URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [arch/] [mips/] [kernel/] [jazzdma.c] - Rev 1765
Compare with Previous | Blame | View Log
/* * jazzdma.c * * Mips Jazz DMA controller support * (C) 1995 Andreas Busse * * NOTE: Some of the argument checking could be removed when * things have settled down. Also, instead of returning 0xffffffff * on failure of vdma_alloc() one could leave page #0 unused * and return the more usual NULL pointer as logical address. * */ #include <linux/kernel.h> #include <linux/errno.h> #include <asm/mipsregs.h> #include <asm/mipsconfig.h> #include <asm/jazz.h> #include <asm/io.h> #include <asm/segment.h> #include <asm/dma.h> #include <asm/jazzdma.h> static unsigned long vdma_pagetable_start = 0; static unsigned long vdma_pagetable_end = 0; /* * Debug stuff */ #define vdma_debug ((CONF_DEBUG_VDMA) ? debuglvl : 0) static int debuglvl = 3; /* * Local prototypes */ static void vdma_pgtbl_init(void); /* * Initialize the Jazz R4030 dma controller */ unsigned long vdma_init(unsigned long memory_start, unsigned long memory_end) { /* * Allocate 32k of memory for DMA page tables. * This needs to be page aligned and should be * uncached to avoid cache flushing after every * update. */ vdma_pagetable_start = KSEG1ADDR((memory_start + 4095) & ~4095); vdma_pagetable_end = vdma_pagetable_start + VDMA_PGTBL_SIZE; /* * Clear the R4030 translation table */ vdma_pgtbl_init(); r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE,PHYSADDR(vdma_pagetable_start)); r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM,VDMA_PGTBL_SIZE); r4030_write_reg32(JAZZ_R4030_TRSTBL_INV,0); printk("VDMA: R4030 DMA pagetables initialized.\n"); return KSEG0ADDR(vdma_pagetable_end); } /* * Allocate DMA pagetables using a simple first-fit algorithm */ unsigned long vdma_alloc(unsigned long paddr, unsigned long size) { VDMA_PGTBL_ENTRY *entry = (VDMA_PGTBL_ENTRY *)vdma_pagetable_start; int first; int last; int pages; unsigned int frame; unsigned long laddr; int i; /* check arguments */ if (paddr > 0x1fffffff) { if (vdma_debug) printk("vdma_alloc: Invalid physical address: %08lx\n",paddr); return VDMA_ERROR; /* invalid physical address */ } if (size > 0x400000 || size == 0) { if (vdma_debug) printk("vdma_alloc: Invalid size: %08lx\n",size); return VDMA_ERROR; /* invalid physical address */ } /* find free chunk */ pages = (size + 4095) >> 12; /* no. of pages to allocate */ first = 0; while (1) { while (entry[first].owner != VDMA_PAGE_EMPTY && first < VDMA_PGTBL_ENTRIES) first++; if (first+pages > VDMA_PGTBL_ENTRIES) /* nothing free */ return VDMA_ERROR; last = first+1; while (entry[last].owner == VDMA_PAGE_EMPTY && last-first < pages) last++; if (last-first == pages) break; /* found */ } /* mark pages as allocated */ laddr = (first << 12) + (paddr & (VDMA_PAGESIZE-1)); frame = paddr & ~(VDMA_PAGESIZE-1); for (i=first; i<last; i++) { entry[i].frame = frame; entry[i].owner = laddr; frame += VDMA_PAGESIZE; } /* * update translation table and * return logical start address */ r4030_write_reg32(JAZZ_R4030_TRSTBL_INV,0); if (vdma_debug > 1) printk("vdma_alloc: Allocated %d pages starting from %08lx\n", pages,laddr); if (vdma_debug > 2) { printk("LADDR: "); for (i=first; i<last; i++) printk("%08x ",i<<12); printk("\nPADDR: "); for (i=first; i<last; i++) printk("%08x ",entry[i].frame); printk("\nOWNER: "); for (i=first; i<last; i++) printk("%08x ",entry[i].owner); printk("\n"); } return laddr; } /* * Free previously allocated dma translation pages * Note that this does NOT change the translation table, * it just marks the free'd pages as unused! */ int vdma_free(unsigned long laddr) { VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *)vdma_pagetable_start; int i; i = laddr >> 12; if (pgtbl[i].owner != laddr) { printk("vdma_free: trying to free other's dma pages, laddr=%8lx\n", laddr); return -1; } while (pgtbl[i].owner == laddr && i < VDMA_PGTBL_ENTRIES) { pgtbl[i].owner = VDMA_PAGE_EMPTY; i++; } if (vdma_debug > 