URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [arch/] [armnommu/] [drivers/] [char/] [keyboard.c] - Rev 199
Go to most recent revision | Compare with Previous | Blame | View Log
/* * linux/arch/arm/drivers/block/keyboard.c * * Keyboard driver for Linux using Latin-1. * * Written for linux by Johan Myreen as a translation from * the assembly version by Linus (with diacriticals added) * * Some additional features added by Christoph Niemann (ChN), March 1993 * * Loadable keymaps by Risto Kankkunen, May 1993 * * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 * Added decr/incr_console, dynamic keymaps, Unicode support, * dynamic function/string keys, led setting, Sept 1994 * `Sticky' modifier keys, 951006. * * Majorly altered for use with arm Russell King (rmk@ecs.soton.ac.uk) * The low-level keyboard driver is now separate. * Interfaces: * Driver supplies: * kbd_drv_init - initialise keyboard driver proper * kbd_drv_setleds - set leds on keyboard * Driver uses: * kbd_keyboardkey - process a keypress/release * kbd_reset - reset keyboard down array * kbd_setregs - set regs for scroll-lock debug */ #include <linux/sched.h> #include <linux/interrupt.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/mm.h> #include <linux/malloc.h> #include <linux/ptrace.h> #include <linux/signal.h> #include <linux/timer.h> #include <linux/random.h> #include <linux/ctype.h> #include <asm/bitops.h> #include <asm/system.h> #include <asm/irq.h> #include <asm/segment.h> #include "kbd_kern.h" #include "diacr.h" #include "vt_kern.h" #define SIZE(x) (sizeof(x)/sizeof((x)[0])) #define KBD_REPORT_ERR #define KBD_REPORT_UNKN #ifndef KBD_DEFMODE #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) #endif /* * Starts with NumLock off. */ #ifndef KBD_DEFLEDS #define KBD_DEFLEDS 0 #endif #ifndef KBD_DEFLOCK #define KBD_DEFLOCK 0 #endif #define REPEAT_TIMEOUT HZ*300/1000 #define REPEAT_RATE HZ*30/1000 extern void ctrl_alt_del (void); extern void scrollback(int); extern void scrollfront(int); extern int kbd_drv_init(void); extern void kbd_drv_setleds(unsigned int leds); extern unsigned int keymap_count; /* * these are the valid i/o ports we're allowed to change. they map all the * video ports */ #define GPFIRST 0x3b4 #define GPLAST 0x3df #define GPNUM (GPLAST - GPFIRST + 1) /* * global state includes the following, and various static variables * in this module: shift_state, diacr, npadch, dead_key_next. * (last_console is now a global variable) */ /* shift state counters.. */ static unsigned char k_down[NR_SHIFT] = {0, }; /* keyboard key bitmap */ #define BITS_PER_LONG (8*sizeof (unsigned long)) static unsigned long key_down[256/BITS_PER_LONG] = {0, }; static int dead_key_next; /* * In order to retrieve the shift_state (for the mouse server), either * the variable must be global, or a new procedure must be created to * return the value. I chose the former way. */ /*static*/ int shift_state; static int npadch = -1; /* -1 or number assembled on pad */ static unsigned char diacr; static char rep; /* Flag telling character repeat */ static int kbd_repeatkey = -1; static int kbd_repeattimeout = REPEAT_TIMEOUT; static int kbd_repeatrate = REPEAT_RATE; static struct kbd_struct * kbd; static struct tty_struct * tty; extern void compute_shiftstate (void); typedef void (*k_hand)(unsigned char value, char up_flag); typedef void (k_handfn)(unsigned char value, char up_flag); static k_handfn do_self, do_fn, do_spec, do_pad, do_dead, do_cons, do_cur, do_shift, do_meta, do_ascii, do_lock, do_lowercase, do_slock, do_ignore; static