URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [arch/] [alpha/] [math-emu/] [fp-emul.c] - Rev 1765
Compare with Previous | Blame | View Log
#include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <asm/segment.h> #include "ieee-math.h" #define OPC_PAL 0x00 #define OPC_INTA 0x10 #define OPC_INTL 0x11 #define OPC_INTS 0x12 #define OPC_INTM 0x13 #define OPC_FLTV 0x15 #define OPC_FLTI 0x16 #define OPC_FLTL 0x17 #define OPC_MISC 0x18 #define OPC_JSR 0x1a /* * "Base" function codes for the FLTI-class instructions. These * instructions all have opcode 0x16. Note that in most cases these * actually correspond to the "chopped" form of the instruction. Not * to worry---we extract the qualifier bits separately and deal with * them separately. Notice that base function code 0x2c is used for * both CVTTS and CVTST. The other bits in the function code are used * to distinguish the two. */ #define FLTI_FUNC_ADDS 0x000 #define FLTI_FUNC_ADDT 0x020 #define FLTI_FUNC_CMPTEQ 0x025 #define FLTI_FUNC_CMPTLT 0x026 #define FLTI_FUNC_CMPTLE 0x027 #define FLTI_FUNC_CMPTUN 0x024 #define FLTI_FUNC_CVTTS_or_CVTST 0x02c #define FLTI_FUNC_CVTTQ 0x02f #define FLTI_FUNC_CVTQS 0x03c #define FLTI_FUNC_CVTQT 0x03e #define FLTI_FUNC_DIVS 0x003 #define FLTI_FUNC_DIVT 0x023 #define FLTI_FUNC_MULS 0x002 #define FLTI_FUNC_MULT 0x022 #define FLTI_FUNC_SUBS 0x001 #define FLTI_FUNC_SUBT 0x021 #define FLTI_FUNC_CVTQL 0x030 /* opcode 0x17 */ #define MISC_TRAPB 0x0000 #define MISC_EXCB 0x0400 extern unsigned long rdfpcr (void); extern void wrfpcr (unsigned long); unsigned long alpha_read_fp_reg (unsigned long reg) { unsigned long r; switch (reg) { case 0: asm ("stt $f0,%0" : "m="(r)); break; case 1: asm ("stt $f1,%0" : "m="(r)); break; case 2: asm ("stt $f2,%0" : "m="(r)); break; case 3: asm ("stt $f3,%0" : "m="(r)); break; case 4: asm ("stt $f4,%0" : "m="(r)); break; case 5: asm ("stt $f5,%0" : "m="(r)); break; case 6: asm ("stt $f6,%0" : "m="(r)); break; case 7: asm ("stt $f7,%0" : "m="(r)); break; case 8: asm ("stt $f8,%0" : "m="(r)); break; case 9: asm ("stt $f9,%0" : "m="(r)); break; case 10: asm ("stt $f10,%0" : "m="(r)); break; case 11: asm ("stt $f11,%0" : "m="(r)); break; case 12: asm ("stt $f12,%0" : "m="(r)); break; case 13: asm ("stt $f13,%0" : "m="(r)); break; case 14: asm ("stt $f14,%0" : "m="(r)); break; case 15: asm ("stt $f15,%0" : "m="(r)); break; case 16: asm ("stt $f16,%0" : "m="(r)); break; case 17: asm ("stt $f17,%0" : "m="(r)); break; case 18: asm ("stt $f18,%0" : "m="(r)); break; case 19: asm ("stt $f19,%0" : "m="(r)); break; case 20: asm ("stt $f20,%0" : "m="(r)); break; case 21: asm ("stt $f21,%0" : "m="(r)); break; case 22: asm ("stt $f22,%0" : "m="(r)); break; case 23: asm ("stt $f23,%0" : "m="(r)); break; case 24: asm ("stt $f24,%0" : "m="(r)); break; case 25: asm ("stt $f25,%0" : "m="(r)); break; case 26: asm ("stt $f26,%0" : "m="(r)); break; case 27: asm ("stt $f27,%0" : "m="(r)); break; case 28: asm ("stt $f28,%0" : "m="(r)); break; case 29: asm ("stt $f29,%0" : "m="(r)); break; case 30: asm ("stt $f30,%0" : "m="(r)); break; case 31: asm ("stt $f31,%0" : "m="(r)); break; default: break; } return r; } #if 0 /* * This is IMHO the better way of implementing LDT(). But it * has the