URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rtems/] [c/] [src/] [lib/] [libcpu/] [m68k/] [m68040/] [fpsp/] [res_func.S] - Rev 208
Go to most recent revision | Compare with Previous | Blame | View Log
//
// $Id: res_func.S,v 1.2 2001-09-27 12:01:22 chris Exp $
//
// res_func.sa 3.9 7/29/91
//
// Normalizes denormalized numbers if necessary and updates the
// stack frame. The function is then restored back into the
// machine and the 040 completes the operation. This routine
// is only used by the unsupported data type/format handler.
// (Exception vector 55).
//
// For packed move out (fmove.p fpm,<ea>) the operation is
// completed here; data is packed and moved to user memory.
// The stack is restored to the 040 only in the case of a
// reportable exception in the conversion.
//
//
// Copyright (C) Motorola, Inc. 1990
// All Rights Reserved
//
// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
// The copyright notice above does not evidence any
// actual or intended publication of such source code.
RES_FUNC: //idnt 2,1 | Motorola 040 Floating Point Software Package
|section 8
#include "fpsp.defs"
sp_bnds: .short 0x3f81,0x407e
.short 0x3f6a,0x0000
dp_bnds: .short 0x3c01,0x43fe
.short 0x3bcd,0x0000
|xref mem_write
|xref bindec
|xref get_fline
|xref round
|xref denorm
|xref dest_ext
|xref dest_dbl
|xref dest_sgl
|xref unf_sub
|xref nrm_set
|xref dnrm_lp
|xref ovf_res
|xref reg_dest
|xref t_ovfl
|xref t_unfl
.global res_func
.global p_move
res_func:
clrb DNRM_FLG(%a6)
clrb RES_FLG(%a6)
clrb CU_ONLY(%a6)
tstb DY_MO_FLG(%a6)
beqs monadic
dyadic:
btstb #7,DTAG(%a6) //if dop = norm=000, zero=001,
// ;inf=010 or nan=011
beqs monadic //then branch
// ;else denorm
// HANDLE DESTINATION DENORM HERE
// ;set dtag to norm
// ;write the tag & fpte15 to the fstack
leal FPTEMP(%a6),%a0
bclrb #sign_bit,LOCAL_EX(%a0)
sne LOCAL_SGN(%a0)
bsr nrm_set //normalize number (exp will go negative)
bclrb #sign_bit,LOCAL_EX(%a0) //get rid of false sign
bfclr LOCAL_SGN(%a0){#0:#8} //change back to IEEE ext format
beqs dpos
bsetb #sign_bit,LOCAL_EX(%a0)
dpos:
bfclr DTAG(%a6){#0:#4} //set tag to normalized, FPTE15 = 0
bsetb #4,DTAG(%a6) //set FPTE15
orb #0x0f,DNRM_FLG(%a6)
monadic:
leal ETEMP(%a6),%a0
btstb #direction_bit,CMDREG1B(%a6) //check direction
bne opclass3 //it is a mv out
//
// At this point, only opclass 0 and 2 possible
//
btstb #7,STAG(%a6) //if sop = norm=000, zero=001,
// ;inf=010 or nan=011
bne mon_dnrm //else denorm
tstb DY_MO_FLG(%a6) //all cases of dyadic instructions would
bne normal //require normalization of denorm
// At this point:
// monadic instructions: fabs = $18 fneg = $1a ftst = $3a
// fmove = $00 fsmove = $40 fdmove = $44
// fsqrt = $05* fssqrt = $41 fdsqrt = $45
// (*fsqrt reencoded to $05)
//
movew CMDREG1B(%a6),%d0 //get command register
andil #0x7f,%d0 //strip to only command word
//
// At this point, fabs, fneg, fsmove, fdmove, ftst, fsqrt, fssqrt, and
// fdsqrt are possible.
// For cases fabs, fneg, fsmove, and fdmove goto spos (do not normalize)
// For cases fsqrt, fssqrt, and fdsqrt goto nrm_src (do normalize)
//
btstl #0,%d0
bne normal //weed out fsqrt instructions
//
// cu_norm handles fmove in instructions with normalized inputs.
// The routine round is used to correctly round the input for the
// destination precision and mode.
//
cu_norm:
st CU_ONLY(%a6) //set cu-only inst flag
movew CMDREG1B(%a6),%d0
andib #0x3b,%d0 //isolate bits to select inst
tstb %d0
beql cu_nmove //if zero, it is an fmove
cmpib #0x18,%d0
beql cu_nabs //if $18, it is fabs
cmpib #0x1a,%d0
beql cu_nneg //if $1a, it is fneg
//
// Inst is ftst. Check the source operand and set the cc's accordingly.
// No write is done, so simply rts.
//
cu_ntst:
movew LOCAL_EX(%a0),%d0
bclrl #15,%d0
sne LOCAL_SGN(%a0)
beqs cu_ntpo
orl #neg_mask,USER_FPSR(%a6) //set N
cu_ntpo:
cmpiw #0x7fff,%d0 //test for inf/nan
bnes cu_ntcz
tstl LOCAL_HI(%a0)
bnes cu_ntn
tstl LOCAL_LO(%a0)
bnes cu_ntn
orl #inf_mask,USER_FPSR(%a6)
rts
cu_ntn:
orl #nan_mask,USER_FPSR(%a6)
movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for
// ;snan handler
rts
cu_ntcz:
tstl LOCAL_HI(%a0)
bnel cu_ntsx
tstl LOCAL_LO(%a0)
bnel cu_ntsx
orl #z_mask,USER_FPSR(%a6)
cu_ntsx:
rts
//
// Inst is fabs. Execute the absolute value function on the input.
// Branch to the fmove code. If the operand is NaN, do nothing.
//
cu_nabs:
moveb STAG(%a6),%d0
btstl #5,%d0 //test for NaN or zero
bne wr_etemp //if either, simply write it
bclrb #7,LOCAL_EX(%a0) //do abs
bras cu_nmove //fmove code will finish
//
// Inst is fneg. Execute the negate value function on the input.
// Fall though to the fmove code. If the operand is NaN, do nothing.
//
cu_nneg:
moveb STAG(%a6),%d0
btstl #5,%d0 //test for NaN or zero
bne wr_etemp //if either, simply write it
bchgb #7,LOCAL_EX(%a0) //do neg
//
// Inst is fmove. This code also handles all result writes.
// If bit 2 is set, round is forced to double. If it is clear,
// and bit 6 is set, round is forced to single. If both are clear,
// the round precision is found in the fpcr. If the rounding precision
// is double or single, round the result before the write.
//
cu_nmove:
moveb STAG(%a6),%d0
andib #0xe0,%d0 //isolate stag bits
bne wr_etemp //if not norm, simply write it
btstb #2,CMDREG1B+1(%a6) //check for rd
bne cu_nmrd
btstb #6,CMDREG1B+1(%a6) //check for rs
bne cu_nmrs
//
// The move or operation is not with forced precision. Test for
// nan or inf as the input; if so, simply write it to FPn. Use the
// FPCR_MODE byte to get rounding on norms and zeros.
//
cu_nmnr:
bfextu FPCR_MODE(%a6){#0:#2},%d0
tstb %d0 //check for extended
beq cu_wrexn //if so, just write result
cmpib #1,%d0 //check for single
beq cu_nmrs //fall through to double
//
// The move is fdmove or round precision is double.
//
cu_nmrd:
movel #2,%d0 //set up the size for denorm
movew LOCAL_EX(%a0),%d1 //compare exponent to double threshold
andw #0x7fff,%d1
cmpw #0x3c01,%d1
bls cu_nunfl
bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rmode
orl #0x00020000,%d1 //or in rprec (double)
clrl %d0 //clear g,r,s for round
bclrb #sign_bit,LOCAL_EX(%a0) //convert to internal format
sne LOCAL_SGN(%a0)
bsrl round
bfclr LOCAL_SGN(%a0){#0:#8}
beqs cu_nmrdc
bsetb #sign_bit,LOCAL_EX(%a0)
cu_nmrdc:
movew LOCAL_EX(%a0),%d1 //check for overflow
andw #0x7fff,%d1
cmpw #0x43ff,%d1
bge cu_novfl //take care of overflow case
bra cu_wrexn
//
// The move is fsmove or round precision is single.
//
cu_nmrs:
movel #1,%d0
movew LOCAL_EX(%a0),%d1
andw #0x7fff,%d1
cmpw #0x3f81,%d1
bls cu_nunfl
bfextu FPCR_MODE(%a6){#2:#2},%d1
orl #0x00010000,%d1
clrl %d0
bclrb #sign_bit,LOCAL_EX(%a0)
sne LOCAL_SGN(%a0)
bsrl round
bfclr LOCAL_SGN(%a0){#0:#8}
beqs cu_nmrsc
bsetb #sign_bit,LOCAL_EX(%a0)
cu_nmrsc:
movew LOCAL_EX(%a0),%d1
andw #0x7FFF,%d1
cmpw #0x407f,%d1
blt cu_wrexn
//
// The operand is above precision boundaries. Use t_ovfl to
// generate the correct value.
