URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rtems/] [c/] [src/] [lib/] [libcpu/] [m68k/] [m68040/] [fpsp/] [util.S] - Rev 1765
Compare with Previous | Blame | View Log
//
// $Id: util.S,v 1.2 2001-09-27 12:01:22 chris Exp $
//
// util.sa 3.7 7/29/91
//
// This file contains routines used by other programs.
//
// ovf_res: used by overflow to force the correct
// result. ovf_r_k, ovf_r_x2, ovf_r_x3 are
// derivatives of this routine.
// get_fline: get user's opcode word
// g_dfmtou: returns the destination format.
// g_opcls: returns the opclass of the float instruction.
// g_rndpr: returns the rounding precision.
// reg_dest: write byte, word, or long data to Dn
//
//
// Copyright (C) Motorola, Inc. 1990
// All Rights Reserved
//
// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
// The copyright notice above does not evidence any
// actual or intended publication of such source code.
//UTIL idnt 2,1 | Motorola 040 Floating Point Software Package
|section 8
#include "fpsp.defs"
|xref mem_read
.global g_dfmtou
.global g_opcls
.global g_rndpr
.global get_fline
.global reg_dest
//
// Final result table for ovf_res. Note that the negative counterparts
// are unnecessary as ovf_res always returns the sign separately from
// the exponent.
// ;+inf
EXT_PINF: .long 0x7fff0000,0x00000000,0x00000000,0x00000000
// ;largest +ext
EXT_PLRG: .long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000
// ;largest magnitude +sgl in ext
SGL_PLRG: .long 0x407e0000,0xffffff00,0x00000000,0x00000000
// ;largest magnitude +dbl in ext
DBL_PLRG: .long 0x43fe0000,0xffffffff,0xfffff800,0x00000000
// ;largest -ext
tblovfl:
.long EXT_RN
.long EXT_RZ
.long EXT_RM
.long EXT_RP
.long SGL_RN
.long SGL_RZ
.long SGL_RM
.long SGL_RP
.long DBL_RN
.long DBL_RZ
.long DBL_RM
.long DBL_RP
.long error
.long error
.long error
.long error
//
// ovf_r_k --- overflow result calculation
//
// This entry point is used by kernel_ex.
//
// This forces the destination precision to be extended
//
// Input: operand in ETEMP
// Output: a result is in ETEMP (internal extended format)
//
.global ovf_r_k
ovf_r_k:
lea ETEMP(%a6),%a0 //a0 points to source operand
bclrb #sign_bit,ETEMP_EX(%a6)
sne ETEMP_SGN(%a6) //convert to internal IEEE format
//
// ovf_r_x2 --- overflow result calculation
//
// This entry point used by x_ovfl. (opclass 0 and 2)
//
// Input a0 points to an operand in the internal extended format
// Output a0 points to the result in the internal extended format
//
// This sets the round precision according to the user's FPCR unless the
// instruction is fsgldiv or fsglmul or fsadd, fdadd, fsub, fdsub, fsmul,
// fdmul, fsdiv, fddiv, fssqrt, fsmove, fdmove, fsabs, fdabs, fsneg, fdneg.
// If the instruction is fsgldiv of fsglmul, the rounding precision must be
// extended. If the instruction is not fsgldiv or fsglmul but a force-
// precision instruction, the rounding precision is then set to the force
// precision.