k_hand key_handler[16] = { do_self, do_fn, do_spec, do_pad, do_dead, do_cons, do_cur, do_shift, do_meta, do_ascii, do_lock, do_lowercase, do_slock, do_ignore, do_ignore, do_ignore }; typedef void (*void_fnp)(void); typedef void (void_fn)(void); static void_fn do_null, enter, show_ptregs, send_intr, lastcons, caps_toggle, num, hold, scroll_forw, scroll_back, boot_it, caps_on, compose, SAK, decr_console, incr_console, spawn_console, show_stack, bare_num; static void_fnp spec_fn_table[] = { do_null, enter, show_ptregs, show_mem, show_state, send_intr, lastcons, caps_toggle, num, hold, scroll_forw, scroll_back, boot_it, caps_on, compose, SAK, decr_console, incr_console, show_stack, bare_num }; /* maximum values each key_handler can handle */ const int max_vals[] = { 255, SIZE(func_table) - 1, SIZE(spec_fn_table) - 1, NR_PAD - 1, NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, 255, NR_LOCK - 1 }; const int NR_TYPES = SIZE(max_vals); static void put_queue(int); static unsigned char handle_diacr(unsigned char); /* pt_regs - set by keyboard_interrupt(), used by show_ptregs() */ static struct pt_regs * pt_regs; /* * Many other routines do put_queue, but I think either * they produce ASCII, or they produce some user-assigned * string, and in both cases we might assume that it is * in utf-8 already. */ void to_utf8(ushort c) { if (c < 0x80) put_queue(c); /* 0******* */ else if (c < 0x800) { put_queue(0xc0 | (c >> 6)); /* 110***** 10****** */ put_queue(0x80 | (c & 0x3f)); } else { put_queue(0xe0 | (c >> 12)); /* 1110**** 10****** 10****** */ put_queue(0x80 | ((c >> 6) & 0x3f)); put_queue(0x80 | (c & 0x3f)); } /* UTF-8 is defined for words of up to 31 bits, but we need only 16 bits here */ } /* * As yet, we don't support setting and getting the * key codes. I'll have to find out where this is used. */ int setkeycode(unsigned int scancode, unsigned int keycode) { return -EINVAL; } int getkeycode(unsigned int scancode) { return -EINVAL; } static void key_callback(unsigned long nr) { rep = 1; mark_bh (KEYBOARD_BH); } static struct timer_list key_timer = { NULL, NULL, 0, 0, key_callback }; void kbd_reset(void) { int i; for (i = 0; i < NR_SHIFT; i++) k_down[i] = 0; for (i = 0; i < 256/BITS_PER_LONG; i++) key_down[i] = 0; shift_state = 0; } void kbd_setregs(struct pt_regs *regs) { pt_regs = regs; } static void kbd_processkey(unsigned int keycode, unsigned int up_flag, unsigned int autorepeat) { del_timer(&key_timer); show_console(); add_keyboard_randomness (keycode|(up_flag?0x100:0)); tty = *vtdata.fgconsole->tty; kbd = vtdata.fgconsole->kbd; if (up_flag) { rep = 0; clear_bit (keycode, key_down); /* don't report an error if key is already up - happens when a ghost key is released */ } else rep = set_bit (keycode, key_down); if (rep && !autorepeat) return; if (kbd->kbdmode == VC_RAW || kbd->kbdmode == VC_MEDIUMRAW) { put_queue(keycode + (up_flag ? 0x80 : 0)); return; } /* * We have to do our own auto-repeat processing... */ if (!up_flag) { kbd_repeatkey = keycode; if (vc_kbd_mode(kbd, VC_REPEAT)) { if (rep) key_timer.expires = jiffies + kbd_repeatrate; else key_timer.expires = jiffies + kbd_repeattimeout; add_timer(&key_timer); } } else kbd_repeatkey = -1; /* * Repeat a key only if the input buffers are empty or the * characters get echoed locally. This makes key repeat usable * with slow applications and under heavy loads. */ if (!rep || (vc_kbd_mode (kbd, VC_REPEAT) && tty && (L_ECHO(tty) || (tty->driver.chars_in_buffer (tty) == 0)))) { u_short keysym; u_char