//
cu_novfl:
bsr t_ovfl
bra cu_wrexn
//
// The operand is below precision boundaries. Use denorm to
// generate the correct value.
//
cu_nunfl:
bclrb #sign_bit,LOCAL_EX(%a0)
sne LOCAL_SGN(%a0)
bsr denorm
bfclr LOCAL_SGN(%a0){#0:#8} //change back to IEEE ext format
beqs cu_nucont
bsetb #sign_bit,LOCAL_EX(%a0)
cu_nucont:
bfextu FPCR_MODE(%a6){#2:#2},%d1
btstb #2,CMDREG1B+1(%a6) //check for rd
bne inst_d
btstb #6,CMDREG1B+1(%a6) //check for rs
bne inst_s
swap %d1
moveb FPCR_MODE(%a6),%d1
lsrb #6,%d1
swap %d1
bra inst_sd
inst_d:
orl #0x00020000,%d1
bra inst_sd
inst_s:
orl #0x00010000,%d1
inst_sd:
bclrb #sign_bit,LOCAL_EX(%a0)
sne LOCAL_SGN(%a0)
bsrl round
bfclr LOCAL_SGN(%a0){#0:#8}
beqs cu_nuflp
bsetb #sign_bit,LOCAL_EX(%a0)
cu_nuflp:
btstb #inex2_bit,FPSR_EXCEPT(%a6)
beqs cu_nuninx
orl #aunfl_mask,USER_FPSR(%a6) //if the round was inex, set AUNFL
cu_nuninx:
tstl LOCAL_HI(%a0) //test for zero
bnes cu_nunzro
tstl LOCAL_LO(%a0)
bnes cu_nunzro
//
// The mantissa is zero from the denorm loop. Check sign and rmode
// to see if rounding should have occurred which would leave the lsb.
//
movel USER_FPCR(%a6),%d0
andil #0x30,%d0 //isolate rmode
cmpil #0x20,%d0
blts cu_nzro
bnes cu_nrp
cu_nrm:
tstw LOCAL_EX(%a0) //if positive, set lsb
bges cu_nzro
btstb #7,FPCR_MODE(%a6) //check for double
beqs cu_nincs
bras cu_nincd
cu_nrp:
tstw LOCAL_EX(%a0) //if positive, set lsb
blts cu_nzro
btstb #7,FPCR_MODE(%a6) //check for double
beqs cu_nincs
cu_nincd:
orl #0x800,LOCAL_LO(%a0) //inc for double
bra cu_nunzro
cu_nincs:
orl #0x100,LOCAL_HI(%a0) //inc for single
bra cu_nunzro
cu_nzro:
orl #z_mask,USER_FPSR(%a6)
moveb STAG(%a6),%d0
andib #0xe0,%d0
cmpib #0x40,%d0 //check if input was tagged zero
beqs cu_numv
cu_nunzro:
orl #unfl_mask,USER_FPSR(%a6) //set unfl
cu_numv:
movel (%a0),ETEMP(%a6)
movel 4(%a0),ETEMP_HI(%a6)
movel 8(%a0),ETEMP_LO(%a6)
//
// Write the result to memory, setting the fpsr cc bits. NaN and Inf
// bypass cu_wrexn.
//
cu_wrexn:
tstw LOCAL_EX(%a0) //test for zero
beqs cu_wrzero
cmpw #0x8000,LOCAL_EX(%a0) //test for zero
bnes cu_wreon
cu_wrzero:
orl #z_mask,USER_FPSR(%a6) //set Z bit
cu_wreon:
tstw LOCAL_EX(%a0)
bpl wr_etemp
orl #neg_mask,USER_FPSR(%a6)
bra wr_etemp
//
// HANDLE SOURCE DENORM HERE
//
// ;clear denorm stag to norm
// ;write the new tag & ete15 to the fstack
mon_dnrm:
//
// At this point, check for the cases in which normalizing the
// denorm produces incorrect results.
//
tstb DY_MO_FLG(%a6) //all cases of dyadic instructions would
bnes nrm_src //require normalization of denorm
// At this point:
// monadic instructions: fabs = $18 fneg = $1a ftst = $3a
// fmove = $00 fsmove = $40 fdmove = $44
// fsqrt = $05* fssqrt = $41 fdsqrt = $45
// (*fsqrt reencoded to $05)
//
movew CMDREG1B(%a6),%d0 //get command register
andil #0x7f,%d0 //strip to only command word
//
// At this point, fabs, fneg, fsmove, fdmove, ftst, fsqrt, fssqrt, and
// fdsqrt are possible.
// For cases fabs, fneg, fsmove, and fdmove goto spos (do not normalize)
// For cases fsqrt, fssqrt, and fdsqrt goto nrm_src (do normalize)
//
btstl #0,%d0
bnes nrm_src //weed out fsqrt instructions
st CU_ONLY(%a6) //set cu-only inst flag
bra cu_dnrm //fmove, fabs, fneg, ftst
// ;cases go to cu_dnrm
nrm_src:
bclrb #sign_bit,LOCAL_EX(%a0)
sne LOCAL_SGN(%a0)
bsr nrm_set //normalize number (exponent will go
// ; negative)
bclrb #sign_bit,LOCAL_EX(%a0) //get rid of false sign
bfclr LOCAL_SGN(%a0){#0:#8} //change back to IEEE ext format
beqs spos
bsetb #sign_bit,LOCAL_EX(%a0)
spos:
bfclr STAG(%a6){#0:#4} //set tag to normalized, FPTE15 = 0
bsetb #4,STAG(%a6) //set ETE15
orb #0xf0,DNRM_FLG(%a6)
normal:
tstb DNRM_FLG(%a6) //check if any of the ops were denorms
bne ck_wrap //if so, check if it is a potential
// ;wrap-around case
fix_stk:
moveb #0xfe,CU_SAVEPC(%a6)
bclrb #E1,E_BYTE(%a6)
clrw NMNEXC(%a6)
st RES_FLG(%a6) //indicate that a restore is needed
rts
//
// cu_dnrm handles all cu-only instructions (fmove, fabs, fneg, and
// ftst) completely in software without an frestore to the 040.
//
cu_dnrm:
st CU_ONLY(%a6)
movew CMDREG1B(%a6),%d0
andib #0x3b,%d0 //isolate bits to select inst
tstb %d0
beql cu_dmove //if zero, it is an fmove
cmpib #0x18,%d0
beql cu_dabs //if $18, it is fabs
cmpib #0x1a,%d0
beql cu_dneg //if $1a, it is fneg
//
// Inst is ftst. Check the source operand and set the cc's accordingly.
// No write is done, so simply rts.
//
cu_dtst:
movew LOCAL_EX(%a0),%d0
bclrl #15,%d0
sne LOCAL_SGN(%a0)
beqs cu_dtpo
orl #neg_mask,USER_FPSR(%a6) //set N
cu_dtpo:
cmpiw #0x7fff,%d0 //test for inf/nan
bnes cu_dtcz
tstl LOCAL_HI(%a0)
bnes cu_dtn
tstl LOCAL_LO(%a0)
bnes cu_dtn
orl #inf_mask,USER_FPSR(%a6)
rts
cu_dtn:
orl #nan_mask,USER_FPSR(%a6)
movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for
// ;snan handler
rts
cu_dtcz:
tstl LOCAL_HI(%a0)
bnel cu_dtsx
tstl LOCAL_LO(%a0)
bnel cu_dtsx
orl #z_mask,USER_FPSR(%a6)
cu_dtsx:
rts
//
// Inst is fabs. Execute the absolute value function on the input.
// Branch to the fmove code.
//
cu_dabs:
bclrb #7,LOCAL_EX(%a0) //do abs
bras cu_dmove //fmove code will finish
//
// Inst is fneg. Execute the negate value function on the input.
// Fall though to the fmove code.
//
cu_dneg:
bchgb #7,LOCAL_EX(%a0) //do neg
//
// Inst is fmove. This code also handles all result writes.
// If bit 2 is set, round is forced to double. If it is clear,
// and bit 6 is set, round is forced to single. If both are clear,
// the round precision is found in the fpcr. If the rounding precision
// is double or single, the result is zero, and the mode is checked
// to determine if the lsb of the result should be set.
//
cu_dmove:
btstb #2,CMDREG1B+1(%a6) //check for rd
bne cu_dmrd
btstb #6,CMDREG1B+1(%a6) //check for rs
bne cu_dmrs
//
// The move or operation is not with forced precision. Use the
// FPCR_MODE byte to get rounding.
//
cu_dmnr:
bfextu FPCR_MODE(%a6){#0:#2},%d0
tstb %d0 //check for extended
beq cu_wrexd //if so, just write result
cmpib #1,%d0 //check for single
beq cu_dmrs //fall through to double
//
// The move is fdmove or round precision is double. Result is zero.