disadvantage that gcc 2.7.0 refuses to compile it * (invalid operand constraints), so instead, we use the uglier * macro below. */ # define LDT(reg,val) \ asm volatile ("ldt $f"#reg",%0" :: "m"(val)); #else # define LDT(reg,val) \ asm volatile ("ldt $f"#reg",0(%0)" :: "r"(&val)); #endif void alpha_write_fp_reg (unsigned long reg, unsigned long val) { switch (reg) { case 0: LDT( 0, val); break; case 1: LDT( 1, val); break; case 2: LDT( 2, val); break; case 3: LDT( 3, val); break; case 4: LDT( 4, val); break; case 5: LDT( 5, val); break; case 6: LDT( 6, val); break; case 7: LDT( 7, val); break; case 8: LDT( 8, val); break; case 9: LDT( 9, val); break; case 10: LDT(10, val); break; case 11: LDT(11, val); break; case 12: LDT(12, val); break; case 13: LDT(13, val); break; case 14: LDT(14, val); break; case 15: LDT(15, val); break; case 16: LDT(16, val); break; case 17: LDT(17, val); break; case 18: LDT(18, val); break; case 19: LDT(19, val); break; case 20: LDT(20, val); break; case 21: LDT(21, val); break; case 22: LDT(22, val); break; case 23: LDT(23, val); break; case 24: LDT(24, val); break; case 25: LDT(25, val); break; case 26: LDT(26, val); break; case 27: LDT(27, val); break; case 28: LDT(28, val); break; case 29: LDT(29, val); break; case 30: LDT(30, val); break; case 31: LDT(31, val); break; default: break; } } /* * Emulate the floating point instruction at address PC. Returns 0 if * emulation fails. Notice that the kernel does not and cannot use FP * regs. This is good because it means that instead of * saving/restoring all fp regs, we simply stick the result of the * operation into the appropriate register. */ long alpha_fp_emul (unsigned long pc) { unsigned long opcode, fa, fb, fc, func, mode; unsigned long fpcw = current->tss.flags; unsigned long va, vb, vc, res, fpcr; __u32 insn; insn = get_user((__u32*)pc); fc = (insn >> 0) & 0x1f; /* destination register */ func = (insn >> 5) & 0x7ff; fb = (insn >> 16) & 0x1f; fa = (insn >> 21) & 0x1f; opcode = insn >> 26; va = alpha_read_fp_reg(fa); vb = alpha_read_fp_reg(fb); fpcr = rdfpcr(); /* * Try the operation in software. First, obtain the rounding * mode... */ mode = func & 0xc0; if (mode == 0xc0) { /* dynamic---get rounding mode from fpcr: */ mode = ((fpcr & FPCR_DYN_MASK) >> FPCR_DYN_SHIFT) << ROUND_SHIFT; } mode |= (fpcw & IEEE_TRAP_ENABLE_MASK); if ((IEEE_TRAP_ENABLE_MASK & 0xc0)) { extern int something_is_wrong (void); something_is_wrong(); } /* least 6 bits contain operation code: */ switch (func & 0x3f) { case FLTI_FUNC_CMPTEQ: res = ieee_CMPTEQ(va, vb, &vc); break; case FLTI_FUNC_CMPTLT: res = ieee_CMPTLT(va, vb, &vc); break; case FLTI_FUNC_CMPTLE: res = ieee_CMPTLE(va, vb, &vc); break; case FLTI_FUNC_CMPTUN: res = ieee_CMPTUN(va, vb, &vc); break; case FLTI_FUNC_CVTQL: /* * Notice: We can get here only due to an integer * overflow. Such overflows are reported as invalid * ops. We return the result the hw would have * computed. */ vc = ((vb & 0xc0000000) << 32 | /* sign and msb */ (vb & 0x3fffffff) << 29); /* rest of the integer */ res = FPCR_INV; break; case FLTI_FUNC_CVTQS: res = ieee_CVTQS(mode, vb, &vc); break; case FLTI_FUNC_CVTQT: res = ieee_CVTQT(mode, vb, &vc); break; case FLTI_FUNC_CVTTS_or_CVTST: if (func == 0x6ac) { /* * 0x2ac is also CVTST, but if the /S * qualifier isn't set, we wouldn't be here in * the first place... */ res = ieee_CVTST(mode, vb, &vc); } else { res = ieee_CVTTS(mode, vb, &vc); } break; case FLTI_FUNC_DIVS: res = ieee_DIVS(mode, va, vb, &vc); break; case FLTI_FUNC_DIVT: res = ieee_DIVT(mode, va, vb, &vc); break; case FLTI_FUNC_MULS: res = ieee_MULS(mode, va, vb, &vc); break; case FLTI_FUNC_MULT: res = ieee_MULT(mode, va, vb, &vc); break; case FLTI_FUNC_SUBS: res = ieee_SUBS(mode, va, vb, &vc); break; case FLTI_FUNC_SUBT: res = ieee_SUBT(mode, va, vb, &vc); break; case FLTI_FUNC_ADDS: res = ieee_ADDS(mode, va, vb, &vc); break; case FLTI_FUNC_ADDT: res = ieee_ADDT(mode, va, vb, &vc); break; case FLTI_FUNC_CVTTQ: res = ieee_CVTTQ(mode, vb, &vc); break; default: printk("alpha_fp_emul: unexpected function code %#lx at %#lx\n", func & 0x3f, pc); return 0; } /* * Take the appropriate action for each possible * floating-point result: * * - Set the appropriate bits in the FPCR * - If the specified exception is enabled in the FPCR, * return. The caller (entArith) will dispatch * the appropriate signal to the translated program. * * In addition, properly track the exception state in software * as described in Alpha Architecture Handbook 4.7.7.3. */ if (res) { /* record exceptions in software control word. */ fpcw |= res >> 35; current->tss.flags = fpcw; /* update hardware control register, disabling hardware exceptions for disabled software exceptions for which we have a status. (no, really.) */ fpcr &= (~FPCR_MASK | FPCR_DYN_MASK); fpcr |= ieee_sw_to_fpcr(fpcw | (~fpcw & IEEE_STATUS_MASK)>>16); wrfpcr(fpcr); /* Do we generate a signal? */ if (res >> 51 & fpcw & IEEE_TRAP_ENABLE_MASK) return 0; } /* * Whoo-kay... we got this far, and we're not generating a signal * to the translated program. All that remains is to write the * result: */ alpha_write_fp_reg(fc, vc); return 1; } long alpha_fp_emul_imprecise (struct pt_regs *regs, unsigned long write_mask) { unsigned long trigger_pc = regs->pc - 4; unsigned long insn, opcode, rc; /* * Turn off the bits corresponding to registers that are the * target of instructions that set bits in the exception * summary register. We have some slack doing this because a * register that is the target of a trapping instruction can * be written at most once in the trap shadow. * * Branches, jumps, TRAPBs, EXCBs and calls to PALcode all * bound the trap shadow, so we need not look any further than * up to the first occurrence of such an instruction. */ while (write_mask) { insn = get_user((__u32*)(trigger_pc)); opcode = insn >> 26; rc = insn & 0x1f; switch (opcode) { case OPC_PAL: case OPC_JSR: case 0x30 ... 0x3f: /* branches */ return 0; case OPC_MISC: switch (insn & 0xffff) { case MISC_TRAPB: case MISC_EXCB: return 0; default: break; } break; case OPC_INTA: case OPC_INTL: case OPC_INTS: case OPC_INTM: write_mask &= ~(1UL << rc); break; case OPC_FLTV: case OPC_FLTI: case OPC_FLTL: write_mask &= ~(1UL << (rc + 32)); break; } if (!write_mask) { if ((opcode == OPC_FLTI || opcode == OPC_FLTL) && alpha_fp_emul(trigger_pc)) { /* re-execute insns in trap-shadow: */ regs->pc = trigger_pc + 4; return 1; } break; } trigger_pc -= 4; } return 0; }