.global ovf_r_x2
ovf_r_x2:
btstb #E3,E_BYTE(%a6) //check for nu exception
beql ovf_e1_exc //it is cu exception
ovf_e3_exc:
movew CMDREG3B(%a6),%d0 //get the command word
andiw #0x00000060,%d0 //clear all bits except 6 and 5
cmpil #0x00000040,%d0
beql ovff_sgl //force precision is single
cmpil #0x00000060,%d0
beql ovff_dbl //force precision is double
movew CMDREG3B(%a6),%d0 //get the command word again
andil #0x7f,%d0 //clear all except operation
cmpil #0x33,%d0
beql ovf_fsgl //fsglmul or fsgldiv
cmpil #0x30,%d0
beql ovf_fsgl
bra ovf_fpcr //instruction is none of the above
// ;use FPCR
ovf_e1_exc:
movew CMDREG1B(%a6),%d0 //get command word
andil #0x00000044,%d0 //clear all bits except 6 and 2
cmpil #0x00000040,%d0
beql ovff_sgl //the instruction is force single
cmpil #0x00000044,%d0
beql ovff_dbl //the instruction is force double
movew CMDREG1B(%a6),%d0 //again get the command word
andil #0x0000007f,%d0 //clear all except the op code
cmpil #0x00000027,%d0
beql ovf_fsgl //fsglmul
cmpil #0x00000024,%d0
beql ovf_fsgl //fsgldiv
bra ovf_fpcr //none of the above, use FPCR
//
//
// Inst is either fsgldiv or fsglmul. Force extended precision.
//
ovf_fsgl:
clrl %d0
bra ovf_res
ovff_sgl:
movel #0x00000001,%d0 //set single
bra ovf_res
ovff_dbl:
movel #0x00000002,%d0 //set double
bra ovf_res
//
// The precision is in the fpcr.
//
ovf_fpcr:
bfextu FPCR_MODE(%a6){#0:#2},%d0 //set round precision
bra ovf_res
//
//
// ovf_r_x3 --- overflow result calculation
//
// This entry point used by x_ovfl. (opclass 3 only)
//
// Input a0 points to an operand in the internal extended format
// Output a0 points to the result in the internal extended format
//
// This sets the round precision according to the destination size.
//
.global ovf_r_x3
ovf_r_x3:
bsr g_dfmtou //get dest fmt in d0{1:0}
// ;for fmovout, the destination format
// ;is the rounding precision
//
// ovf_res --- overflow result calculation
//
// Input:
// a0 points to operand in internal extended format
// Output:
// a0 points to result in internal extended format
//
.global ovf_res
ovf_res:
lsll #2,%d0 //move round precision to d0{3:2}
bfextu FPCR_MODE(%a6){#2:#2},%d1 //set round mode
orl %d1,%d0 //index is fmt:mode in d0{3:0}
leal tblovfl,%a1 //load a1 with table address
movel %a1@(%d0:l:4),%a1 //use d0 as index to the table
jmp (%a1) //go to the correct routine
//
//case DEST_FMT = EXT
//
EXT_RN:
leal EXT_PINF,%a1 //answer is +/- infinity
bsetb #inf_bit,FPSR_CC(%a6)
bra set_sign //now go set the sign
EXT_RZ:
leal EXT_PLRG,%a1 //answer is +/- large number
bra set_sign //now go set the sign
EXT_RM:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs e_rm_pos
e_rm_neg:
leal EXT_PINF,%a1 //answer is negative infinity
orl #neginf_mask,USER_FPSR(%a6)
bra end_ovfr
e_rm_pos:
leal EXT_PLRG,%a1 //answer is large positive number
bra end_ovfr
EXT_RP:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs e_rp_pos
e_rp_neg:
leal EXT_PLRG,%a1 //answer is large negative number
bsetb #neg_bit,FPSR_CC(%a6)
bra end_ovfr
e_rp_pos:
leal EXT_PINF,%a1 //answer is positive infinity
bsetb #inf_bit,FPSR_CC(%a6)