// Check rmode for rp or rm and set lsb accordingly.
//
cu_dmrd:
bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rmode
tstw LOCAL_EX(%a0) //check sign
blts cu_dmdn
cmpib #3,%d1 //check for rp
bne cu_dpd //load double pos zero
bra cu_dpdr //load double pos zero w/lsb
cu_dmdn:
cmpib #2,%d1 //check for rm
bne cu_dnd //load double neg zero
bra cu_dndr //load double neg zero w/lsb
//
// The move is fsmove or round precision is single. Result is zero.
// Check for rp or rm and set lsb accordingly.
//
cu_dmrs:
bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rmode
tstw LOCAL_EX(%a0) //check sign
blts cu_dmsn
cmpib #3,%d1 //check for rp
bne cu_spd //load single pos zero
bra cu_spdr //load single pos zero w/lsb
cu_dmsn:
cmpib #2,%d1 //check for rm
bne cu_snd //load single neg zero
bra cu_sndr //load single neg zero w/lsb
//
// The precision is extended, so the result in etemp is correct.
// Simply set unfl (not inex2 or aunfl) and write the result to
// the correct fp register.
cu_wrexd:
orl #unfl_mask,USER_FPSR(%a6)
tstw LOCAL_EX(%a0)
beq wr_etemp
orl #neg_mask,USER_FPSR(%a6)
bra wr_etemp
//
// These routines write +/- zero in double format. The routines
// cu_dpdr and cu_dndr set the double lsb.
//
cu_dpd:
movel #0x3c010000,LOCAL_EX(%a0) //force pos double zero
clrl LOCAL_HI(%a0)
clrl LOCAL_LO(%a0)
orl #z_mask,USER_FPSR(%a6)
orl #unfinx_mask,USER_FPSR(%a6)
bra wr_etemp
cu_dpdr:
movel #0x3c010000,LOCAL_EX(%a0) //force pos double zero
clrl LOCAL_HI(%a0)
movel #0x800,LOCAL_LO(%a0) //with lsb set
orl #unfinx_mask,USER_FPSR(%a6)
bra wr_etemp
cu_dnd:
movel #0xbc010000,LOCAL_EX(%a0) //force pos double zero
clrl LOCAL_HI(%a0)
clrl LOCAL_LO(%a0)
orl #z_mask,USER_FPSR(%a6)
orl #neg_mask,USER_FPSR(%a6)
orl #unfinx_mask,USER_FPSR(%a6)
bra wr_etemp
cu_dndr:
movel #0xbc010000,LOCAL_EX(%a0) //force pos double zero
clrl LOCAL_HI(%a0)
movel #0x800,LOCAL_LO(%a0) //with lsb set
orl #neg_mask,USER_FPSR(%a6)
orl #unfinx_mask,USER_FPSR(%a6)
bra wr_etemp
//
// These routines write +/- zero in single format. The routines
// cu_dpdr and cu_dndr set the single lsb.
//
cu_spd:
movel #0x3f810000,LOCAL_EX(%a0) //force pos single zero
clrl LOCAL_HI(%a0)
clrl LOCAL_LO(%a0)
orl #z_mask,USER_FPSR(%a6)
orl #unfinx_mask,USER_FPSR(%a6)
bra wr_etemp
cu_spdr:
movel #0x3f810000,LOCAL_EX(%a0) //force pos single zero
movel #0x100,LOCAL_HI(%a0) //with lsb set
clrl LOCAL_LO(%a0)
orl #unfinx_mask,USER_FPSR(%a6)
bra wr_etemp
cu_snd:
movel #0xbf810000,LOCAL_EX(%a0) //force pos single zero
clrl LOCAL_HI(%a0)
clrl LOCAL_LO(%a0)
orl #z_mask,USER_FPSR(%a6)
orl #neg_mask,USER_FPSR(%a6)
orl #unfinx_mask,USER_FPSR(%a6)
bra wr_etemp
cu_sndr:
movel #0xbf810000,LOCAL_EX(%a0) //force pos single zero
movel #0x100,LOCAL_HI(%a0) //with lsb set
clrl LOCAL_LO(%a0)
orl #neg_mask,USER_FPSR(%a6)
orl #unfinx_mask,USER_FPSR(%a6)
bra wr_etemp
//
// This code checks for 16-bit overflow conditions on dyadic
// operations which are not restorable into the floating-point
// unit and must be completed in software. Basically, this
// condition exists with a very large norm and a denorm. One
// of the operands must be denormalized to enter this code.
//
// Flags used:
// DY_MO_FLG contains 0 for monadic op, $ff for dyadic
// DNRM_FLG contains $00 for neither op denormalized
// $0f for the destination op denormalized
// $f0 for the source op denormalized
// $ff for both ops denormalized
//
// The wrap-around condition occurs for add, sub, div, and cmp
// when
//
// abs(dest_exp - src_exp) >= $8000
//
// and for mul when
//
// (dest_exp + src_exp) < $0
//
// we must process the operation here if this case is true.
//
// The rts following the frcfpn routine is the exit from res_func
// for this condition. The restore flag (RES_FLG) is left clear.
// No frestore is done unless an exception is to be reported.
//
// For fadd:
// if(sign_of(dest) != sign_of(src))
// replace exponent of src with $3fff (keep sign)
// use fpu to perform dest+new_src (user's rmode and X)
// clr sticky
// else
// set sticky
// call round with user's precision and mode
// move result to fpn and wbtemp
//
// For fsub:
// if(sign_of(dest) == sign_of(src))
// replace exponent of src with $3fff (keep sign)
// use fpu to perform dest+new_src (user's rmode and X)
// clr sticky
// else
// set sticky
// call round with user's precision and mode
// move result to fpn and wbtemp
//
// For fdiv/fsgldiv:
// if(both operands are denorm)
// restore_to_fpu;
// if(dest is norm)
// force_ovf;
// else(dest is denorm)
// force_unf:
//
// For fcmp:
// if(dest is norm)
// N = sign_of(dest);
// else(dest is denorm)
// N = sign_of(src);
//
// For fmul:
// if(both operands are denorm)
// force_unf;
// if((dest_exp + src_exp) < 0)
// force_unf:
// else
// restore_to_fpu;
//
// local equates:
.set addcode,0x22
.set subcode,0x28
.set mulcode,0x23
.set divcode,0x20
.set cmpcode,0x38
ck_wrap:
| tstb DY_MO_FLG(%a6) ;check for fsqrt
beq fix_stk //if zero, it is fsqrt
movew CMDREG1B(%a6),%d0
andiw #0x3b,%d0 //strip to command bits
cmpiw #addcode,%d0
beq wrap_add
cmpiw #subcode,%d0
beq wrap_sub
cmpiw #mulcode,%d0
beq wrap_mul
cmpiw #cmpcode,%d0
beq wrap_cmp
//
// Inst is fdiv.
//
wrap_div:
cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm,
beq fix_stk //restore to fpu
//
// One of the ops is denormalized. Test for wrap condition
// and force the result.
//
cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm
bnes div_srcd
div_destd:
bsrl ckinf_ns
bne fix_stk
bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos)
bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg)
subl %d1,%d0 //subtract dest from src
cmpl #0x7fff,%d0
blt fix_stk //if less, not wrap case
clrb WBTEMP_SGN(%a6)
movew ETEMP_EX(%a6),%d0 //find the sign of the result
movew FPTEMP_EX(%a6),%d1
eorw %d1,%d0
andiw #0x8000,%d0
beq force_unf
st WBTEMP_SGN(%a6)
bra force_unf
ckinf_ns:
moveb STAG(%a6),%d0 //check source tag for inf or nan
bra ck_in_com
ckinf_nd:
moveb DTAG(%a6),%d0 //check destination tag for inf or nan
ck_in_com:
andib #0x60,%d0 //isolate tag bits
cmpb #0x40,%d0 //is it inf?
beq nan_or_inf //not wrap case
cmpb #0x60,%d0 //is it nan?
beq nan_or_inf //yes, not wrap case?
cmpb #0x20,%d0 //is it a zero?
beq nan_or_inf //yes
clrl %d0
rts //then ; it is either a zero of norm,
// ;check wrap case
nan_or_inf:
moveql #-1,%d0
rts
div_srcd:
bsrl ckinf_nd
bne fix_stk
bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos)
bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg)
subl %d1,%d0 //subtract src from dest
cmpl #0x8000,%d0
blt fix_stk //if less, not wrap case
clrb WBTEMP_SGN(%a6)
movew ETEMP_EX(%a6),%d0 //find the sign of the result
movew FPTEMP_EX(%a6),%d1
eorw %d1,%d0
andiw #0x8000,%d0
beqs force_ovf
st WBTEMP_SGN(%a6)
//
// This code handles the case of the instruction resulting in
// an overflow condition.