type; /* the XOR below used to be an OR */ int shift_final = shift_state ^ kbd->lockstate ^ kbd->slockstate; u_short *key_map = key_maps[shift_final]; if (key_map != NULL) { keysym = key_map[keycode]; type = KTYP(keysym); if (type >= 0xf0) { type -= 0xf0; if (type == KT_LETTER) { type = KT_LATIN; if (vc_kbd_led(kbd, VC_CAPSLOCK)) { key_map = key_maps[shift_final ^ (1<<KG_SHIFT)]; if (key_map) keysym = key_map[keycode]; } } (*key_handler[type])(keysym & 0xff, up_flag); if (type != KT_SLOCK) kbd->slockstate = 0; } else { /* maybe only if (kbd->kbdmode == VC_UNICODE) ? */ if (!up_flag) to_utf8(keysym); } } else { /* * maybe beep? * we have at least to update shift_state * how? two almost equivalent choices follow */ #if 1 compute_shiftstate (); #else keysym = U(plain_map[keycode]); type = KTYP(keysym); if (type == KT_SHIFT) (*key_handler[type]) (keysym & 0xff, up_flag); #endif } } } void kbd_keyboardkey(unsigned int keycode, unsigned int up_flag) { kbd_processkey(keycode, up_flag, 0); } static void put_queue (int ch) { wake_up (&keypress_wait); if (tty) { tty_insert_flip_char (tty, ch, 0); tty_schedule_flip (tty); } } static void puts_queue(char *cp) { wake_up (&keypress_wait); if (!tty) return; while (*cp) { tty_insert_flip_char (tty, *cp, 0); cp++; } tty_schedule_flip (tty); } static void show_stack (void) { unsigned long *p; unsigned long *q = (unsigned long *)((int)current->kernel_stack_page + 4096); int i; __asm__("mov %0, sp\n\t": "=r" (p)); for (i = 0; p < q; p++, i++) { if(i && !(i & 7)) printk("\n"); printk("%08lX ", *p); } } static void applkey(int key, char mode) { static char buf[] = { 0x1b, 'O', 0x00, 0x00}; buf[1] = (mode ? 'O' : '['); buf[2] = key; puts_queue(buf); } static void enter(void) { put_queue (13); if (vc_kbd_mode(kbd, VC_CRLF)) put_queue (10); } static void caps_toggle(void) { if(rep) return; chg_vc_kbd_led(kbd, VC_CAPSLOCK); } static void caps_on (void) { if (rep) return; set_vc_kbd_led (kbd, VC_CAPSLOCK); } static void show_ptregs (void) { if (pt_regs) show_regs (pt_regs); } static void hold (void) { if(rep || !tty) return; /* * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); * these routines are also activated by ^S/^Q. * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) */ if (tty->stopped) start_tty (tty); else stop_tty (tty); } static void num (void) { if(vc_kbd_mode(kbd,VC_APPLIC)) applkey('P', 1); else bare_num (); } /* * Bind this to Shift-NumLock if you work in application keypad mode * but want to be able to change the NumLock flag. * Bind this to NumLock if you prefer that the NumLock key always * changes the NumLock flag. */ static void bare_num (void) { if (!rep) chg_vc_kbd_led (kbd, VC_NUMLOCK); } static void lastcons (void) { /* switch to the last used console, ChN */ set_console(last_console); } static void decr_console (void) { int i; int fgnum = vtdata.fgconsole->num - 1; for (i = fgnum - 1; i != fgnum; i--) { if (i == -1) i = MAX_NR_CONSOLES - 1; if (vt_allocated (vt_con_data + i)) break; } set_console(vt_con_data + i); } static void incr_console (void) { int i; int fgnum = vtdata.fgconsole->num - 1; for (i = fgnum + 1; i != fgnum; i++) { if (i == MAX_NR_CONSOLES) i = 0; if (vt_allocated (vt_con_data + i)) break; } set_console(vt_con_data + i); } static void send_intr (void) { if (!tty) return; tty_insert_flip_char (tty, 0, TTY_BREAK); tty_schedule_flip (tty); } static void scroll_forw (void) { scrollfront(0); } static void scroll_back (void) { scrollback(0); } static void boot_it (void) { ctrl_alt_del(); } static void compose (void) { dead_key_next = 1; } int spawnpid, spawnsig; static void spawn_console (void) { if (spawnpid) if (kill_proc (spawnpid, spawnsig, 1)) spawnpid = 0; } static void SAK (void) { do_SAK(tty); #if 0 /* * Need to fix SAK handling to fix up RAW/MEDIUM_RAW and * vt_cons modes before we can enable RAW/MEDIUM_RAW SAK * handling. * * We should do this some day --- the whole point of a secure * attention key is that it should be guaranteed to always * work. */ vt_reset (vtdata.fgconsole); do_unblank_screen (); /* not in interrupt routine? */ #endif } static void do_ignore (unsigned char value, char up_flag) { } static void do_null (void) { compute_shiftstate (); } static void do_spec (unsigned char value,char up_flag) { if (up_flag) return; if (value >= SIZE(spec_fn_table)) return; spec_fn_table[value] (); } static void do_lowercase (unsigned char value, char up_flag) { printk(KERN_ERR "keyboard.c: do_lowercase was called - impossible\n"); } static void do_self(unsigned char value, char up_flag) { if (up_flag) return; /* no action, if this is a key release */ if (diacr) value = handle_diacr (value); if (dead_key_next) { dead_key_next = 0; diacr = value; return; } put_queue (value); } #define A_GRAVE '`' #define A_ACUTE '\'' #define A_CFLEX '^' #define A_TILDE '~' #define A_DIAER '"' #define A_CEDIL ',' static unsigned char ret_diacr[] = {A_GRAVE, A_ACUTE, A_CFLEX, A_TILDE, A_DIAER, A_CEDIL }; /* If a dead key pressed twice, output a character corresponding to it, */ /* otherwise just remember the dead key. */ static void do_dead(unsigned char value, char up_flag) { if (up_flag) return; value = ret_diacr[value]; if (diacr == value) { /* pressed twice */ diacr = 0; put_queue (value); return; } diacr = value; } /* If space is pressed, return the character corresponding the pending */ /* dead key, otherwise try to combine the two. */ static unsigned char handle_diacr(unsigned char ch) { int d = diacr; int i; diacr = 0; if (ch == ' ') return d; for (i = 0; i < accent_table_size; i++) { if (accent_table[i].diacr == d && accent_table[i].base == ch) return accent_table[i].result; } put_queue (d); return ch; } static void do_cons(unsigned char value, char up_flag) { if (up_flag) return; set_console(vt_con_data + value); } static void do_fn(unsigned char value, char up_flag) { if (up_flag) return; if (value < SIZE(func_table)) { if (func_table[value]) puts_queue (func_table[value]); } else printk (KERN_ERR "do_fn called with value=%d\n",value); } static void do_pad(unsigned char value, char up_flag) { static const char *pad_chars = "0123456789+-*/\015,.?#"; static const char *app_map = "pqrstuvwxylmRQMnn?S"; if (up_flag) return; /* no action, if this is a key release */ /* kludge... shift forces cursor/number keys */ if (vc_kbd_mode (kbd, VC_APPLIC) && !k_down[KG_SHIFT]) { applkey (app_map[value], 1); return; } if (!vc_kbd_led (kbd,VC_NUMLOCK)) switch (value) { case KVAL(K_PCOMMA): case KVAL(K_PDOT): do_fn (KVAL(K_REMOVE), 0); return; case KVAL(K_P0): do_fn (KVAL(K_INSERT), 0); return; case KVAL(K_P1): do_fn (KVAL(K_SELECT), 0); return; case KVAL(K_P2): do_cur(KVAL(K_DOWN), 0); return; case KVAL(K_P3): do_fn (KVAL(K_PGDN), 0); return; case KVAL(K_P4): do_cur(KVAL(K_LEFT), 0); return; case KVAL(K_P6): do_cur(KVAL(K_RIGHT), 0); return; case KVAL(K_P7): do_fn (KVAL(K_FIND), 0); return; case KVAL(K_P8): do_cur(KVAL(K_UP), 0); return; case KVAL(K_P9): do_fn (KVAL(K_PGUP), 0); return; case KVAL(K_P5): applkey('G',vc_kbd_mode(kbd, VC_APPLIC)); return; } put_queue (pad_chars[value]); if (value == KVAL(K_PENTER) && vc_kbd_mode (kbd, VC_CRLF)) put_queue (10); } static void do_cur(unsigned char value, char up_flag) { static const char *cur_chars = "BDCA"; if (up_flag) return; applkey (cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); } static void do_shift(unsigned char value, char up_flag) { int old_state = shift_state; if (rep) return; /* Mimic typewriter: a CapsShift key acts like Shift but undoes CapsLock */ if (value == KVAL(K_CAPSSHIFT)) { value = KVAL(K_SHIFT); if (!up_flag) clr_vc_kbd_led (kbd, VC_CAPSLOCK); } if(up_flag) { /* handle the case that two shift or control keys are depressed simultaneously */ if(k_down[value]) k_down[value]--; } else k_down[value]++; if(k_down[value]) shift_state |= (1 << value); else shift_state &= ~ (1 << value); /* kludge */ if(up_flag && shift_state != old_state && npadch != -1) { if(kbd->kbdmode == VC_UNICODE) to_utf8(npadch & 0xffff); else put_queue(npadch & 0xff); npadch = -1; } } /* * Called after returning from RAW mode or when changing consoles - * recompute k_down[] and shift_state from key_down[] * Maybe called when keymap is undefined so that shift key release is seen */ void compute_shiftstate(void) { int i, j, k, sym, val; shift_state = 0; for (i = 0; i < SIZE(k_down); i++) k_down[i] = 0; for (i = 0; i < SIZE(key_down); i++) if (key_down[i]) { /* skip this word if not a single bit on */ k = i * BITS_PER_LONG; for (j = 0; j < BITS_PER_LONG; j++, k++) if (test_bit (k, key_down)) { sym = U(plain_map[k]); if (KTYP(sym) == KT_SHIFT) { val = KVAL (sym); if (val == KVAL(K_CAPSSHIFT)) val = KVAL(K_SHIFT); k_down[val] ++; shift_state |= (1 << val); } } } } static void do_meta(unsigned char value, char up_flag) { if(up_flag) return; if(vc_kbd_mode(kbd, VC_META)) { put_queue ('\033'); put_queue (value); } else put_queue (value | 0x80); } static void do_ascii(unsigned char value, char up_flag) { int base; if (up_flag) return; if (value < 10) /* decimal input of code, while Alt depressed */ base = 10; else { /* hexadecimal input of code, while AltGr depressed */ value -= 10; base = 16; } if(npadch == -1) npadch = value; else npadch = npadch * base + value; } static void do_lock (unsigned char value, char up_flag) { if (up_flag || rep) return; chg_vc_kbd_lock (kbd, value); } static void do_slock (unsigned char value, char up_flag) { if (up_flag || rep) return; chg_vc_kbd_slock (kbd, value); } /* * The leds display either * (i) The status of NumLock, CapsLock and ScrollLock. * (ii) Whatever pattern of lights people wait to show using KDSETLED. * (iii) Specified bits of specified words in kernel memory. */ static unsigned char ledstate = 0xff; /* undefined */ static unsigned char ledioctl; unsigned char getledstate(void) { return ledstate; } void setledstate(struct kbd_struct *kbd, unsigned int led) { if(!(led & ~7)) { ledioctl = led; kbd->ledmode = LED_SHOW_IOCTL; } else kbd->ledmode = LED_SHOW_FLAGS; set_leds(); } static struct ledptr { unsigned int *addr; unsigned int mask; unsigned char valid:1; } ledptrs[3]; void register_leds(int console, unsigned int led, unsigned int *addr, unsigned int mask) { struct kbd_struct *kbd = vt_con_data[console].kbd; if(led < 3) { ledptrs[led].addr = addr; ledptrs[led].mask = mask; ledptrs[led].valid= 1; kbd->ledmode = LED_SHOW_MEM; } else kbd->ledmode = LED_SHOW_FLAGS; } static inline unsigned char getleds(void) { struct kbd_struct *kbd = vtdata.fgconsole->kbd; unsigned char leds; if(kbd->ledmode == LED_SHOW_IOCTL) return ledioctl; leds = kbd->ledflagstate; if (kbd->ledmode == LED_SHOW_MEM) { if (ledptrs[0].valid) { if (*ledptrs[0].addr & ledptrs[0].mask) leds |= 1; else leds &= ~1; } if (ledptrs[1].valid) { if (*ledptrs[1].addr & ledptrs[1].mask) leds |= 2; else leds &= ~2; } if (ledptrs[2].valid) { if(*ledptrs[2].addr & ledptrs[2].mask) leds |= 4; else leds &= ~4; } } return leds; } /* * This routine is the bottom half of the keyboard interrupt * routine, and runs with all interrupts enabled. It does * console changing, led setting and copy_to_cooked, which can * take a reasonably long time. * * Aside from timing (which isn't really that important for * keyboard interrupts as they happen often), using the software * interrupt routines for this thing allows us to easily mask * this when we don't want any of the above to happen. Not yet * used, but this allows for easy and efficient race-condition * prevention later on. */ static void kbd_bh(void) { unsigned char leds = getleds(); tty = *vtdata.fgconsole->tty; kbd = vtdata.fgconsole->kbd; if (rep) { /* * This prevents the kbd_key routine from being called * twice, once by this BH, and once by the interrupt * routine. Maybe we should put the key press in a * buffer or variable, and then call the BH... */ disable_irq (IRQ_KEYBOARDRX); if (kbd_repeatkey != -1) kbd_processkey (kbd_repeatkey, 0, 1); enable_irq (IRQ_KEYBOARDRX); rep = 0; } if (leds != ledstate) { ledstate = leds; kbd_drv_setleds(leds); } } /* * Initialise a kbd struct */ int kbd_struct_init (struct vt *vt, int init) { vt->kbd->ledflagstate = vt->kbd->default_ledflagstate = KBD_DEFLEDS; vt->kbd->ledmode = LED_SHOW_FLAGS; vt->kbd->lockstate = KBD_DEFLOCK; vt->kbd->slockstate = 0; vt->kbd->modeflags = KBD_DEFMODE; vt->kbd->kbdmode = VC_XLATE; return 0; } int kbd_ioctl (struct vt *vt, int cmd, unsigned long arg) { asmlinkage int sys_ioperm(unsigned long from, unsigned long num, int on); int i; switch (cmd) { case KDGKBTYPE: /* * This is naive. */ i = verify_area (VERIFY_WRITE, (void *)arg, sizeof (unsigned char)); if (!i) put_user (KB_101, (char *)arg); return i; case KDADDIO: case KDDELIO: /* * KDADDIO and KDDELIO may be able to add ports beyond what * we reject here, but to be safe... */ if (arg < GPFIRST || arg > GPLAST) return -EINVAL; return sys_ioperm (arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0; case KDENABIO: case KDDISABIO: return sys_ioperm (GPFIRST, GPLAST, (cmd == KDENABIO)) ? -ENXIO : 0; case KDMAPDISP: case KDUNMAPDISP: /* * These work like a combination of mmap and KDENABIO. * this could easily be finished. */ return -EINVAL; case KDSKBMODE: switch (arg) { case K_RAW: vt->kbd->kbdmode = VC_RAW; break; case K_MEDIUMRAW: vt->kbd->kbdmode = VC_MEDIUMRAW; break; case K_XLATE: vt->kbd->kbdmode = VC_XLATE; compute_shiftstate (); break; case K_UNICODE: vt->kbd->kbdmode = VC_UNICODE; compute_shiftstate (); break; default: return -EINVAL; } if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer (*vt->tty); return 0; case KDGKBMODE: i = verify_area (VERIFY_WRITE, (void *)arg, sizeof (unsigned long)); if (!i) { int ucval; ucval = ((vt->kbd->kbdmode == VC_RAW) ? K_RAW : (vt->kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW : (vt->kbd->kbdmode == VC_UNICODE) ? K_UNICODE : K_XLATE); put_user (ucval, (int *)arg); } return i; case KDSKBMETA: /* * this could be folded into KDSKBMODE, but for compatibility * reasons, it is not so easy to fold kDGKBMETA into KDGKBMODE. */ switch (arg) { case K_METABIT: clr_vc_kbd_mode (vt->kbd, VC_META); break; case K_ESCPREFIX: set_vc_kbd_mode (vt->kbd, VC_META); break; default: return -EINVAL; } return 