URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [rtems-20020807/] [c/] [src/] [lib/] [libbsp/] [i386/] [shared/] [irq/] [irq.h] - Rev 1765
Compare with Previous | Blame | View Log
/* irq.h * * This include file describe the data structure and the functions implemented * by rtems to write interrupt handlers. * * CopyRight (C) 1998 valette@crf.canon.fr * * This code is heavilly inspired by the public specification of STREAM V2 * that can be found at : * * <http://www.chorus.com/Documentation/index.html> by following * the STREAM API Specification Document link. * * The license and distribution terms for this file may be * found in found in the file LICENSE in this distribution or at * http://www.OARcorp.com/rtems/license.html. * * irq.h,v 1.4 1999/12/13 22:10:44 joel Exp */ #ifndef _IRQ_H_ #define _IRQ_H_ #ifdef __cplusplus extern "C" { #endif /* * Include some preprocessor value also used by assember code */ #include <irq_asm.h> #include <rtems.h> /*-------------------------------------------------------------------------+ | Constants +--------------------------------------------------------------------------*/ typedef enum { /* Base vector for our IRQ handlers. */ BSP_IRQ_VECTOR_BASE = BSP_ASM_IRQ_VECTOR_BASE, BSP_IRQ_LINES_NUMBER = 16, BSP_LOWEST_OFFSET = 0, BSP_MAX_OFFSET = BSP_IRQ_LINES_NUMBER - 1, /* * Interrupt offset in comparison to BSP_ASM_IRQ_VECTOR_BASE * NB : 1) Interrupt vector number in IDT = offset + BSP_ASM_IRQ_VECTOR_BASE * 2) The same name should be defined on all architecture * so that handler connexion can be unchanged. */ BSP_PERIODIC_TIMER = 0, BSP_KEYBOARD = 1, BSP_UART_COM2_IRQ = 3, BSP_UART_COM1_IRQ = 4, BSP_RT_TIMER1 = 8, BSP_RT_TIMER3 = 10 } rtems_irq_symbolic_name; /* * Type definition for RTEMS managed interrupts */ typedef unsigned char rtems_irq_prio; typedef unsigned short rtems_i8259_masks; extern rtems_i8259_masks i8259s_cache; struct __rtems_irq_connect_data__; /* forward declaratiuon */ typedef void (*rtems_irq_hdl) (void); typedef void (*rtems_irq_enable) (const struct __rtems_irq_connect_data__*); typedef void (*rtems_irq_disable) (const struct __rtems_irq_connect_data__*); typedef int (*rtems_irq_is_enabled) (const struct __rtems_irq_connect_data__*); typedef struct __rtems_irq_connect_data__ { /* * IRQ line */ rtems_irq_symbolic_name name; /* * handler. See comment on handler properties below in function prototype. */ rtems_irq_hdl hdl; /* * function for enabling interrupts at device level (ONLY!). * The BSP code will automatically enable it at i8259s level. * RATIONALE : anyway such code has to exist in current driver code. * It is usually called immediately AFTER connecting the interrupt handler. * RTEMS may well need such a function when restoring normal interrupt * processing after a debug session. * */ rtems_irq_enable on; /* * function for disabling interrupts at device level (ONLY!). * The code will disable it at i8259s level. RATIONALE : anyway * such code has to exist for clean shutdown. It is usually called * BEFORE disconnecting the interrupt. RTEMS may well need such * a function when disabling normal interrupt processing for * a debug session. May well be a NOP function. */ rtems_irq_disable off; /* * function enabling to know what interrupt may currently occur * if someone manipulates the i8259s interrupt mask without care... */ rtems_irq_is_enabled isOn; } rtems_irq_connect_data; typedef struct { /* * size of all the table fields (*Tbl) described below. */ unsigned int irqNb; /* * Default handler used when disconnecting interrupts. */ rtems_irq_connect_data defaultEntry; /* * Table containing initials/current value. */ rtems_irq_connect_data* irqHdlTbl; /* * actual value of BSP_IRQ_VECTOR_BASE... */ rtems_irq_symbolic_name irqBase; /* * software priorities associated with interrupts. * if irqPrio [i] > intrPrio [j] it means that * interrupt handler hdl connected for interrupt name i * will not be interrupted by the handler connected for interrupt j * The interrupt source will be physically masked at i8259 level. */ rtems_irq_prio* irqPrioTbl; }rtems_irq_global_settings; /*-------------------------------------------------------------------------+ | Function