//
force_ovf:
bclrb #E1,E_BYTE(%a6)
orl #ovfl_inx_mask,USER_FPSR(%a6)
clrw NMNEXC(%a6)
leal WBTEMP(%a6),%a0 //point a0 to memory location
movew CMDREG1B(%a6),%d0
btstl #6,%d0 //test for forced precision
beqs frcovf_fpcr
btstl #2,%d0 //check for double
bnes frcovf_dbl
movel #0x1,%d0 //inst is forced single
bras frcovf_rnd
frcovf_dbl:
movel #0x2,%d0 //inst is forced double
bras frcovf_rnd
frcovf_fpcr:
bfextu FPCR_MODE(%a6){#0:#2},%d0 //inst not forced - use fpcr prec
frcovf_rnd:
// The 881/882 does not set inex2 for the following case, so the
// line is commented out to be compatible with 881/882
// tst.b %d0
// beq.b frcovf_x
// or.l #inex2_mask,USER_FPSR(%a6) ;if prec is s or d, set inex2
//frcovf_x:
bsrl ovf_res //get correct result based on
// ;round precision/mode. This
// ;sets FPSR_CC correctly
// ;returns in external format
bfclr WBTEMP_SGN(%a6){#0:#8}
beq frcfpn
bsetb #sign_bit,WBTEMP_EX(%a6)
bra frcfpn
//
// Inst is fadd.
//
wrap_add:
cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm,
beq fix_stk //restore to fpu
//
// One of the ops is denormalized. Test for wrap condition
// and complete the instruction.
//
cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm
bnes add_srcd
add_destd:
bsrl ckinf_ns
bne fix_stk
bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos)
bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg)
subl %d1,%d0 //subtract dest from src
cmpl #0x8000,%d0
blt fix_stk //if less, not wrap case
bra add_wrap
add_srcd:
bsrl ckinf_nd
bne fix_stk
bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos)
bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg)
subl %d1,%d0 //subtract src from dest
cmpl #0x8000,%d0
blt fix_stk //if less, not wrap case
//
// Check the signs of the operands. If they are unlike, the fpu
// can be used to add the norm and 1.0 with the sign of the
// denorm and it will correctly generate the result in extended
// precision. We can then call round with no sticky and the result
// will be correct for the user's rounding mode and precision. If
// the signs are the same, we call round with the sticky bit set
// and the result will be correct for the user's rounding mode and
// precision.
//
add_wrap:
movew ETEMP_EX(%a6),%d0
movew FPTEMP_EX(%a6),%d1
eorw %d1,%d0
andiw #0x8000,%d0
beq add_same
//
// The signs are unlike.
//
cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm?
bnes add_u_srcd
movew FPTEMP_EX(%a6),%d0
andiw #0x8000,%d0
orw #0x3fff,%d0 //force the exponent to +/- 1
movew %d0,FPTEMP_EX(%a6) //in the denorm
movel USER_FPCR(%a6),%d0
andil #0x30,%d0
fmovel %d0,%fpcr //set up users rmode and X
fmovex ETEMP(%a6),%fp0
faddx FPTEMP(%a6),%fp0
leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame
fmovel %fpsr,%d1
orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd
fmovex %fp0,WBTEMP(%a6) //write result to memory
lsrl #4,%d0 //put rmode in lower 2 bits
movel USER_FPCR(%a6),%d1
andil #0xc0,%d1
lsrl #6,%d1 //put precision in upper word
swap %d1
orl %d0,%d1 //set up for round call
clrl %d0 //force sticky to zero
bclrb #sign_bit,WBTEMP_EX(%a6)
sne WBTEMP_SGN(%a6)
bsrl round //round result to users rmode & prec
bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
beq frcfpnr
bsetb #sign_bit,WBTEMP_EX(%a6)
bra frcfpnr
add_u_srcd:
movew ETEMP_EX(%a6),%d0
andiw #0x8000,%d0
orw #0x3fff,%d0 //force the exponent to +/- 1
movew %d0,ETEMP_EX(%a6) //in the denorm
movel USER_FPCR(%a6),%d0
andil #0x30,%d0
fmovel %d0,%fpcr //set up users rmode and X
fmovex ETEMP(%a6),%fp0
faddx FPTEMP(%a6),%fp0
fmovel %fpsr,%d1
orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd
leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame
fmovex %fp0,WBTEMP(%a6) //write result to memory
lsrl #4,%d0 //put rmode in lower 2 bits
movel USER_FPCR(%a6),%d1
andil #0xc0,%d1
lsrl #6,%d1 //put precision in upper word
swap %d1
orl %d0,%d1 //set up for round call
clrl %d0 //force sticky to zero
bclrb #sign_bit,WBTEMP_EX(%a6)
sne WBTEMP_SGN(%a6) //use internal format for round
bsrl round //round result to users rmode & prec
bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
beq frcfpnr
bsetb #sign_bit,WBTEMP_EX(%a6)
bra frcfpnr
//
// Signs are alike:
//
add_same:
cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm?
bnes add_s_srcd
add_s_destd:
leal ETEMP(%a6),%a0
movel USER_FPCR(%a6),%d0
andil #0x30,%d0
lsrl #4,%d0 //put rmode in lower 2 bits
movel USER_FPCR(%a6),%d1
andil #0xc0,%d1
lsrl #6,%d1 //put precision in upper word
swap %d1
orl %d0,%d1 //set up for round call
movel #0x20000000,%d0 //set sticky for round
bclrb #sign_bit,ETEMP_EX(%a6)
sne ETEMP_SGN(%a6)
bsrl round //round result to users rmode & prec
bfclr ETEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
beqs add_s_dclr
bsetb #sign_bit,ETEMP_EX(%a6)
add_s_dclr:
leal WBTEMP(%a6),%a0
movel ETEMP(%a6),(%a0) //write result to wbtemp
movel ETEMP_HI(%a6),4(%a0)
movel ETEMP_LO(%a6),8(%a0)
tstw ETEMP_EX(%a6)
bgt add_ckovf
orl #neg_mask,USER_FPSR(%a6)
bra add_ckovf
add_s_srcd:
leal FPTEMP(%a6),%a0
movel USER_FPCR(%a6),%d0
andil #0x30,%d0
lsrl #4,%d0 //put rmode in lower 2 bits
movel USER_FPCR(%a6),%d1
andil #0xc0,%d1
lsrl #6,%d1 //put precision in upper word
swap %d1
orl %d0,%d1 //set up for round call
movel #0x20000000,%d0 //set sticky for round
bclrb #sign_bit,FPTEMP_EX(%a6)
sne FPTEMP_SGN(%a6)
bsrl round //round result to users rmode & prec
bfclr FPTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
beqs add_s_sclr
bsetb #sign_bit,FPTEMP_EX(%a6)
add_s_sclr:
leal WBTEMP(%a6),%a0
movel FPTEMP(%a6),(%a0) //write result to wbtemp
movel FPTEMP_HI(%a6),4(%a0)
movel FPTEMP_LO(%a6),8(%a0)
tstw FPTEMP_EX(%a6)
bgt add_ckovf
orl #neg_mask,USER_FPSR(%a6)
add_ckovf:
movew WBTEMP_EX(%a6),%d0
andiw #0x7fff,%d0
cmpiw #0x7fff,%d0
bne frcfpnr
//
// The result has overflowed to $7fff exponent. Set I, ovfl,
// and aovfl, and clr the mantissa (incorrectly set by the
// round routine.)
//
orl #inf_mask+ovfl_inx_mask,USER_FPSR(%a6)
clrl 4(%a0)
bra frcfpnr
//
// Inst is fsub.
//
wrap_sub:
cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm,
beq fix_stk //restore to fpu
//
// One of the ops is denormalized. Test for wrap condition
// and complete the instruction.
//
cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm
bnes sub_srcd
sub_destd:
bsrl ckinf_ns
bne fix_stk
bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos)
bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg)
subl %d1,%d0 //subtract src from dest
cmpl #0x8000,%d0
blt fix_stk //if less, not wrap case
bra sub_wrap
sub_srcd:
bsrl ckinf_nd
bne fix_stk
bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos)
bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg)
subl %d1,%d0 //subtract dest from src
cmpl #0x8000,%d0
blt fix_stk //if less, not wrap case
//
// Check the signs of the operands. If they are alike, the fpu
// can be used to subtract from the norm 1.0 with the sign of the
// denorm and it will correctly generate the result in extended
// precision. We can then call round with no sticky and the result
// will be correct for the user's rounding mode and precision. If
// the signs are unlike, we call round with the sticky bit set
// and the result will be correct for the user's rounding mode and
// precision.
//
sub_wrap:
movew ETEMP_EX(%a6),%d0
movew FPTEMP_EX(%a6),%d1
eorw %d1,%d0
andiw #0x8000,%d0
bne sub_diff
//
// The signs are alike.