1) printk("vdma_free: freed %ld pages starting from %08lx\n", i-(laddr>>12),laddr); return 0; } /* * Map certain page(s) to another physical address. * Caller must have allocated the page(s) before. */ int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size) { VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *)vdma_pagetable_start; int first; int pages; if (laddr > 0xffffff) { if (vdma_debug) printk("vdma_map: Invalid logical address: %08lx\n",laddr); return -EINVAL; /* invalid logical address */ } if (paddr > 0x1fffffff) { if (vdma_debug) printk("vdma_map: Invalid physical address: %08lx\n",paddr); return -EINVAL; /* invalid physical address */ } pages = (((paddr & (VDMA_PAGESIZE-1)) + size) >> 12) + 1; first = laddr >> 12; if (vdma_debug) printk("vdma_remap: first=%x, pages=%x\n",first,pages); if (first+pages > VDMA_PGTBL_ENTRIES) { if (vdma_debug) printk("vdma_alloc: Invalid size: %08lx\n",size); return -EINVAL; } paddr &= ~(VDMA_PAGESIZE-1); while (pages > 0 && first < VDMA_PGTBL_ENTRIES) { if (pgtbl[first].owner != laddr) { if (vdma_debug) printk("Trying to remap other's pages.\n"); return -EPERM; /* not owner */ } pgtbl[first].frame = paddr; paddr += VDMA_PAGESIZE; first++; pages--; } /* update translation table */ r4030_write_reg32(JAZZ_R4030_TRSTBL_INV,0); if (vdma_debug > 2) { int i; pages = (((paddr & (VDMA_PAGESIZE-1)) + size) >> 12) + 1; first = laddr >> 12; printk("LADDR: "); for (i=first; i<first+pages; i++) printk("%08x ",i<<12); printk("\nPADDR: "); for (i=first; i<first+pages; i++) printk("%08x ",pgtbl[i].frame); printk("\nOWNER: "); for (i=first; i<first+pages; i++) printk("%08x ",pgtbl[i].owner); printk("\n"); } return 0; } /* * Translate a physical address to a logical address. * This will return the logical address of the first * match. */ unsigned long vdma_phys2log(unsigned long paddr) { int i; int frame; VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *)vdma_pagetable_start; frame = paddr & ~(VDMA_PAGESIZE-1); for (i=0; i<VDMA_PGTBL_ENTRIES; i++) { if (pgtbl[i].frame == frame) break; } if (i == VDMA_PGTBL_ENTRIES) return 0xffffffff; return (i<<12) + (paddr & (VDMA_PAGESIZE-1)); } /* * Translate a logical DMA address to a physical address */ unsigned long vdma_log2phys(unsigned long laddr) { VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *)vdma_pagetable_start; return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE-1)); } /* * Initialize the pagetable with a one-to-one mapping of * the first 16 Mbytes of main memory and declare all * entries to be unused. Using this method will at least * allow some early device driver operations to work. */ static void vdma_pgtbl_init(void) { int i; unsigned long paddr = 0; VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *)vdma_pagetable_start; for (i=0; i<VDMA_PGTBL_ENTRIES; i++) { pgtbl[i].frame = paddr; pgtbl[i].owner = VDMA_PAGE_EMPTY; paddr += VDMA_PAGESIZE; } /* vdma_stats(); */ } /* * Print DMA statistics */ void vdma_stats(void) { int i; printk("vdma_stats: CONFIG: %08x\n", r4030_read_reg32(JAZZ_R4030_CONFIG)); printk("R4030 translation table base: %08x\n", r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE)); printk("R4030 translation table limit: %08x\n", r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM)); printk("vdma_stats: INV_ADDR: %08x\n", r4030_read_reg32(JAZZ_R4030_INV_ADDR)); printk("vdma_stats: R_FAIL_ADDR: %08x\n", r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR)); printk("vdma_stats: M_FAIL_ADDR: %08x\n", r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR)); printk("vdma_stats: IRQ_SOURCE: %08x\n", r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE)); printk("vdma_stats: I386_ERROR: %08x\n", r4030_read_reg32(JAZZ_R4030_I386_ERROR)); printk("vdma_chnl_modes: "); for (i=0; i<8; i++) printk("%04x ", (unsigned)r4030_read_reg32(JAZZ_R4030_CHNL_MODE+(i<<5))); printk("\n"); printk("vdma_chnl_enables: "); for (i=0; i<8; i++) printk("%04x ", (unsigned)r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE+(i<<5))); printk("\n"); } /* * DMA transfer functions */ /* * Enable a DMA channel. Also clear any error conditions. */ void vdma_enable(int channel) { int status; if (vdma_debug) printk("vdma_enable: channel %d\n",channel); /* * Check error conditions first */ status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE+(channel<<5)); if (status & 0x400) printk("VDMA: Channel %d: Address error!