0; case KDGKBMETA: i = verify_area (VERIFY_WRITE, (void *)arg, sizeof (unsigned long)); if (!i) { int ucval; ucval = (vc_kbd_mode (vt->kbd, VC_META) ? K_ESCPREFIX : K_METABIT); put_user (ucval, (int *)arg); } return i; case KDGETKEYCODE: { struct kbkeycode *const a = (struct kbkeycode *)arg; i = verify_area (VERIFY_WRITE, a, sizeof (struct kbkeycode)); if (!i) { unsigned int sc; sc = get_user (&a->scancode); i = getkeycode (sc); if (i > 0) put_user (i, &a->keycode); i = 0; } return i; } case KDSETKEYCODE: { struct kbkeycode *const a = (struct kbkeycode *)arg; i = verify_area (VERIFY_READ, a, sizeof (struct kbkeycode)); if (!i) { unsigned int sc, kc; sc = get_user (&a->scancode); kc = get_user (&a->keycode); i = setkeycode (sc, kc); } return i; } case KDGKBENT: { struct kbentry *const a = (struct kbentry *)arg; i = verify_area (VERIFY_WRITE, a, sizeof (struct kbentry)); if (!i) { ushort *keymap, val; u_char s; i = get_user (&a->kb_index); if (i >= NR_KEYS) return -EINVAL; s = get_user (&a->kb_table); if (s >= MAX_NR_KEYMAPS) return -EINVAL; keymap = key_maps[s]; if (keymap) { val = U(keymap[i]); if (vt->kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) val = K_HOLE; } else val = (i ? K_HOLE : K_NOSUCHMAP); put_user (val, &a->kb_value); i = 0; } return i; } case KDSKBENT: { struct kbentry *const a = (struct kbentry *)arg; i = verify_area (VERIFY_WRITE, a, sizeof (struct kbentry)); if (!i) { ushort *key_map; u_char s; u_short v, ov; if ((i = get_user(&a->kb_index)) >= NR_KEYS) return -EINVAL; if ((s = get_user(&a->kb_table)) >= MAX_NR_KEYMAPS) return -EINVAL; v = get_user(&a->kb_value); if (!i && v == K_NOSUCHMAP) { /* disallocate map */ key_map = key_maps[s]; if (s && key_map) { key_maps[s] = 0; if (key_map[0] == U(K_ALLOCATED)) { kfree_s(key_map, sizeof(plain_map)); keymap_count--; } } return 0; } if (KTYP(v) < NR_TYPES) { if (KVAL(v) > max_vals[KTYP(v)]) return -EINVAL; } else if (kbd->kbdmode != VC_UNICODE) return -EINVAL; /* assignment to entry 0 only tests validity of args */ if (!i) return 0; if (!(key_map = key_maps[s])) { int j; if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && !suser()) return -EPERM; key_map = (ushort *) kmalloc(sizeof(plain_map), GFP_KERNEL); if (!key_map) return -ENOMEM; key_maps[s] = key_map; key_map[0] = U(K_ALLOCATED); for (j = 1; j < NR_KEYS; j++) key_map[j] = U(K_HOLE); keymap_count++; } ov = U(key_map[i]); if (v == ov) return 0; /* nothing to do */ /* * Only the Superuser can set or unset the Secure * Attention Key. */ if (((ov == K_SAK) || (v == K_SAK)) && !suser()) return -EPERM; key_map[i] = U(v); if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) compute_shiftstate(); return 0; } return i; } case KDGKBSENT: { struct kbsentry *a = (struct kbsentry *)arg; char *p; u_char *q; int sz; i = verify_area(VERIFY_WRITE, (void *)a, sizeof(struct kbsentry)); if (i) return i; if ((i = get_user(&a->kb_func)) >= MAX_NR_FUNC || i < 0) return -EINVAL; sz = sizeof(a->kb_string) - 1; /* sz should have been a struct member */ q = a->kb_string; p = func_table[i]; if(p) for ( ; *p && sz; p++, sz--) put_user(*p, q++); put_user('\0', q); return ((p && *p) ? -EOVERFLOW : 0); } case KDSKBSENT: { struct kbsentry * const a = (struct kbsentry *)arg; int delta; char *first_free, *fj, *fnw; int j, k, sz; u_char *p; char *q; i = verify_area(VERIFY_READ, (void *)a, sizeof(struct kbsentry)); if (i) return i; if ((i = get_user(&a->kb_func)) >= MAX_NR_FUNC) return -EINVAL; q = func_table[i]; first_free = funcbufptr + (funcbufsize - funcbufleft); for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) ; if (j < MAX_NR_FUNC) fj = func_table[j]; else fj = first_free; delta = (q ? -strlen(q) : 1); sz = sizeof(a->kb_string); /* sz should have been a struct member */ for (p = a->kb_string; get_user(p) && sz; p++,sz--) delta++; if (!sz) return -EOVERFLOW; if (delta <= funcbufleft) { /* it fits in current buf */ if (j < MAX_NR_FUNC) { memmove(fj + delta, fj, first_free - fj); for (k = j; k < MAX_NR_FUNC; k++) if (func_table[k]) func_table[k] += delta; } if (!q) func_table[i] = fj; funcbufleft -= delta; } else { /* allocate a larger buffer */ sz = 256; while (sz < funcbufsize - funcbufleft + delta) sz <<= 1; fnw = (char *) kmalloc(sz, GFP_KERNEL); if(!fnw) return -ENOMEM; if (!q) func_table[i] = fj; if (fj > funcbufptr) memmove(fnw, funcbufptr, fj - funcbufptr); for (k = 0; k < j; k++) if (func_table[k]) func_table[k] = fnw + (func_table[k] - funcbufptr); if (first_free > fj) { memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); for (k = j; k < MAX_NR_FUNC; k++) if (func_table[k]) func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; } if (funcbufptr != func_buf) kfree_s(funcbufptr, funcbufsize); funcbufptr = fnw; funcbufleft = funcbufleft - delta + sz - funcbufsize; funcbufsize = sz; } for (p = a->kb_string, q = func_table[i]; ; p++, q++) if (!(*q = get_user(p))) break; return 0; } case KDGKBDIACR: { struct kbdiacrs *a = (struct kbdiacrs *)arg; i = verify_area(VERIFY_WRITE, (void *) a, sizeof(struct kbdiacrs)); if (i) return i; put_user(accent_table_size, &a->kb_cnt); memcpy_tofs(a->kbdiacr, accent_table, accent_table_size*sizeof(struct kbdiacr)); return 0; } case KDSKBDIACR: { struct kbdiacrs *a = (struct kbdiacrs *)arg; unsigned int ct; i = verify_area(VERIFY_READ, (void *) a, sizeof(struct kbdiacrs)); if (i) return i; ct = get_user(&a->kb_cnt); if (ct >= MAX_DIACR) return -EINVAL; accent_table_size = ct; memcpy_fromfs(accent_table, a->kbdiacr, ct*sizeof(struct kbdiacr)); return 0; } /* the ioctls below read/set the flags usually shown in the leds */ /* don't use them - they will go away without warning */ case KDGKBLED: i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned char)); if (i) return i; put_user(vt->kbd->ledflagstate | (vt->kbd->default_ledflagstate << 4), (char *) arg); return 0; case KDSKBLED: if (arg & ~0x77) return -EINVAL; vt->kbd->ledflagstate = (arg & 7); vt->kbd->default_ledflagstate = ((arg >> 4) & 7); set_leds (); return 0; /* the ioctls below only set the lights, not the functions */ /* for those, see KDGKBLED and KDSKBLED above */ case KDGETLED: i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned char)); if (i) return i; put_user(getledstate(), (char *) arg); return 0; case KDSETLED: setledstate(kbd, arg); return 0; /* * A process can indicate its willingness to accept signals * generated by pressing an appropriate key combination. * Thus, one can have a daemon that e.g. spawns a new console * upon a keypess and then changes to it. * Probably init should be changed to do this (and have a * field ks (`keyboard signal') in inittab describing the * desired acion), so that the number of background daemons * does not increase. */ case KDSIGACCEPT: { if (arg < 1 || arg > NSIG || arg == SIGKILL) return -EINVAL; spawnpid = current->pid; spawnsig = arg; return 0; } default: return -ENOIOCTLCMD; } } int kbd_init (void) { int ret; init_bh(KEYBOARD_BH, kbd_bh); ret = kbd_drv_init(); mark_bh(KEYBOARD_BH); return ret; }
Go to most recent revision | Compare with Previous | Blame | View Log