//
cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm?
bnes sub_u_srcd
movew FPTEMP_EX(%a6),%d0
andiw #0x8000,%d0
orw #0x3fff,%d0 //force the exponent to +/- 1
movew %d0,FPTEMP_EX(%a6) //in the denorm
movel USER_FPCR(%a6),%d0
andil #0x30,%d0
fmovel %d0,%fpcr //set up users rmode and X
fmovex FPTEMP(%a6),%fp0
fsubx ETEMP(%a6),%fp0
fmovel %fpsr,%d1
orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd
leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame
fmovex %fp0,WBTEMP(%a6) //write result to memory
lsrl #4,%d0 //put rmode in lower 2 bits
movel USER_FPCR(%a6),%d1
andil #0xc0,%d1
lsrl #6,%d1 //put precision in upper word
swap %d1
orl %d0,%d1 //set up for round call
clrl %d0 //force sticky to zero
bclrb #sign_bit,WBTEMP_EX(%a6)
sne WBTEMP_SGN(%a6)
bsrl round //round result to users rmode & prec
bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
beq frcfpnr
bsetb #sign_bit,WBTEMP_EX(%a6)
bra frcfpnr
sub_u_srcd:
movew ETEMP_EX(%a6),%d0
andiw #0x8000,%d0
orw #0x3fff,%d0 //force the exponent to +/- 1
movew %d0,ETEMP_EX(%a6) //in the denorm
movel USER_FPCR(%a6),%d0
andil #0x30,%d0
fmovel %d0,%fpcr //set up users rmode and X
fmovex FPTEMP(%a6),%fp0
fsubx ETEMP(%a6),%fp0
fmovel %fpsr,%d1
orl %d1,USER_FPSR(%a6) //capture cc's and inex from fadd
leal WBTEMP(%a6),%a0 //point a0 to wbtemp in frame
fmovex %fp0,WBTEMP(%a6) //write result to memory
lsrl #4,%d0 //put rmode in lower 2 bits
movel USER_FPCR(%a6),%d1
andil #0xc0,%d1
lsrl #6,%d1 //put precision in upper word
swap %d1
orl %d0,%d1 //set up for round call
clrl %d0 //force sticky to zero
bclrb #sign_bit,WBTEMP_EX(%a6)
sne WBTEMP_SGN(%a6)
bsrl round //round result to users rmode & prec
bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
beq frcfpnr
bsetb #sign_bit,WBTEMP_EX(%a6)
bra frcfpnr
//
// Signs are unlike:
//
sub_diff:
cmpb #0x0f,DNRM_FLG(%a6) //is dest the denorm?
bnes sub_s_srcd
sub_s_destd:
leal ETEMP(%a6),%a0
movel USER_FPCR(%a6),%d0
andil #0x30,%d0
lsrl #4,%d0 //put rmode in lower 2 bits
movel USER_FPCR(%a6),%d1
andil #0xc0,%d1
lsrl #6,%d1 //put precision in upper word
swap %d1
orl %d0,%d1 //set up for round call
movel #0x20000000,%d0 //set sticky for round
//
// Since the dest is the denorm, the sign is the opposite of the
// norm sign.
//
eoriw #0x8000,ETEMP_EX(%a6) //flip sign on result
tstw ETEMP_EX(%a6)
bgts sub_s_dwr
orl #neg_mask,USER_FPSR(%a6)
sub_s_dwr:
bclrb #sign_bit,ETEMP_EX(%a6)
sne ETEMP_SGN(%a6)
bsrl round //round result to users rmode & prec
bfclr ETEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
beqs sub_s_dclr
bsetb #sign_bit,ETEMP_EX(%a6)
sub_s_dclr:
leal WBTEMP(%a6),%a0
movel ETEMP(%a6),(%a0) //write result to wbtemp
movel ETEMP_HI(%a6),4(%a0)
movel ETEMP_LO(%a6),8(%a0)
bra sub_ckovf
sub_s_srcd:
leal FPTEMP(%a6),%a0
movel USER_FPCR(%a6),%d0
andil #0x30,%d0
lsrl #4,%d0 //put rmode in lower 2 bits
movel USER_FPCR(%a6),%d1
andil #0xc0,%d1
lsrl #6,%d1 //put precision in upper word
swap %d1
orl %d0,%d1 //set up for round call
movel #0x20000000,%d0 //set sticky for round
bclrb #sign_bit,FPTEMP_EX(%a6)
sne FPTEMP_SGN(%a6)
bsrl round //round result to users rmode & prec
bfclr FPTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
beqs sub_s_sclr
bsetb #sign_bit,FPTEMP_EX(%a6)
sub_s_sclr:
leal WBTEMP(%a6),%a0
movel FPTEMP(%a6),(%a0) //write result to wbtemp
movel FPTEMP_HI(%a6),4(%a0)
movel FPTEMP_LO(%a6),8(%a0)
tstw FPTEMP_EX(%a6)
bgt sub_ckovf
orl #neg_mask,USER_FPSR(%a6)
sub_ckovf:
movew WBTEMP_EX(%a6),%d0
andiw #0x7fff,%d0
cmpiw #0x7fff,%d0
bne frcfpnr
//
// The result has overflowed to $7fff exponent. Set I, ovfl,
// and aovfl, and clr the mantissa (incorrectly set by the
// round routine.)
//
orl #inf_mask+ovfl_inx_mask,USER_FPSR(%a6)
clrl 4(%a0)
bra frcfpnr
//
// Inst is fcmp.
//
wrap_cmp:
cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm,
beq fix_stk //restore to fpu
//
// One of the ops is denormalized. Test for wrap condition
// and complete the instruction.
//
cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm
bnes cmp_srcd
cmp_destd:
bsrl ckinf_ns
bne fix_stk
bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos)
bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg)
subl %d1,%d0 //subtract dest from src
cmpl #0x8000,%d0
blt fix_stk //if less, not wrap case
tstw ETEMP_EX(%a6) //set N to ~sign_of(src)
bge cmp_setn
rts
cmp_srcd:
bsrl ckinf_nd
bne fix_stk
bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos)
bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg)
subl %d1,%d0 //subtract src from dest
cmpl #0x8000,%d0
blt fix_stk //if less, not wrap case
tstw FPTEMP_EX(%a6) //set N to sign_of(dest)
blt cmp_setn
rts
cmp_setn:
orl #neg_mask,USER_FPSR(%a6)
rts
//
// Inst is fmul.
//
wrap_mul:
cmpb #0xff,DNRM_FLG(%a6) //if both ops denorm,
beq force_unf //force an underflow (really!)
//
// One of the ops is denormalized. Test for wrap condition
// and complete the instruction.
//
cmpb #0x0f,DNRM_FLG(%a6) //check for dest denorm
bnes mul_srcd
mul_destd:
bsrl ckinf_ns
bne fix_stk
bfextu ETEMP_EX(%a6){#1:#15},%d0 //get src exp (always pos)
bfexts FPTEMP_EX(%a6){#1:#15},%d1 //get dest exp (always neg)
addl %d1,%d0 //subtract dest from src
bgt fix_stk
bra force_unf
mul_srcd:
bsrl ckinf_nd
bne fix_stk
bfextu FPTEMP_EX(%a6){#1:#15},%d0 //get dest exp (always pos)
bfexts ETEMP_EX(%a6){#1:#15},%d1 //get src exp (always neg)
addl %d1,%d0 //subtract src from dest
bgt fix_stk
//
// This code handles the case of the instruction resulting in
// an underflow condition.
//
force_unf:
bclrb #E1,E_BYTE(%a6)
orl #unfinx_mask,USER_FPSR(%a6)
clrw NMNEXC(%a6)
clrb WBTEMP_SGN(%a6)
movew ETEMP_EX(%a6),%d0 //find the sign of the result
movew FPTEMP_EX(%a6),%d1
eorw %d1,%d0
andiw #0x8000,%d0
beqs frcunfcont
st WBTEMP_SGN(%a6)
frcunfcont:
lea WBTEMP(%a6),%a0 //point a0 to memory location
movew CMDREG1B(%a6),%d0
btstl #6,%d0 //test for forced precision
beqs frcunf_fpcr
btstl #2,%d0 //check for double
bnes frcunf_dbl
movel #0x1,%d0 //inst is forced single
bras frcunf_rnd
frcunf_dbl:
movel #0x2,%d0 //inst is forced double
bras frcunf_rnd
frcunf_fpcr:
bfextu FPCR_MODE(%a6){#0:#2},%d0 //inst not forced - use fpcr prec
frcunf_rnd:
bsrl unf_sub //get correct result based on
// ;round precision/mode. This
// ;sets FPSR_CC correctly
bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
beqs frcfpn
bsetb #sign_bit,WBTEMP_EX(%a6)
bra frcfpn
//
// Write the result to the user's fpn. All results must be HUGE to be
// written; otherwise the results would have overflowed or underflowed.
// If the rounding precision is single or double, the ovf_res routine
// is needed to correctly supply the max value.