Prototypes. +--------------------------------------------------------------------------*/ /* * ------------------------ Intel 8259 (or emulation) Mngt Routines ------- */ /* * function to disable a particular irq at 8259 level. After calling * this function, even if the device asserts the interrupt line it will * not be propagated further to the processor */ int BSP_irq_disable_at_i8259s (const rtems_irq_symbolic_name irqLine); /* * function to enable a particular irq at 8259 level. After calling * this function, if the device asserts the interrupt line it will * be propagated further to the processor */ int BSP_irq_enable_at_i8259s (const rtems_irq_symbolic_name irqLine); /* * function to acknoledge a particular irq at 8259 level. After calling * this function, if a device asserts an enabled interrupt line it will * be propagated further to the processor. Mainly usefull for people * writting raw handlers as this is automagically done for rtems managed * handlers. */ int BSP_irq_ack_at_i8259s (const rtems_irq_symbolic_name irqLine); /* * function to check if a particular irq is enabled at 8259 level. After calling */ int BSP_irq_enabled_at_i8259s (const rtems_irq_symbolic_name irqLine); /* * ------------------------ RTEMS Single Irq Handler Mngt Routines ---------------- */ /* * function to connect a particular irq handler. This hanlder will NOT be called * directly as the result of the corresponding interrupt. Instead, a RTEMS * irq prologue will be called that will : * * 1) save the C scratch registers, * 2) switch to a interrupt stack if the interrupt is not nested, * 3) store the current i8259s' interrupt masks * 4) modify them to disable the current interrupt at 8259 level (and may * be others depending on software priorities) * 5) aknowledge the i8259s', * 6) demask the processor, * 7) call the application handler * * As a result the hdl function provided * * a) can perfectly be written is C, * b) may also well directly call the part of the RTEMS API that can be used * from interrupt level, * c) It only responsible for handling the jobs that need to be done at * the device level including (aknowledging/re-enabling the interrupt at device, * level, getting the data,...) * * When returning from the function, the following will be performed by * the RTEMS irq epilogue : * * 1) masks the interrupts again, * 2) restore the original i8259s' interrupt masks * 3) switch back on the orinal stack if needed, * 4) perform rescheduling when necessary, * 5) restore the C scratch registers... * 6) restore initial execution flow * */ int BSP_install_rtems_irq_handler (const rtems_irq_connect_data*); /* * function to get the current RTEMS irq handler for ptr->name. It enables to * define hanlder chain... */ int BSP_get_current_rtems_irq_handler (rtems_irq_connect_data* ptr); /* * function to get disconnect the RTEMS irq handler for ptr->name. * This function checks that the value given is the current one for safety reason. * The user can use the previous function to get it. */ int BSP_remove_rtems_irq_handler (const rtems_irq_connect_data*); /* * ------------------------ RTEMS Global Irq Handler Mngt Routines ---------------- */ /* * (Re) Initialize the RTEMS interrupt management. * * The result of calling this function will be the same as if each individual * handler (config->irqHdlTbl[i].hdl) different from "config->defaultEntry.hdl" * has been individualy connected via * BSP_install_rtems_irq_handler(&config->irqHdlTbl[i]) * And each handler currently equal to config->defaultEntry.hdl * has been previously disconnected via * BSP_remove_rtems_irq_handler (&config->irqHdlTbl[i]) * * This is to say that all information given will be used and not just * only the space. * * CAUTION : the various table address contained in config will be used * directly by the interrupt mangement code in order to save * data size so they must stay valid after the call => they should * not be modified or declared on a stack. */ int BSP_rtems_irq_mngt_set(rtems_irq_global_settings* config); /* * (Re) get info on current RTEMS interrupt management. */ int BSP_rtems_irq_mngt_get(rtems_irq_global_settings**); #ifdef __cplusplus } #endif #endif /* _IRQ_H_ */ /* end of include file */