URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [arch/] [alpha/] [kernel/] [t2.c] - Rev 1780
Go to most recent revision | Compare with Previous | Blame | View Log
/* * Code common to all T2 chips. * * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com). * December 1996. * * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com) * */ #include <linux/kernel.h> #include <linux/config.h> #include <linux/types.h> #include <linux/bios32.h> #include <linux/pci.h> #include <linux/sched.h> #include <asm/system.h> #include <asm/io.h> #include <asm/hwrpb.h> #include <asm/ptrace.h> #include <asm/mmu_context.h> extern struct hwrpb_struct *hwrpb; extern asmlinkage void wrmces(unsigned long mces); extern asmlinkage unsigned long whami(void); #define CPUID whami() /* * Machine check reasons. Defined according to PALcode sources * (osf.h and platform.h). */ #define MCHK_K_TPERR 0x0080 #define MCHK_K_TCPERR 0x0082 #define MCHK_K_HERR 0x0084 #define MCHK_K_ECC_C 0x0086 #define MCHK_K_ECC_NC 0x0088 #define MCHK_K_OS_BUGCHECK 0x008A #define MCHK_K_PAL_BUGCHECK 0x0090 /* * BIOS32-style PCI interface: */ #ifdef CONFIG_ALPHA_T2 #ifdef DEBUG_CONF # define DBG(args) printk args #else # define DBG(args) #endif #ifdef DEBUG_MCHECK # define DBGMC(args) printk args #else # define DBGMC(args) #endif #define vulp volatile unsigned long * #define vuip volatile unsigned int * static volatile unsigned int T2_mcheck_expected = 0; static volatile unsigned int T2_mcheck_taken = 0; static unsigned long T2_jd; #ifdef CONFIG_ALPHA_SRM_SETUP unsigned int T2_DMA_WIN_BASE = T2_DMA_WIN_BASE_DEFAULT; unsigned int T2_DMA_WIN_SIZE = T2_DMA_WIN_SIZE_DEFAULT; unsigned long t2_sm_base; #endif /* SRM_SETUP */ /* * Given a bus, device, and function number, compute resulting * configuration space address and setup the T2_HAXR2 register * accordingly. It is therefore not safe to have concurrent * invocations to configuration space access routines, but there * really shouldn't be any need for this. * * Type 0: * * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * 31:11 Device select bit. * 10:8 Function number * 7:2 Register number * * Type 1: * * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * 31:24 reserved * 23:16 bus number (8 bits = 128 possible buses) * 15:11 Device number (5 bits) * 10:8 function number * 7:2 register number * * Notes: * The function number selects which function of a multi-function device * (e.g., scsi and ethernet). * * The register selects a DWORD (32 bit) register offset. Hence it * doesn't get shifted by 2 bits as we want to "drop" the bottom two * bits. */ static int mk_conf_addr(unsigned char bus, unsigned char device_fn, unsigned char where, unsigned long *pci_addr, unsigned char *type1) { unsigned long addr; DBG(("mk_conf_addr(bus=%d,dfn=0x%x,where=0x%x,addr=0x%lx,type1=0x%x)\n", bus, device_fn, where, pci_addr, type1)); if (bus == 0) { int device = device_fn >> 3; /* type 0 configuration cycle: */ if (device > 8) { DBG(("mk_conf_addr: device (%d)>20, returning -1\n", device)); return -1; } *type1 = 0; #if 0 addr = (device_fn << 8) | (where); #else addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where); #endif } else { /* type 1 configuration cycle: */ *type1 = 1; addr = (bus << 16) | (device_fn << 8) | (where); } *pci_addr = addr; DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr)); return 0; } static unsigned int conf_read(unsigned long addr, unsigned char type1) { unsigned long flags; unsigned int stat0, value; unsigned int t2_cfg = 0; /* to keep gcc quiet */ save_flags(flags); /* avoid getting hit by machine check */ cli(); DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1)); #if 0 /* reset status register to avoid losing errors: */ stat0 = *((volatile unsigned int *)T2_IOCSR); *((volatile unsigned int *)T2_IOCSR) = stat0; mb(); DBG(("conf_read: T2 IOCSR was 0x%x\n", stat0)); /* if Type1 access, must set T2 CFG */ if (type1) { t2_cfg = *((unsigned int *)T2_IOC_CFG); mb(); *((unsigned int *)T2_IOC_CFG) = t2_cfg | 1; DBG(("conf_read: TYPE1 access\n")); } mb(); draina(); #endif T2_mcheck_expected = 1; T2_mcheck_taken = 0; mb(); /* access configuration space: */ value = *((volatile unsigned int *)addr); mb(); mb(); if (T2_mcheck_taken) { T2_mcheck_taken = 0; value = 0xffffffffU; mb(); } T2_mcheck_expected = 0; mb(); #if 0 /* if Type1 access, must reset IOC CFG so normal IO space ops work */ if (type1) { *((unsigned int *)T2_IOC_CFG) = t2_cfg & ~1; mb(); } #endif DBG(("conf_read(): finished\n")); restore_flags(flags); return value; } static void conf_write(unsigned long addr, unsigned int value, unsigned char type1) { unsigned long flags; unsigned int stat0; unsigned int t2_cfg = 0; /* to keep gcc quiet */ save_flags(flags); /* avoid getting hit by machine check */ cli(); #if 0 /* reset status register to avoid losing errors: */ stat0 = *((volatile unsigned int *)T2_IOCSR); *((volatile unsigned int *)T2_IOCSR) = stat0; mb(); DBG(("conf_write: T2 ERR was 0x%x\n", stat0)); /* if Type1 access, must set T2 CFG */ if (type1) { t2_cfg = *((unsigned int *)T2_IOC_CFG); mb(); *((unsigned int *)T2_IOC_CFG) = t2_cfg | 1; DBG(("conf_write: TYPE1 access\n")); } draina(); #endif T2_mcheck_expected = 1; mb(); /* access configuration space: */ *((volatile unsigned int *)addr) = value; mb(); mb(); T2_mcheck_expected = 0; mb(); #if 0 /* if Type1 access, must reset IOC CFG so normal IO space ops work */ if (type1) { *((unsigned int *)T2_IOC_CFG) = t2_cfg & ~1; mb(); } #endif DBG(("conf_write(): finished\n")); restore_flags(flags); } int pcibios_read_config_byte (unsigned char bus, unsigned char device_fn, unsigned char where, unsigned char *value) { unsigned long addr = T2_CONF; unsigned long pci_addr; unsigned char type1; *value = 0xff; if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1) < 0) { return PCIBIOS_SUCCESSFUL; } addr |= (pci_addr << 5) + 0x00; *value = conf_read(addr, type1) >> ((where & 3) * 8); return PCIBIOS_SUCCESSFUL; } int pcibios_read_config_word (unsigned char bus, unsigned char device_fn, unsigned char where, unsigned short *value) { unsigned long addr = T2_CONF; unsigned long pci_addr; unsigned char type1; *value = 0xffff; if (where & 0x1) { return PCIBIOS_BAD_REGISTER_NUMBER; } if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1)) { return PCIBIOS_SUCCESSFUL; } addr |= (pci_addr << 5) + 0x08; *value = conf_read(addr, type1) >> ((where & 3) * 8); return PCIBIOS_SUCCESSFUL; } int pcibios_read_config_dword (unsigned char bus, unsigned char device_fn, unsigned char where, unsigned int *value) { unsigned long addr = T2_CONF; unsigned long pci_addr; unsigned char type1; *value = 0xffffffff; if (where & 0x3) { return PCIBIOS_BAD_REGISTER_NUMBER; } if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1)) { return PCIBIOS_SUCCESSFUL; } addr |= (pci_addr << 5) + 0x18; *value = conf_read(addr, type1); return PCIBIOS_SUCCESSFUL; } int pcibios_write_config_byte (unsigned char bus, unsigned char device_fn, unsigned char where, unsigned char value) { unsigned long addr = T2_CONF; unsigned long pci_addr; unsigned char type1; if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1) < 0) { return PCIBIOS_SUCCESSFUL; } addr |= (pci_addr << 5) + 0x00; conf_write(addr, value << ((where & 3) * 8), type1); return PCIBIOS_SUCCESSFUL; } int pcibios_write_config_word (unsigned char bus, unsigned char device_fn, unsigned char where, unsigned short value) { unsigned long addr = T2_CONF; unsigned long pci_addr; unsigned char type1; if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1) < 0) { return PCIBIOS_SUCCESSFUL; } addr |= (pci_addr << 5) + 0x08; conf_write(addr, value << ((where & 3) * 8), type1); return PCIBIOS_SUCCESSFUL; } int pcibios_write_config_dword (unsigned char bus, unsigned char device_fn, unsigned char where, unsigned int value) { unsigned long addr = T2_CONF; unsigned long pci_addr; unsigned char type1; if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1) < 0) { return PCIBIOS_SUCCESSFUL; } addr |= (pci_addr << 5) + 0x18; conf_write(addr, value << ((where & 3) * 8), type1); return PCIBIOS_SUCCESSFUL; } unsigned long t2_init(unsigned long mem_start, unsigned long mem_end) { unsigned int t2_err; struct percpu_struct *cpu; int i; #if 0 /* * Set up error reporting. */ t2_err = *(vuip)T2_IOCSR ; t2_err |= (0x1 << 7) ; /* master abort */ *(vuip)T2_IOC_T2_ERR = t2_err ; mb() ; #endif printk("t2_init: HBASE was 0x%lx\n", *((unsigned long *)T2_HBASE)); #if 0 printk("t2_init: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", *((vulp)T2_WBASE1), *((vulp)T2_WMASK1), *((vulp)T2_TBASE1)); printk("t2_init: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", *((vulp)T2_WBASE2), *((vulp)T2_WMASK2), *((vulp)T2_TBASE2)); #endif #ifdef CONFIG_ALPHA_SRM_SETUP /* check window 1 for enabled and mapped to 0 */ if (((*(vulp)T2_WBASE1 & (3UL<<18)) == (2UL<<18)) && (*(vuip)T2_TBASE1 == 0)) { T2_DMA_WIN_BASE = *(vulp)T2_WBASE1 & 0xfff00000UL; T2_DMA_WIN_SIZE = *(vulp)T2_WMASK1 & 0xfff00000UL; T2_DMA_WIN_SIZE += 0x00100000UL; /* DISABLE window 2!! ?? */ #if 1 printk("t2_init: using Window 1 settings\n"); printk("t2_init: BASE 0x%lx MASK 0x%lx TRANS 0x%lx\n", *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1); #endif } else /* check window 2 for enabled and mapped to 0 */ if (((*(vulp)T2_WBASE2 & (3UL<<18)) == (2UL<<18)) && (*(vuip)T2_TBASE2 == 0)) { T2_DMA_WIN_BASE = *(vulp)T2_WBASE2 & 0xfff00000UL; T2_DMA_WIN_SIZE = *(vulp)T2_WMASK2 & 0xfff00000UL; T2_DMA_WIN_SIZE += 0x00100000UL; /* DISABLE window 1!! ?? */ #if 1 printk("t2_init: using Window 2 settings\n"); printk("t2_init: BASE 0x%lx MASK 0x%lx TRANS 0x%lx\n", *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2); #endif } else /* we must use our defaults... */ #endif /* SRM_SETUP */ { /* * Set up the PCI->physical memory translation windows. * For now, window 2 is disabled. In the future, we may * want to use it to do scatter/gather DMA. Window 1 * goes at 1 GB and is 1 GB large. */ /* WARNING!! must