//
frcfpnr:
movew CMDREG1B(%a6),%d0
btstl #6,%d0 //test for forced precision
beqs frcfpn_fpcr
btstl #2,%d0 //check for double
bnes frcfpn_dbl
movel #0x1,%d0 //inst is forced single
bras frcfpn_rnd
frcfpn_dbl:
movel #0x2,%d0 //inst is forced double
bras frcfpn_rnd
frcfpn_fpcr:
bfextu FPCR_MODE(%a6){#0:#2},%d0 //inst not forced - use fpcr prec
tstb %d0
beqs frcfpn //if extended, write what you got
frcfpn_rnd:
bclrb #sign_bit,WBTEMP_EX(%a6)
sne WBTEMP_SGN(%a6)
bsrl ovf_res //get correct result based on
// ;round precision/mode. This
// ;sets FPSR_CC correctly
bfclr WBTEMP_SGN(%a6){#0:#8} //convert back to IEEE ext format
beqs frcfpn_clr
bsetb #sign_bit,WBTEMP_EX(%a6)
frcfpn_clr:
orl #ovfinx_mask,USER_FPSR(%a6)
//
// Perform the write.
//
frcfpn:
bfextu CMDREG1B(%a6){#6:#3},%d0 //extract fp destination register
cmpib #3,%d0
bles frc0123 //check if dest is fp0-fp3
movel #7,%d1
subl %d0,%d1
clrl %d0
bsetl %d1,%d0
fmovemx WBTEMP(%a6),%d0
rts
frc0123:
cmpib #0,%d0
beqs frc0_dst
cmpib #1,%d0
beqs frc1_dst
cmpib #2,%d0
beqs frc2_dst
frc3_dst:
movel WBTEMP_EX(%a6),USER_FP3(%a6)
movel WBTEMP_HI(%a6),USER_FP3+4(%a6)
movel WBTEMP_LO(%a6),USER_FP3+8(%a6)
rts
frc2_dst:
movel WBTEMP_EX(%a6),USER_FP2(%a6)
movel WBTEMP_HI(%a6),USER_FP2+4(%a6)
movel WBTEMP_LO(%a6),USER_FP2+8(%a6)
rts
frc1_dst:
movel WBTEMP_EX(%a6),USER_FP1(%a6)
movel WBTEMP_HI(%a6),USER_FP1+4(%a6)
movel WBTEMP_LO(%a6),USER_FP1+8(%a6)
rts
frc0_dst:
movel WBTEMP_EX(%a6),USER_FP0(%a6)
movel WBTEMP_HI(%a6),USER_FP0+4(%a6)
movel WBTEMP_LO(%a6),USER_FP0+8(%a6)
rts
//
// Write etemp to fpn.
// A check is made on enabled and signalled snan exceptions,
// and the destination is not overwritten if this condition exists.
// This code is designed to make fmoveins of unsupported data types
// faster.
//
wr_etemp:
btstb #snan_bit,FPSR_EXCEPT(%a6) //if snan is set, and
beqs fmoveinc //enabled, force restore
btstb #snan_bit,FPCR_ENABLE(%a6) //and don't overwrite
beqs fmoveinc //the dest
movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for
// ;snan handler
tstb ETEMP(%a6) //check for negative
blts snan_neg
rts
snan_neg:
orl #neg_bit,USER_FPSR(%a6) //snan is negative; set N
rts
fmoveinc:
clrw NMNEXC(%a6)
bclrb #E1,E_BYTE(%a6)
moveb STAG(%a6),%d0 //check if stag is inf
andib #0xe0,%d0
cmpib #0x40,%d0
bnes fminc_cnan
orl #inf_mask,USER_FPSR(%a6) //if inf, nothing yet has set I
tstw LOCAL_EX(%a0) //check sign
bges fminc_con
orl #neg_mask,USER_FPSR(%a6)
bra fminc_con
fminc_cnan:
cmpib #0x60,%d0 //check if stag is NaN
bnes fminc_czero
orl #nan_mask,USER_FPSR(%a6) //if nan, nothing yet has set NaN
movel ETEMP_EX(%a6),FPTEMP_EX(%a6) //set up fptemp sign for
// ;snan handler
tstw LOCAL_EX(%a0) //check sign
bges fminc_con
orl #neg_mask,USER_FPSR(%a6)
bra fminc_con
fminc_czero:
cmpib #0x20,%d0 //check if zero
bnes fminc_con
orl #z_mask,USER_FPSR(%a6) //if zero, set Z
tstw LOCAL_EX(%a0) //check sign
bges fminc_con
orl #neg_mask,USER_FPSR(%a6)
fminc_con:
bfextu CMDREG1B(%a6){#6:#3},%d0 //extract fp destination register
cmpib #3,%d0
bles fp0123 //check if dest is fp0-fp3
movel #7,%d1
subl %d0,%d1
clrl %d0
bsetl %d1,%d0
fmovemx ETEMP(%a6),%d0
rts
fp0123:
cmpib #0,%d0
beqs fp0_dst
cmpib #1,%d0
beqs fp1_dst
cmpib #2,%d0
beqs fp2_dst
fp3_dst:
movel ETEMP_EX(%a6),USER_FP3(%a6)
movel ETEMP_HI(%a6),USER_FP3+4(%a6)
movel ETEMP_LO(%a6),USER_FP3+8(%a6)
rts
fp2_dst:
movel ETEMP_EX(%a6),USER_FP2(%a6)
movel ETEMP_HI(%a6),USER_FP2+4(%a6)
movel ETEMP_LO(%a6),USER_FP2+8(%a6)
rts
fp1_dst:
movel ETEMP_EX(%a6),USER_FP1(%a6)
movel ETEMP_HI(%a6),USER_FP1+4(%a6)
movel ETEMP_LO(%a6),USER_FP1+8(%a6)
rts
fp0_dst:
movel ETEMP_EX(%a6),USER_FP0(%a6)
movel ETEMP_HI(%a6),USER_FP0+4(%a6)
movel ETEMP_LO(%a6),USER_FP0+8(%a6)
rts
opclass3:
st CU_ONLY(%a6)
movew CMDREG1B(%a6),%d0 //check if packed moveout
andiw #0x0c00,%d0 //isolate last 2 bits of size field
cmpiw #0x0c00,%d0 //if size is 011 or 111, it is packed
beq pack_out //else it is norm or denorm
bra mv_out
//
// MOVE OUT
//
mv_tbl:
.long li
.long sgp
.long xp
.long mvout_end //should never be taken
.long wi
.long dp
.long bi
.long mvout_end //should never be taken
mv_out:
bfextu CMDREG1B(%a6){#3:#3},%d1 //put source specifier in d1
leal mv_tbl,%a0
movel %a0@(%d1:l:4),%a0
jmp (%a0)
//
// This exit is for move-out to memory. The aunfl bit is
// set if the result is inex and unfl is signalled.
//
mvout_end:
btstb #inex2_bit,FPSR_EXCEPT(%a6)
beqs no_aufl
btstb #unfl_bit,FPSR_EXCEPT(%a6)
beqs no_aufl
bsetb #aunfl_bit,FPSR_AEXCEPT(%a6)
no_aufl:
clrw NMNEXC(%a6)
bclrb #E1,E_BYTE(%a6)
fmovel #0,%FPSR //clear any cc bits from res_func
//
// Return ETEMP to extended format from internal extended format so
// that gen_except will have a correctly signed value for ovfl/unfl
// handlers.
//
bfclr ETEMP_SGN(%a6){#0:#8}
beqs mvout_con
bsetb #sign_bit,ETEMP_EX(%a6)
mvout_con:
rts
//
// This exit is for move-out to int register. The aunfl bit is
// not set in any case for this move.
//
mvouti_end:
clrw NMNEXC(%a6)
bclrb #E1,E_BYTE(%a6)
fmovel #0,%FPSR //clear any cc bits from res_func
//
// Return ETEMP to extended format from internal extended format so
// that gen_except will have a correctly signed value for ovfl/unfl
// handlers.
