to d0movel #12,%d1 //use d1 for shift countlsrl %d1,%d0 //shift d0 right by 12bfins %d0,FP_SCR1(%a6){#4:#12} //put e3:e2:e1 in FP_SCR1lsrl %d1,%d0 //shift d0 right by 12bfins %d0,FP_SCR1(%a6){#16:#4} //put e4 in FP_SCR1tstb %d0 //check if e4 is zerobeqs A16_st //if zero, skip restorl #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR// A16. Write sign bits to final string.// Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).//// Register usage:// Input/Output// d0: x/scratch - final is x// d2: x/x// d3: x/x// d4: LEN/Unchanged// d5: ICTR:LAMBDA/LAMBDA:ICTR// d6: ILOG/ILOG adjusted// d7: k-factor/Unchanged// a0: ptr to L_SCR1(a6)/Unchanged// a1: ptr to PTENxx array/Unchanged// a2: ptr to FP_SCR2(a6)/Unchanged// fp0: float(ILOG)/Unchanged// fp1: 10^ISCALE/Unchanged// fp2: 10^LEN/Unchanged// F_SCR1:BCD result with correct signs// F_SCR2:ILOG/10^4// L_SCR1:Exponent digits on return from binstr// L_SCR2:first word of X packed/UnchangedA16_st:clrl %d0 //clr d0 for collection of signsandib #0x0f,FP_SCR1(%a6) //clear first nibble of FP_SCR1tstl L_SCR2(%a6) //check sign of original mantissabges mant_p //if pos, don't set SMmoveql #2,%d0 //move 2 in to d0 for SMmant_p:tstl %d6 //check sign of ILOGbges wr_sgn //if pos, don't set SEaddql #1,%d0 //set bit 0 in d0 for SEwr_sgn:bfins %d0,FP_SCR1(%a6){#0:#2} //insert SM and SE into FP_SCR1// Clean up and restore all registers used.fmovel #0,%FPSR //clear possible inex2/ainex bitsfmovemx (%a7)+,%fp0-%fp2moveml (%a7)+,%d2-%d7/%a2rts|end
