URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [arch/] [i386/] [math-emu/] [poly_sin.c] - Rev 1765
Compare with Previous | Blame | View Log
/*---------------------------------------------------------------------------+ | poly_sin.c | | | | Computation of an approximation of the sin function and the cosine | | function by a polynomial. | | | | Copyright (C) 1992,1993,1994 | | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, | | Australia. E-mail billm@vaxc.cc.monash.edu.au | | | | | +---------------------------------------------------------------------------*/ #include "exception.h" #include "reg_constant.h" #include "fpu_emu.h" #include "control_w.h" #include "poly.h" #define N_COEFF_P 4 #define N_COEFF_N 4 static const unsigned long long pos_terms_l[N_COEFF_P] = { 0xaaaaaaaaaaaaaaabLL, 0x00d00d00d00cf906LL, 0x000006b99159a8bbLL, 0x000000000d7392e6LL }; static const unsigned long long neg_terms_l[N_COEFF_N] = { 0x2222222222222167LL, 0x0002e3bc74aab624LL, 0x0000000b09229062LL, 0x00000000000c7973LL }; #define N_COEFF_PH 4 #define N_COEFF_NH 4 static const unsigned long long pos_terms_h[N_COEFF_PH] = { 0x0000000000000000LL, 0x05b05b05b05b0406LL, 0x000049f93edd91a9LL, 0x00000000c9c9ed62LL }; static const unsigned long long neg_terms_h[N_COEFF_NH] = { 0xaaaaaaaaaaaaaa98LL, 0x001a01a01a019064LL, 0x0000008f76c68a77LL, 0x0000000000d58f5eLL }; /*--- poly_sine() -----------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_sine(FPU_REG const *arg, FPU_REG *result) { int exponent, echange; Xsig accumulator, argSqrd, argTo4; unsigned long fix_up, adj; unsigned long long fixed_arg; #ifdef PARANOID if ( arg->tag == TW_Zero ) { /* Return 0.0 */ reg_move(&CONST_Z, result); return; } #endif PARANOID exponent = arg->exp - EXP_BIAS; accumulator.lsw = accumulator.midw = accumulator.msw = 0; /* Split into two ranges, for arguments below and above 1.0 */ /* The boundary between upper and lower is approx 0.88309101259 */ if ( (exponent < -1) || ((exponent == -1) && (arg->sigh <= 0xe21240aa)) ) { /* The argument is <= 0.88309101259 */ argSqrd.msw = arg->sigh; argSqrd.midw = arg->sigl; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &significand(arg)); shr_Xsig(&argSqrd, 2*(-1-exponent)); argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, N_COEFF_N-1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, N_COEFF_P-1); shr_Xsig(&accumulator, 2); /* Divide by four */ accumulator.msw |= 0x80000000; /* Add 1.0 */ mul64_Xsig(&accumulator, &significand(arg)); mul64_Xsig(&accumulator, &significand(arg)); mul64_Xsig(&accumulator, &significand(arg)); /* Divide by four, FPU_REG compatible, etc */ exponent = 3*exponent + EXP_BIAS; /* The minimum exponent difference is 3 */ shr_Xsig(&accumulator, arg->exp - exponent); negate_Xsig(&accumulator); XSIG_LL(accumulator) += significand(arg); echange = round_Xsig(&accumulator); result->exp = arg->exp + echange; } else { /* The argument is > 0.88309101259 */ /* We use sin(arg) = cos(pi/2-arg) */ fixed_arg = significand(arg); if ( exponent == 0 ) { /* The argument is >= 1.0 */ /* Put the binary point at the left. */ fixed_arg <<= 1; } /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ fixed_arg = 0x921fb54442d18469LL - fixed_arg; XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &fixed_arg); XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, N_COEFF_NH-1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, N_COEFF_PH-1); negate_Xsig(&accumulator); mul64_Xsig(&accumulator, &fixed_arg); mul64_Xsig(&accumulator, &fixed_arg); shr_Xsig(&accumulator, 3); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &argSqrd); shr_Xsig(&accumulator, 1); accumulator.lsw |= 1; /* A zero accumulator here would cause problems */ negate_Xsig(&accumulator); /* The basic computation is complete. Now fix the answer to compensate for the error due to the approximation used for pi/2 */ /* This has an exponent of -65 */ fix_up = 0x898cc517; /* The fix-up needs to be improved for larger args */ if ( argSqrd.msw & 0xffc00000 ) { /* Get about 32 bit precision in these: */ mul_32_32(0x898cc517, argSqrd.msw, &adj); fix_up -= adj/6; } mul_32_32(fix_up, LL_MSW(fixed_arg), &fix_up); adj = accumulator.lsw; /* temp save */ accumulator.lsw -= fix_up; if ( accumulator.lsw > adj ) XSIG_LL(accumulator) --; echange = round_Xsig(&accumulator); result->exp = EXP_BIAS - 1 + echange; } significand(result) = XSIG_LL(accumulator); result->tag = TW_Valid; result->sign = arg->sign; #ifdef PARANOID if ( (result->exp >= EXP_BIAS) && (significand(result) > 0x8000000000000000LL) ) { EXCEPTION(EX_INTERNAL|0x150); } #endif PARANOID } /*--- poly_cos() ------------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_cos(FPU_REG const *arg, FPU_REG *result) { long int exponent, exp2, echange; Xsig accumulator, argSqrd, fix_up, argTo4; unsigned long adj; unsigned long long fixed_arg; #ifdef PARANOID if ( arg->tag == TW_Zero ) { /* Return 1.0 */ reg_move(&CONST_1, result); return; } if ( (arg->exp > EXP_BIAS) || ((arg->exp == EXP_BIAS) && (significand(arg) > 0xc90fdaa22168c234LL)) ) { EXCEPTION(EX_Invalid); reg_move(&CONST_QNaN, result); return; } #endif PARANOID exponent = arg->exp - EXP_BIAS; accumulator.lsw = accumulator.midw = accumulator.msw = 0; if ( (exponent < -1) || ((exponent == -1) && (arg->sigh <= 0xb00d6f54)) ) { /* arg is < 0.687705 */ argSqrd.msw = arg->sigh; argSqrd.midw = arg->sigl; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &significand(arg)); if ( exponent < -1 ) { /* shift the argument right by the required places */ shr_Xsig(&argSqrd, 2*(-1-exponent)); } argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, N_COEFF_NH-1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, N_COEFF_PH-1); negate_Xsig(&accumulator); mul64_Xsig(&accumulator, &significand(arg)); mul64_Xsig(&accumulator, &significand(arg)); shr_Xsig(&accumulator, -2*(1+exponent)); shr_Xsig(&accumulator, 3); negate_Xsig(&accumulator); add_Xsig_Xsig(&accumulator, &argSqrd); shr_Xsig(&accumulator, 1); /* It doesn't matter if accumulator is all zero here, the following code will work ok */ negate_Xsig(&accumulator); if ( accumulator.lsw & 0x80000000 ) XSIG_LL(accumulator) ++; if ( accumulator.msw == 0 ) { /* The result is 1.0 */ reg_move(&CONST_1, result); } else { significand(result) = XSIG_LL(accumulator); /* will be a valid positive nr with expon = -1 */ *(short *)&(result->sign) = 0; result->exp = EXP_BIAS - 1; } } else { fixed_arg = significand(arg); if ( exponent == 0 ) { /* The argument is >= 1.0 */ /* Put the binary point at the left. */ fixed_arg <<= 1; } /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ fixed_arg = 0x921fb54442d18469LL - fixed_arg; exponent = -1; exp2 = -1; /* A shift is needed here only for a narrow range of arguments, i.e. for fixed_arg approx 2^-32, but we pick up more... */ if ( !(LL_MSW(fixed_arg) & 0xffff0000) ) { fixed_arg <<= 16; exponent -= 16; exp2 -= 16; } XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; mul64_Xsig(&argSqrd, &fixed_arg); if ( exponent < -1 ) { /* shift the argument right by the required places */ shr_Xsig(&argSqrd, 2*(-1-exponent)); } argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; argTo4.lsw = argSqrd.lsw; mul_Xsig_Xsig(&argTo4, &argTo4); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, N_COEFF_N-1); mul_Xsig_Xsig(&accumulator, &argSqrd); negate_Xsig(&accumulator); polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, N_COEFF_P-1); shr_Xsig(&accumulator, 2); /* Divide by four */ accumulator.msw |= 0x80000000; /* Add 1.0 */ mul64_Xsig(&accumulator, &fixed_arg); mul64_Xsig(&accumulator, &fixed_arg); mul64_Xsig(&accumulator, &fixed_arg); /* Divide by four, FPU_REG compatible, etc */ exponent = 3*exponent; /* The minimum exponent difference is 3 */ shr_Xsig(&accumulator, exp2 - exponent); negate_Xsig(&accumulator); XSIG_LL(accumulator) += fixed_arg; /* The basic computation is complete. Now fix the answer to compensate for the error due to the approximation used for pi/2 */ /* This has an exponent of -65 */ XSIG_LL(fix_up) = 0x898cc51701b839a2ll; fix_up.lsw = 0; /* The fix-up needs to be improved for larger args */ if ( argSqrd.msw & 0xffc00000 ) { /* Get about 32 bit precision in these: */ mul_32_32(0x898cc517, argSqrd.msw, &adj); fix_up.msw -= adj/2; mul_32_32(0x898cc517, argTo4.msw, &adj); fix_up.msw += adj/24; } exp2 += norm_Xsig(&accumulator); shr_Xsig(&accumulator, 1); /* Prevent overflow */ exp2++; shr_Xsig(&fix_up, 65 + exp2); add_Xsig_Xsig(&accumulator, &fix_up); echange = round_Xsig(&accumulator); result->exp = exp2 + EXP_BIAS + echange; *(short *)&(result->sign) = 0; /* Is a valid positive nr */ significand(result) = XSIG_LL(accumulator); } #ifdef PARANOID if ( (result->exp >= EXP_BIAS) && (significand(result) > 0x8000000000000000LL) ) { EXCEPTION(EX_INTERNAL|0x151); } #endif PARANOID }