//
bfclr ETEMP_SGN(%a6){#0:#8}
beqs mvouti_con
bsetb #sign_bit,ETEMP_EX(%a6)
mvouti_con:
rts
//
// li is used to handle a long integer source specifier
//
li:
moveql #4,%d0 //set byte count
btstb #7,STAG(%a6) //check for extended denorm
bne int_dnrm //if so, branch
fmovemx ETEMP(%a6),%fp0-%fp0
fcmpd #0x41dfffffffc00000,%fp0
// 41dfffffffc00000 in dbl prec = 401d0000fffffffe00000000 in ext prec
fbge lo_plrg
fcmpd #0xc1e0000000000000,%fp0
// c1e0000000000000 in dbl prec = c01e00008000000000000000 in ext prec
fble lo_nlrg
//
// at this point, the answer is between the largest pos and neg values
//
movel USER_FPCR(%a6),%d1 //use user's rounding mode
andil #0x30,%d1
fmovel %d1,%fpcr
fmovel %fp0,L_SCR1(%a6) //let the 040 perform conversion
fmovel %fpsr,%d1
orl %d1,USER_FPSR(%a6) //capture inex2/ainex if set
bra int_wrt
lo_plrg:
movel #0x7fffffff,L_SCR1(%a6) //answer is largest positive int
fbeq int_wrt //exact answer
fcmpd #0x41dfffffffe00000,%fp0
// 41dfffffffe00000 in dbl prec = 401d0000ffffffff00000000 in ext prec
fbge int_operr //set operr
bra int_inx //set inexact
lo_nlrg:
movel #0x80000000,L_SCR1(%a6)
fbeq int_wrt //exact answer
fcmpd #0xc1e0000000100000,%fp0
// c1e0000000100000 in dbl prec = c01e00008000000080000000 in ext prec
fblt int_operr //set operr
bra int_inx //set inexact
//
// wi is used to handle a word integer source specifier
//
wi:
moveql #2,%d0 //set byte count
btstb #7,STAG(%a6) //check for extended denorm
bne int_dnrm //branch if so
fmovemx ETEMP(%a6),%fp0-%fp0
fcmps #0x46fffe00,%fp0
// 46fffe00 in sgl prec = 400d0000fffe000000000000 in ext prec
fbge wo_plrg
fcmps #0xc7000000,%fp0
// c7000000 in sgl prec = c00e00008000000000000000 in ext prec
fble wo_nlrg
//
// at this point, the answer is between the largest pos and neg values
//
movel USER_FPCR(%a6),%d1 //use user's rounding mode
andil #0x30,%d1
fmovel %d1,%fpcr
fmovew %fp0,L_SCR1(%a6) //let the 040 perform conversion
fmovel %fpsr,%d1
orl %d1,USER_FPSR(%a6) //capture inex2/ainex if set
bra int_wrt
wo_plrg:
movew #0x7fff,L_SCR1(%a6) //answer is largest positive int
fbeq int_wrt //exact answer
fcmps #0x46ffff00,%fp0
// 46ffff00 in sgl prec = 400d0000ffff000000000000 in ext prec
fbge int_operr //set operr
bra int_inx //set inexact
wo_nlrg:
movew #0x8000,L_SCR1(%a6)
fbeq int_wrt //exact answer
fcmps #0xc7000080,%fp0
// c7000080 in sgl prec = c00e00008000800000000000 in ext prec
fblt int_operr //set operr
bra int_inx //set inexact
//
// bi is used to handle a byte integer source specifier
//
bi:
moveql #1,%d0 //set byte count
btstb #7,STAG(%a6) //check for extended denorm
bne int_dnrm //branch if so
fmovemx ETEMP(%a6),%fp0-%fp0
fcmps #0x42fe0000,%fp0
// 42fe0000 in sgl prec = 40050000fe00000000000000 in ext prec
fbge by_plrg
fcmps #0xc3000000,%fp0
// c3000000 in sgl prec = c00600008000000000000000 in ext prec
fble by_nlrg
//
// at this point, the answer is between the largest pos and neg values
//
movel USER_FPCR(%a6),%d1 //use user's rounding mode
andil #0x30,%d1
fmovel %d1,%fpcr
fmoveb %fp0,L_SCR1(%a6) //let the 040 perform conversion
fmovel %fpsr,%d1
orl %d1,USER_FPSR(%a6) //capture inex2/ainex if set
bra int_wrt
by_plrg:
moveb #0x7f,L_SCR1(%a6) //answer is largest positive int
fbeq int_wrt //exact answer
fcmps #0x42ff0000,%fp0
// 42ff0000 in sgl prec = 40050000ff00000000000000 in ext prec
fbge int_operr //set operr
bra int_inx //set inexact
by_nlrg:
moveb #0x80,L_SCR1(%a6)
fbeq int_wrt //exact answer
fcmps #0xc3008000,%fp0
// c3008000 in sgl prec = c00600008080000000000000 in ext prec
fblt int_operr //set operr
bra int_inx //set inexact
//
// Common integer routines
//
// int_drnrm---account for possible nonzero result for round up with positive
// operand and round down for negative answer. In the first case (result = 1)
// byte-width (store in d0) of result must be honored. In the second case,
// -1 in L_SCR1(a6) will cover all contingencies (FMOVE.B/W/L out).
int_dnrm:
movel #0,L_SCR1(%a6) // initialize result to 0
bfextu FPCR_MODE(%a6){#2:#2},%d1 // d1 is the rounding mode
cmpb #2,%d1
bmis int_inx // if RN or RZ, done
bnes int_rp // if RP, continue below
tstw ETEMP(%a6) // RM: store -1 in L_SCR1 if src is negative
bpls int_inx // otherwise result is 0
movel #-1,L_SCR1(%a6)
bras int_inx
int_rp:
tstw ETEMP(%a6) // RP: store +1 of proper width in L_SCR1 if
// ; source is greater than 0
bmis int_inx // otherwise, result is 0
lea L_SCR1(%a6),%a1 // a1 is address of L_SCR1
addal %d0,%a1 // offset by destination width -1
subal #1,%a1
bsetb #0,(%a1) // set low bit at a1 address
int_inx:
oril #inx2a_mask,USER_FPSR(%a6)
bras int_wrt
int_operr:
fmovemx %fp0-%fp0,FPTEMP(%a6) //FPTEMP must contain the extended
// ;precision source that needs to be
// ;converted to integer this is required
// ;if the operr exception is enabled.
// ;set operr/aiop (no inex2 on int ovfl)
oril #opaop_mask,USER_FPSR(%a6)
// ;fall through to perform int_wrt
int_wrt:
movel EXC_EA(%a6),%a1 //load destination address
tstl %a1 //check to see if it is a dest register
beqs wrt_dn //write data register
lea L_SCR1(%a6),%a0 //point to supervisor source address
bsrl mem_write
bra mvouti_end
wrt_dn:
movel %d0,-(%sp) //d0 currently contains the size to write
bsrl get_fline //get_fline returns Dn in d0
andiw #0x7,%d0 //isolate register
movel (%sp)+,%d1 //get size
cmpil #4,%d1 //most frequent case
beqs sz_long
cmpil #2,%d1
bnes sz_con
orl #8,%d0 //add 'word' size to register#
bras sz_con
sz_long:
orl #0x10,%d0 //add 'long' size to register#
sz_con:
movel %d0,%d1 //reg_dest expects size:reg in d1
bsrl reg_dest //load proper data register
bra mvouti_end
xp:
lea ETEMP(%a6),%a0
bclrb #sign_bit,LOCAL_EX(%a0)
sne LOCAL_SGN(%a0)
btstb #7,STAG(%a6) //check for extended denorm
bne xdnrm
clrl %d0
bras do_fp //do normal case
sgp:
lea ETEMP(%a6),%a0
bclrb #sign_bit,LOCAL_EX(%a0)
sne LOCAL_SGN(%a0)
btstb #7,STAG(%a6) //check for extended denorm
bne sp_catas //branch if so
movew LOCAL_EX(%a0),%d0
lea sp_bnds,%a1
cmpw (%a1),%d0
blt sp_under
cmpw 2(%a1),%d0
bgt sp_over
movel #1,%d0 //set destination format to single
bras do_fp //do normal case
dp:
lea ETEMP(%a6),%a0
bclrb #sign_bit,LOCAL_EX(%a0)
sne LOCAL_SGN(%a0)
btstb #7,STAG(%a6) //check for extended denorm
bne dp_catas //branch if so
movew LOCAL_EX(%a0),%d0
lea dp_bnds,%a1
cmpw (%a1),%d0
blt dp_under
cmpw 2(%a1),%d0
bgt dp_over
movel #2,%d0 //set destination format to double
// ;fall through to do_fp
//
do_fp:
bfextu FPCR_MODE(%a6){#2:#2},%d1 //rnd mode in d1
swap %d0 //rnd prec in upper word
addl %d0,%d1 //d1 has PREC/MODE info
clrl %d0 //clear g,r,s
bsrl round //round
movel %a0,%a1
movel EXC_EA(%a6),%a0
bfextu CMDREG1B(%a6){#3:#3},%d1 //extract destination format
// ;at this point only the dest
// ;formats sgl, dbl, ext are
// ;possible
cmpb #2,%d1
bgts ddbl //double=5, extended=2, single=1
bnes dsgl
// ;fall through to dext
dext:
bsrl dest_ext
bra mvout_end
dsgl:
bsrl dest_sgl