\n",channel); if (status & 0x200) printk("VDMA: Channel %d: Memory error!\n",channel); /* * Clear all interrupt flags */ r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE+(channel<<5), R4030_TC_INTR | R4030_MEM_INTR | R4030_ADDR_INTR); /* * Enable the desired channel */ r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE+(channel<<5), r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE+(channel<<5)) | R4030_CHNL_ENABLE); } /* * Disable a DMA channel */ void vdma_disable(int channel) { if (vdma_debug) { int status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE+(channel<<5)); printk("vdma_disable: channel %d\n",channel); printk("VDMA: channel %d status: %04x (%s) mode: " "%02x addr: %06x count: %06x\n", channel,status,((status & 0x600) ? "ERROR" : "OK"), (unsigned)r4030_read_reg32(JAZZ_R4030_CHNL_MODE+(channel<<5)), (unsigned)r4030_read_reg32(JAZZ_R4030_CHNL_ADDR+(channel<<5)), (unsigned)r4030_read_reg32(JAZZ_R4030_CHNL_COUNT+(channel<<5))); } r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE+(channel<<5), r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE+(channel<<5)) & ~R4030_CHNL_ENABLE); /* * After disabling a DMA channel a remote bus register should be * read to ensure that the current DMA acknowledge cycle is completed. */ *((volatile unsigned int *)JAZZ_DUMMY_DEVICE); } /* * Set DMA mode. This function accepts the mode values used * to set a PC-style DMA controller. For the SCSI and FDC * channels, we also set the default modes each time we're * called. * NOTE: The FAST and BURST dma modes are supported by the * R4030 Rev. 2 and PICA chipsets only. I leave them disabled * for now. */ void vdma_set_mode(int channel, int mode) { if (vdma_debug) printk("vdma_set_mode: channel %d, mode 0x%x\n",channel,mode); switch(channel) { case JAZZ_SCSI_DMA: /* scsi */ r4030_write_reg32(JAZZ_R4030_CHNL_MODE+(channel<<5), /* R4030_MODE_FAST | */ /* R4030_MODE_BURST | */ R4030_MODE_INTR_EN | R4030_MODE_WIDTH_16 | R4030_MODE_ATIME_80); break; case JAZZ_FLOPPY_DMA: /* floppy */ r4030_write_reg32(JAZZ_R4030_CHNL_MODE+(channel<<5), /* R4030_MODE_FAST | */ /* R4030_MODE_BURST | */ R4030_MODE_INTR_EN | R4030_MODE_WIDTH_8 | R4030_MODE_ATIME_120); break; case JAZZ_AUDIOL_DMA: case JAZZ_AUDIOR_DMA: printk("VDMA: Audio DMA not supported yet.\n"); break; default: printk("VDMA: vdma_set_mode() called with unsupported channel %d!\n", channel); } switch(mode) { case DMA_MODE_READ: r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE+(channel<<5), r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE+(channel<<5)) & ~R4030_CHNL_WRITE); break; case DMA_MODE_WRITE: r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE+(channel<<5), r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE+(channel<<5)) | R4030_CHNL_WRITE); break; default: printk("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",mode); } } /* * Set Transfer Address */ void vdma_set_addr(int channel, long addr) { if (vdma_debug) printk("vdma_set_addr: channel %d, addr %lx\n",channel,addr); r4030_write_reg32(JAZZ_R4030_CHNL_ADDR+(channel<<5),addr); } /* * Set Transfer Count */ void vdma_set_count(int channel, int count) { if (vdma_debug) printk("vdma_set_count: channel %d, count %08x\n",channel,(unsigned)count); r4030_write_reg32(JAZZ_R4030_CHNL_COUNT+(channel<<5),count); } /* * Get Residual */ int vdma_get_residue(int channel) { int residual; residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT+(channel<<5)); if (vdma_debug) printk("vdma_get_residual: channel %d: residual=%d\n",channel,residual); return residual; }