bra end_ovfr
//
//case DEST_FMT = DBL
//
DBL_RN:
leal EXT_PINF,%a1 //answer is +/- infinity
bsetb #inf_bit,FPSR_CC(%a6)
bra set_sign
DBL_RZ:
leal DBL_PLRG,%a1 //answer is +/- large number
bra set_sign //now go set the sign
DBL_RM:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs d_rm_pos
d_rm_neg:
leal EXT_PINF,%a1 //answer is negative infinity
orl #neginf_mask,USER_FPSR(%a6)
bra end_ovfr //inf is same for all precisions (ext,dbl,sgl)
d_rm_pos:
leal DBL_PLRG,%a1 //answer is large positive number
bra end_ovfr
DBL_RP:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs d_rp_pos
d_rp_neg:
leal DBL_PLRG,%a1 //answer is large negative number
bsetb #neg_bit,FPSR_CC(%a6)
bra end_ovfr
d_rp_pos:
leal EXT_PINF,%a1 //answer is positive infinity
bsetb #inf_bit,FPSR_CC(%a6)
bra end_ovfr
//
//case DEST_FMT = SGL
//
SGL_RN:
leal EXT_PINF,%a1 //answer is +/- infinity
bsetb #inf_bit,FPSR_CC(%a6)
bras set_sign
SGL_RZ:
leal SGL_PLRG,%a1 //answer is +/- large number
bras set_sign
SGL_RM:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs s_rm_pos
s_rm_neg:
leal EXT_PINF,%a1 //answer is negative infinity
orl #neginf_mask,USER_FPSR(%a6)
bras end_ovfr
s_rm_pos:
leal SGL_PLRG,%a1 //answer is large positive number
bras end_ovfr
SGL_RP:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs s_rp_pos
s_rp_neg:
leal SGL_PLRG,%a1 //answer is large negative number
bsetb #neg_bit,FPSR_CC(%a6)
bras end_ovfr
s_rp_pos:
leal EXT_PINF,%a1 //answer is positive infinity
bsetb #inf_bit,FPSR_CC(%a6)
bras end_ovfr
set_sign:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs end_ovfr
neg_sign:
bsetb #neg_bit,FPSR_CC(%a6)
end_ovfr:
movew LOCAL_EX(%a1),LOCAL_EX(%a0) //do not overwrite sign
movel LOCAL_HI(%a1),LOCAL_HI(%a0)
movel LOCAL_LO(%a1),LOCAL_LO(%a0)
rts
//
// ERROR
//
error:
rts
//
// get_fline --- get f-line opcode of interrupted instruction
//
// Returns opcode in the low word of d0.
//
get_fline:
movel USER_FPIAR(%a6),%a0 //opcode address
movel #0,-(%a7) //reserve a word on the stack
leal 2(%a7),%a1 //point to low word of temporary
movel #2,%d0 //count
bsrl mem_read
movel (%a7)+,%d0
rts
//
// g_rndpr --- put rounding precision in d0{1:0}
//
// valid return codes are:
// 00 - extended
// 01 - single
// 10 - double
//
// begin
// get rounding precision (cmdreg3b{6:5})
// begin
// case opclass = 011 (move out)
// get destination format - this is the also the rounding precision
//
// case opclass = 0x0
// if E3
// *case RndPr(from cmdreg3b{6:5} = 11 then RND_PREC = DBL
// *case RndPr(from cmdreg3b{6:5} = 10 then RND_PREC = SGL
// case RndPr(from cmdreg3b{6:5} = 00 | 01
// use precision from FPCR{7:6}
// case 00 then RND_PREC = EXT
// case 01 then RND_PREC = SGL
// case 10 then RND_PREC = DBL
// else E1
// use precision in FPCR{7:6}
// case 00 then RND_PREC = EXT
// case 01 then RND_PREC = SGL
// case 10 then RND_PREC = DBL
// end
//
g_rndpr:
bsr g_opcls //get opclass in d0{2:0}
cmpw #0x0003,%d0 //check for opclass 011
bnes op_0x0
//
// For move out instructions (opclass 011) the destination format
// is the same as the rounding precision. Pass results from g_dfmtou.