correspond to the DMA_WIN params!!! */ *(vuip)T2_WBASE1 = 0x400807ffU; *(vuip)T2_WMASK1 = 0x3ff00000U; *(vuip)T2_TBASE1 = 0; *(vuip)T2_WBASE2 = 0x0; *(vuip)T2_HBASE = 0x0; } /* * check ASN in HWRPB for validity, report if bad */ if (hwrpb->max_asn != MAX_ASN) { printk("T2_init: max ASN from HWRPB is bad (0x%lx)\n", hwrpb->max_asn); hwrpb->max_asn = MAX_ASN; } /* * Finally, clear the T2_HAE_3 register, which gets used * for PCI Config Space accesses. That is the way * we want to use it, and we do not want to depend on * what ARC or SRM might have left behind... */ { unsigned long t2_hae_1 = *((unsigned long *)T2_HAE_1); unsigned long t2_hae_2 = *((unsigned long *)T2_HAE_2); unsigned long t2_hae_3 = *((unsigned long *)T2_HAE_3); unsigned long t2_hae_4 = *((unsigned long *)T2_HAE_4); #if 1 printk("T2_init: HAE1 was 0x%lx\n", t2_hae_1); printk("T2_init: HAE2 was 0x%lx\n", t2_hae_2); printk("T2_init: HAE3 was 0x%lx\n", t2_hae_3); printk("T2_init: HAE4 was 0x%lx\n", t2_hae_4); #endif #ifdef CONFIG_ALPHA_SRM_SETUP /* sigh... For the SRM setup, unless we know apriori what the HAE contents will be, we need to setup the arbitrary region bases so we can test against the range of addresses and tailor the region chosen for the SPARSE memory access. see include/asm-alpha/t2.h for the SPARSE mem read/write */ t2_sm_base = (t2_hae_1 << 27) & 0xf8000000UL; #else /* SRM_SETUP */ *((unsigned int *)T2_HAE_1) = 0; mb(); *((unsigned int *)T2_HAE_2) = 0; mb(); *((unsigned int *)T2_HAE_3) = 0; mb(); #if 0 *((unsigned int *)T2_HAE_4) = 0; mb(); #endif #endif /* SRM_SETUP */ } #if 1 if (hwrpb->nr_processors > 1) { printk("T2_init: nr_processors 0x%lx\n", hwrpb->nr_processors); printk("T2_init: processor_size 0x%lx\n", hwrpb->processor_size); printk("T2_init: processor_offset 0x%lx\n", hwrpb->processor_offset); cpu = (struct percpu_struct *) ((char*)hwrpb + hwrpb->processor_offset); for (i = 0; i < hwrpb->nr_processors; i++ ) { printk("T2_init: CPU 0x%x: flags 0x%lx type 0x%lx\n", i, cpu->flags, cpu->type); cpu = (struct percpu_struct *) ((char *)cpu + hwrpb->processor_size); } } #endif return mem_start; } #define SIC_SEIC (1UL << 33) /* System Event Clear */ struct sable_cpu_csr *sable_cpu_regs[4] = { (struct sable_cpu_csr *)CPU0_BASE, (struct sable_cpu_csr *)CPU1_BASE, (struct sable_cpu_csr *)CPU2_BASE, (struct sable_cpu_csr *)CPU3_BASE, }; int t2_clear_errors(void) { DBGMC(("???????? t2_clear_errors\n")); sable_cpu_regs[CPUID]->sic &= ~SIC_SEIC; /* * clear cpu errors */ sable_cpu_regs[CPUID]->bcce |= sable_cpu_regs[CPUID]->bcce; sable_cpu_regs[CPUID]->cbe |= sable_cpu_regs[CPUID]->cbe; sable_cpu_regs[CPUID]->bcue |= sable_cpu_regs[CPUID]->bcue; sable_cpu_regs[CPUID]->dter |= sable_cpu_regs[CPUID]->dter; *(unsigned long *)T2_CERR1 |= *(unsigned long *)T2_CERR1; *(unsigned long *)T2_PERR1 |= *(unsigned long *)T2_PERR1; mb(); mb(); return 0; } void t2_machine_check(unsigned long vector, unsigned long la_ptr, struct pt_regs * regs) { struct el_t2_logout_header *mchk_header; struct el_t2_procdata_mcheck *mchk_procdata; struct el_t2_sysdata_mcheck *mchk_sysdata; unsigned long * ptr; const char * reason; char buf[128]; long i; DBGMC(("t2_machine_check: vector=0x%lx la_ptr=0x%lx\n", vector, la_ptr)); mchk_header = (struct el_t2_logout_header *)la_ptr; DBGMC(("t2_machine_check: susoffset=0x%lx