bra mvout_end
ddbl:
bsrl dest_dbl
bra mvout_end
//
// Handle possible denorm or catastrophic underflow cases here
//
xdnrm:
bsr set_xop //initialize WBTEMP
bsetb #wbtemp15_bit,WB_BYTE(%a6) //set wbtemp15
movel %a0,%a1
movel EXC_EA(%a6),%a0 //a0 has the destination pointer
bsrl dest_ext //store to memory
bsetb #unfl_bit,FPSR_EXCEPT(%a6)
bra mvout_end
sp_under:
bsetb #etemp15_bit,STAG(%a6)
cmpw 4(%a1),%d0
blts sp_catas //catastrophic underflow case
movel #1,%d0 //load in round precision
movel #sgl_thresh,%d1 //load in single denorm threshold
bsrl dpspdnrm //expects d1 to have the proper
// ;denorm threshold
bsrl dest_sgl //stores value to destination
bsetb #unfl_bit,FPSR_EXCEPT(%a6)
bra mvout_end //exit
dp_under:
bsetb #etemp15_bit,STAG(%a6)
cmpw 4(%a1),%d0
blts dp_catas //catastrophic underflow case
movel #dbl_thresh,%d1 //load in double precision threshold
movel #2,%d0
bsrl dpspdnrm //expects d1 to have proper
// ;denorm threshold
// ;expects d0 to have round precision
bsrl dest_dbl //store value to destination
bsetb #unfl_bit,FPSR_EXCEPT(%a6)
bra mvout_end //exit
//
// Handle catastrophic underflow cases here
//
sp_catas:
// Temp fix for z bit set in unf_sub
movel USER_FPSR(%a6),-(%a7)
movel #1,%d0 //set round precision to sgl
bsrl unf_sub //a0 points to result
movel (%a7)+,USER_FPSR(%a6)
movel #1,%d0
subw %d0,LOCAL_EX(%a0) //account for difference between
// ;denorm/norm bias
movel %a0,%a1 //a1 has the operand input
movel EXC_EA(%a6),%a0 //a0 has the destination pointer
bsrl dest_sgl //store the result
oril #unfinx_mask,USER_FPSR(%a6)
bra mvout_end
dp_catas:
// Temp fix for z bit set in unf_sub
movel USER_FPSR(%a6),-(%a7)
movel #2,%d0 //set round precision to dbl
bsrl unf_sub //a0 points to result
movel (%a7)+,USER_FPSR(%a6)
movel #1,%d0
subw %d0,LOCAL_EX(%a0) //account for difference between
// ;denorm/norm bias
movel %a0,%a1 //a1 has the operand input
movel EXC_EA(%a6),%a0 //a0 has the destination pointer
bsrl dest_dbl //store the result
oril #unfinx_mask,USER_FPSR(%a6)
bra mvout_end
//
// Handle catastrophic overflow cases here
//
sp_over:
// Temp fix for z bit set in unf_sub
movel USER_FPSR(%a6),-(%a7)
movel #1,%d0
leal FP_SCR1(%a6),%a0 //use FP_SCR1 for creating result
movel ETEMP_EX(%a6),(%a0)
movel ETEMP_HI(%a6),4(%a0)
movel ETEMP_LO(%a6),8(%a0)
bsrl ovf_res
movel (%a7)+,USER_FPSR(%a6)
movel %a0,%a1
movel EXC_EA(%a6),%a0
bsrl dest_sgl
orl #ovfinx_mask,USER_FPSR(%a6)
bra mvout_end
dp_over:
// Temp fix for z bit set in ovf_res
movel USER_FPSR(%a6),-(%a7)
movel #2,%d0
leal FP_SCR1(%a6),%a0 //use FP_SCR1 for creating result
movel ETEMP_EX(%a6),(%a0)
movel ETEMP_HI(%a6),4(%a0)
movel ETEMP_LO(%a6),8(%a0)
bsrl ovf_res
movel (%a7)+,USER_FPSR(%a6)
movel %a0,%a1
movel EXC_EA(%a6),%a0
bsrl dest_dbl
orl #ovfinx_mask,USER_FPSR(%a6)
bra mvout_end
//
// DPSPDNRM
//
// This subroutine takes an extended normalized number and denormalizes
// it to the given round precision. This subroutine also decrements
// the input operand's exponent by 1 to account for the fact that
// dest_sgl or dest_dbl expects a normalized number's bias.
//
// Input: a0 points to a normalized number in internal extended format
// d0 is the round precision (=1 for sgl; =2 for dbl)
// d1 is the the single precision or double precision
// denorm threshold
//
// Output: (In the format for dest_sgl or dest_dbl)
// a0 points to the destination
// a1 points to the operand
//
// Exceptions: Reports inexact 2 exception by setting USER_FPSR bits
//
dpspdnrm:
movel %d0,-(%a7) //save round precision
clrl %d0 //clear initial g,r,s
bsrl dnrm_lp //careful with d0, it's needed by round
bfextu FPCR_MODE(%a6){#2:#2},%d1 //get rounding mode
swap %d1
movew 2(%a7),%d1 //set rounding precision
swap %d1 //at this point d1 has PREC/MODE info
bsrl round //round result, sets the inex bit in
// ;USER_FPSR if needed
movew #1,%d0
subw %d0,LOCAL_EX(%a0) //account for difference in denorm
// ;vs norm bias
movel %a0,%a1 //a1 has the operand input
movel EXC_EA(%a6),%a0 //a0 has the destination pointer
addw #4,%a7 //pop stack
rts
//
// SET_XOP initialized WBTEMP with the value pointed to by a0
// input: a0 points to input operand in the internal extended format
//
set_xop:
movel LOCAL_EX(%a0),WBTEMP_EX(%a6)
movel LOCAL_HI(%a0),WBTEMP_HI(%a6)
movel LOCAL_LO(%a0),WBTEMP_LO(%a6)
bfclr WBTEMP_SGN(%a6){#0:#8}
beqs sxop
bsetb #sign_bit,WBTEMP_EX(%a6)
sxop:
bfclr STAG(%a6){#5:#4} //clear wbtm66,wbtm1,wbtm0,sbit
rts
//
// P_MOVE
//
p_movet:
.long p_move
.long p_movez
.long p_movei
.long p_moven
.long p_move
p_regd:
.long p_dyd0
.long p_dyd1
.long p_dyd2
.long p_dyd3
.long p_dyd4
.long p_dyd5
.long p_dyd6
.long p_dyd7
pack_out:
leal p_movet,%a0 //load jmp table address
movew STAG(%a6),%d0 //get source tag
bfextu %d0{#16:#3},%d0 //isolate source bits
movel (%a0,%d0.w*4),%a0 //load a0 with routine label for tag
jmp (%a0) //go to the routine
p_write:
movel #0x0c,%d0 //get byte count
movel EXC_EA(%a6),%a1 //get the destination address
bsr mem_write //write the user's destination
moveb #0,CU_SAVEPC(%a6) //set the cu save pc to all 0's
//
// Also note that the dtag must be set to norm here - this is because
// the 040 uses the dtag to execute the correct microcode.
//
bfclr DTAG(%a6){#0:#3} //set dtag to norm
rts
// Notes on handling of special case (zero, inf, and nan) inputs:
// 1. Operr is not signalled if the k-factor is greater than 18.
// 2. Per the manual, status bits are not set.
//
p_move:
movew CMDREG1B(%a6),%d0
btstl #kfact_bit,%d0 //test for dynamic k-factor
beqs statick //if clear, k-factor is static
dynamick:
bfextu %d0{#25:#3},%d0 //isolate register for dynamic k-factor
lea p_regd,%a0
movel %a0@(%d0:l:4),%a0
jmp (%a0)
statick:
andiw #0x007f,%d0 //get k-factor
bfexts %d0{#25:#7},%d0 //sign extend d0 for bindec
leal ETEMP(%a6),%a0 //a0 will point to the packed decimal
bsrl bindec //perform the convert; data at a6
leal FP_SCR1(%a6),%a0 //load a0 with result address
bral p_write
p_movez:
leal ETEMP(%a6),%a0 //a0 will point to the packed decimal
clrw 2(%a0) //clear lower word of exp
clrl 4(%a0) //load second lword of ZERO
clrl 8(%a0) //load third lword of ZERO
bra p_write //go write results
p_movei:
fmovel #0,%FPSR //clear aiop
leal ETEMP(%a6),%a0 //a0 will point to the packed decimal
clrw 2(%a0) //clear lower word of exp
bra p_write //go write the result
p_moven:
leal ETEMP(%a6),%a0 //a0 will point to the packed decimal
clrw 2(%a0) //clear lower word of exp
bra p_write //go write the result
//
// Routines to read the dynamic k-factor from Dn.
//
p_dyd0:
movel USER_D0(%a6),%d0
bras statick
p_dyd1:
movel USER_D1(%a6),%d0
bras statick
p_dyd2:
movel %d2,%d0
bras statick
p_dyd3:
movel %d3,%d0
bras statick
p_dyd4:
movel %d4,%d0
bras statick
p_dyd5:
movel %d5,%d0
bras statick
p_dyd6:
movel %d6,%d0
bra statick
p_dyd7:
movel %d7,%d0
bra statick
|end
Go to most recent revision | Compare with Previous | Blame | View Log