//
bsr g_dfmtou
rts
op_0x0:
btstb #E3,E_BYTE(%a6)
beql unf_e1_exc //branch to e1 underflow
unf_e3_exc:
movel CMDREG3B(%a6),%d0 //rounding precision in d0{10:9}
bfextu %d0{#9:#2},%d0 //move the rounding prec bits to d0{1:0}
cmpil #0x2,%d0
beql unff_sgl //force precision is single
cmpil #0x3,%d0 //force precision is double
beql unff_dbl
movew CMDREG3B(%a6),%d0 //get the command word again
andil #0x7f,%d0 //clear all except operation
cmpil #0x33,%d0
beql unf_fsgl //fsglmul or fsgldiv
cmpil #0x30,%d0
beql unf_fsgl //fsgldiv or fsglmul
bra unf_fpcr
unf_e1_exc:
movel CMDREG1B(%a6),%d0 //get 32 bits off the stack, 1st 16 bits
// ;are the command word
andil #0x00440000,%d0 //clear all bits except bits 6 and 2
cmpil #0x00400000,%d0
beql unff_sgl //force single
cmpil #0x00440000,%d0 //force double
beql unff_dbl
movel CMDREG1B(%a6),%d0 //get the command word again
andil #0x007f0000,%d0 //clear all bits except the operation
cmpil #0x00270000,%d0
beql unf_fsgl //fsglmul
cmpil #0x00240000,%d0
beql unf_fsgl //fsgldiv
bra unf_fpcr
//
// Convert to return format. The values from cmdreg3b and the return
// values are:
// cmdreg3b return precision
// -------- ------ ---------
// 00,01 0 ext
// 10 1 sgl
// 11 2 dbl
// Force single
//
unff_sgl:
movel #1,%d0 //return 1
rts
//
// Force double
//
unff_dbl:
movel #2,%d0 //return 2
rts
//
// Force extended
//
unf_fsgl:
movel #0,%d0
rts
//
// Get rounding precision set in FPCR{7:6}.
//
unf_fpcr:
movel USER_FPCR(%a6),%d0 //rounding precision bits in d0{7:6}
bfextu %d0{#24:#2},%d0 //move the rounding prec bits to d0{1:0}
rts
//
// g_opcls --- put opclass in d0{2:0}
//
g_opcls:
btstb #E3,E_BYTE(%a6)
beqs opc_1b //if set, go to cmdreg1b
opc_3b:
clrl %d0 //if E3, only opclass 0x0 is possible
rts
opc_1b:
movel CMDREG1B(%a6),%d0
bfextu %d0{#0:#3},%d0 //shift opclass bits d0{31:29} to d0{2:0}
rts
//
// g_dfmtou --- put destination format in d0{1:0}
//
// If E1, the format is from cmdreg1b{12:10}
// If E3, the format is extended.
//
// Dest. Fmt.
// extended 010 -> 00
// single 001 -> 01
// double 101 -> 10
//
g_dfmtou:
btstb #E3,E_BYTE(%a6)
beqs op011
clrl %d0 //if E1, size is always ext
rts
op011:
movel CMDREG1B(%a6),%d0
bfextu %d0{#3:#3},%d0 //dest fmt from cmdreg1b{12:10}
cmpb #1,%d0 //check for single
bnes not_sgl
movel #1,%d0
rts
not_sgl:
cmpb #5,%d0 //check for double
bnes not_dbl
movel #2,%d0
rts
not_dbl:
clrl %d0 //must be extended
rts
//
//
// Final result table for unf_sub. Note that the negative counterparts
// are unnecessary as unf_sub always returns the sign separately from
// the exponent.
// ;+zero
EXT_PZRO: .long 0x00000000,0x00000000,0x00000000,0x00000000
// ;+zero
SGL_PZRO: .long 0x3f810000,0x00000000,0x00000000,0x00000000
// ;+zero
DBL_PZRO: .long 0x3c010000,0x00000000,0x00000000,0x00000000
// ;smallest +ext denorm
EXT_PSML: .long 0x00000000,0x00000000,0x00000001,0x00000000
// ;smallest +sgl denorm
SGL_PSML: .long 0x3f810000,0x00000100,0x00000000,0x00000000
// ;smallest +dbl denorm
DBL_PSML: .long 0x3c010000,0x00000000,0x00000800,0x00000000
//
// UNF_SUB --- underflow result calculation
//
// Input:
// d0 contains round precision
// a0 points to input operand in the internal extended format
//
// Output:
// a0 points to correct internal extended precision result.