procoffset=0x%lx\n", mchk_header->elfl_sysoffset, mchk_header->elfl_procoffset)); mchk_sysdata = (struct el_t2_sysdata_mcheck *) (la_ptr + mchk_header->elfl_sysoffset); mchk_procdata = (struct el_t2_procdata_mcheck *) (la_ptr + mchk_header->elfl_procoffset - sizeof(unsigned long)*32); DBGMC((" pc=0x%lx size=0x%x procoffset=0x%x sysoffset 0x%x\n", regs->pc, mchk_header->elfl_size, mchk_header->elfl_procoffset, mchk_header->elfl_sysoffset)); DBGMC(("t2_machine_check: expected %d\n", T2_mcheck_expected)); #ifdef DEBUG_DUMP { unsigned long *ptr; int i; ptr = (unsigned long *)la_ptr; for (i = 0; i < mchk_header->elfl_size / sizeof(long); i += 2) { printk(" +%lx %lx %lx\n", i*sizeof(long), ptr[i], ptr[i+1]); } } #endif /* DEBUG_DUMP */ /* * Check if machine check is due to a badaddr() and if so, * ignore the machine check. */ mb(); mb(); if (T2_mcheck_expected/* && (mchk_sysdata->epic_dcsr && 0x0c00UL)*/) { DBGMC(("T2 machine check expected\n")); T2_mcheck_taken = 1; t2_clear_errors(); T2_mcheck_expected = 0; mb(); mb(); wrmces(rdmces()|1);/* ??? */ draina(); return; } switch ((unsigned int) mchk_header->elfl_error_type) { case MCHK_K_TPERR: reason = "tag parity error"; break; case MCHK_K_TCPERR: reason = "tag control parity error"; break; case MCHK_K_HERR: reason = "generic hard error"; break; case MCHK_K_ECC_C: reason = "correctable ECC error"; break; case MCHK_K_ECC_NC: reason = "uncorrectable ECC error"; break; case MCHK_K_OS_BUGCHECK: reason = "OS-specific PAL bugcheck"; break; case MCHK_K_PAL_BUGCHECK: reason = "callsys in kernel mode"; break; case 0x96: reason = "i-cache read retryable error"; break; case 0x98: reason = "processor detected hard error"; break; /* system specific (these are for Alcor, at least): */ case 0x203: reason = "system detected uncorrectable ECC error"; break; case 0x205: reason = "parity error detected by T2"; break; case 0x207: reason = "non-existent memory error"; break; case 0x209: reason = "PCI SERR detected"; break; case 0x20b: reason = "PCI data parity error detected"; break; case 0x20d: reason = "PCI address parity error detected"; break; case 0x20f: reason = "PCI master abort error"; break; case 0x211: reason = "PCI target abort error"; break; case 0x213: reason = "scatter/gather PTE invalid error"; break; case 0x215: reason = "flash ROM write error"; break; case 0x217: reason = "IOA timeout detected"; break; case 0x219: reason = "IOCHK#, EISA add-in board parity or other catastrophic error"; break; case 0x21b: reason = "EISA fail-safe timer timeout"; break; case 0x21d: reason = "EISA bus time-out"; break; case 0x21f: reason = "EISA software generated NMI"; break; case 0x221: reason = "unexpected ev5 IRQ[3] interrupt"; break; default: sprintf(buf, "reason for machine-check unknown (0x%x)", (unsigned int) mchk_header->elfl_error_type); reason = buf; break; } wrmces(rdmces()|1); /* reset machine check pending flag */ mb(); printk(KERN_CRIT " T2 machine check: %s%s\n", reason, mchk_header->elfl_retry ? " (retryable)" : ""); /* dump the logout area to give all info: */ ptr = (unsigned long *)la_ptr; for (i = 0; i < mchk_header->elfl_size / sizeof(long); i += 2) { printk(KERN_CRIT " +%8lx %016lx %016lx\n", i*sizeof(long), ptr[i], ptr[i+1]); } } #endif /* CONFIG_ALPHA_T2 */
Go to most recent revision | Compare with Previous | Blame | View Log