//
tblunf:
.long uEXT_RN
.long uEXT_RZ
.long uEXT_RM
.long uEXT_RP
.long uSGL_RN
.long uSGL_RZ
.long uSGL_RM
.long uSGL_RP
.long uDBL_RN
.long uDBL_RZ
.long uDBL_RM
.long uDBL_RP
.long uDBL_RN
.long uDBL_RZ
.long uDBL_RM
.long uDBL_RP
.global unf_sub
unf_sub:
lsll #2,%d0 //move round precision to d0{3:2}
bfextu FPCR_MODE(%a6){#2:#2},%d1 //set round mode
orl %d1,%d0 //index is fmt:mode in d0{3:0}
leal tblunf,%a1 //load a1 with table address
movel %a1@(%d0:l:4),%a1 //use d0 as index to the table
jmp (%a1) //go to the correct routine
//
//case DEST_FMT = EXT
//
uEXT_RN:
leal EXT_PZRO,%a1 //answer is +/- zero
bsetb #z_bit,FPSR_CC(%a6)
bra uset_sign //now go set the sign
uEXT_RZ:
leal EXT_PZRO,%a1 //answer is +/- zero
bsetb #z_bit,FPSR_CC(%a6)
bra uset_sign //now go set the sign
uEXT_RM:
tstb LOCAL_SGN(%a0) //if negative underflow
beqs ue_rm_pos
ue_rm_neg:
leal EXT_PSML,%a1 //answer is negative smallest denorm
bsetb #neg_bit,FPSR_CC(%a6)
bra end_unfr
ue_rm_pos:
leal EXT_PZRO,%a1 //answer is positive zero
bsetb #z_bit,FPSR_CC(%a6)
bra end_unfr
uEXT_RP:
tstb LOCAL_SGN(%a0) //if negative underflow
beqs ue_rp_pos
ue_rp_neg:
leal EXT_PZRO,%a1 //answer is negative zero
oril #negz_mask,USER_FPSR(%a6)
bra end_unfr
ue_rp_pos:
leal EXT_PSML,%a1 //answer is positive smallest denorm
bra end_unfr
//
//case DEST_FMT = DBL
//
uDBL_RN:
leal DBL_PZRO,%a1 //answer is +/- zero
bsetb #z_bit,FPSR_CC(%a6)
bra uset_sign
uDBL_RZ:
leal DBL_PZRO,%a1 //answer is +/- zero
bsetb #z_bit,FPSR_CC(%a6)
bra uset_sign //now go set the sign
uDBL_RM:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs ud_rm_pos
ud_rm_neg:
leal DBL_PSML,%a1 //answer is smallest denormalized negative
bsetb #neg_bit,FPSR_CC(%a6)
bra end_unfr
ud_rm_pos:
leal DBL_PZRO,%a1 //answer is positive zero
bsetb #z_bit,FPSR_CC(%a6)
bra end_unfr
uDBL_RP:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs ud_rp_pos
ud_rp_neg:
leal DBL_PZRO,%a1 //answer is negative zero
oril #negz_mask,USER_FPSR(%a6)
bra end_unfr
ud_rp_pos:
leal DBL_PSML,%a1 //answer is smallest denormalized negative
bra end_unfr
//
//case DEST_FMT = SGL
//
uSGL_RN:
leal SGL_PZRO,%a1 //answer is +/- zero
bsetb #z_bit,FPSR_CC(%a6)
bras uset_sign
uSGL_RZ:
leal SGL_PZRO,%a1 //answer is +/- zero
bsetb #z_bit,FPSR_CC(%a6)
bras uset_sign
uSGL_RM:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs us_rm_pos
us_rm_neg:
leal SGL_PSML,%a1 //answer is smallest denormalized negative
bsetb #neg_bit,FPSR_CC(%a6)
bras end_unfr
us_rm_pos:
leal SGL_PZRO,%a1 //answer is positive zero
bsetb #z_bit,FPSR_CC(%a6)
bras end_unfr
uSGL_RP:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs us_rp_pos
us_rp_neg:
leal SGL_PZRO,%a1 //answer is negative zero
oril #negz_mask,USER_FPSR(%a6)
bras end_unfr
us_rp_pos:
leal SGL_PSML,%a1 //answer is smallest denormalized positive
bras end_unfr
uset_sign:
tstb LOCAL_SGN(%a0) //if negative overflow
beqs end_unfr
uneg_sign:
bsetb #neg_bit,FPSR_CC(%a6)
end_unfr:
movew LOCAL_EX(%a1),LOCAL_EX(%a0) //be careful not to overwrite sign
movel LOCAL_HI(%a1),LOCAL_HI(%a0)
movel LOCAL_LO(%a1),LOCAL_LO(%a0)
rts
//
// reg_dest --- write byte, word, or long data to Dn
//
//
// Input:
// L_SCR1: Data
// d1: data size and dest register number formatted as:
//
// 32 5 4 3 2 1 0
// -----------------------------------------------
// | 0 | Size | Dest Reg # |
// -----------------------------------------------
//
// Size is:
// 0 - Byte
// 1 - Word
// 2 - Long/Single
//
pregdst:
.long byte_d0
.long byte_d1
.long byte_d2
.long byte_d3
.long byte_d4
.long byte_d5
.long byte_d6
.long byte_d7
.long word_d0
.long word_d1
.long word_d2
.long word_d3
.long word_d4
.long word_d5
.long word_d6
.long word_d7
.long long_d0
.long long_d1
.long long_d2
.long long_d3
.long long_d4
.long long_d5
.long long_d6
.long long_d7
reg_dest:
leal pregdst,%a0
movel %a0@(%d1:l:4),%a0
jmp (%a0)
byte_d0:
moveb L_SCR1(%a6),USER_D0+3(%a6)
rts
byte_d1:
moveb L_SCR1(%a6),USER_D1+3(%a6)
rts
byte_d2:
moveb L_SCR1(%a6),%d2
rts
byte_d3:
moveb L_SCR1(%a6),%d3
rts
byte_d4:
moveb L_SCR1(%a6),%d4
rts
byte_d5:
moveb L_SCR1(%a6),%d5
rts
byte_d6:
moveb L_SCR1(%a6),%d6
rts
byte_d7:
moveb L_SCR1(%a6),%d7
rts
word_d0:
movew L_SCR1(%a6),USER_D0+2(%a6)
rts
word_d1:
movew L_SCR1(%a6),USER_D1+2(%a6)
rts
word_d2:
movew L_SCR1(%a6),%d2
rts
word_d3:
movew L_SCR1(%a6),%d3
rts
word_d4:
movew L_SCR1(%a6),%d4
rts
word_d5:
movew L_SCR1(%a6),%d5
rts
word_d6:
movew L_SCR1(%a6),%d6
rts
word_d7:
movew L_SCR1(%a6),%d7
rts
long_d0:
movel L_SCR1(%a6),USER_D0(%a6)
rts
long_d1:
movel L_SCR1(%a6),USER_D1(%a6)
rts
long_d2:
movel L_SCR1(%a6),%d2
rts
long_d3:
movel L_SCR1(%a6),%d3
rts
long_d4:
movel L_SCR1(%a6),%d4
rts
long_d5:
movel L_SCR1(%a6),%d5
rts
long_d6:
movel L_SCR1(%a6),%d6
rts
long_d7:
movel L_SCR1(%a6),%d7
rts
|end