URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [drivers/] [char/] [serial.c] - Rev 764
Go to most recent revision | Compare with Previous | Blame | View Log
/* * linux/drivers/char/serial.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Extensively rewritten by Theodore Ts'o, 8/16/92 -- 9/14/92. Now * much more extensible to support other serial cards based on the * 16450/16550A UART's. Added support for the AST FourPort and the * Accent Async board. * * set_serial_info fixed to set the flags, custom divisor, and uart * type fields. Fix suggested by Michael K. Johnson 12/12/92. * * 11/95: TIOCMIWAIT, TIOCGICOUNT by Angelo Haritsis <ah@doc.ic.ac.uk> * * 03/96: Modularised by Angelo Haritsis <ah@doc.ic.ac.uk> * * rs_set_termios fixed to look also for changes of the input * flags INPCK, BRKINT, PARMRK, IGNPAR and IGNBRK. * Bernd Anhäupl 05/17/96. * * Added Support for PCI serial boards which contain 16x50 Chips * 31.10.1998 Henning P. Schmiedehausen <hps@tanstaafl.de> * * This module exports the following rs232 io functions: * * int rs_init(void); * int rs_open(struct tty_struct * tty, struct file * filp) */ #include <linux/module.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/interrupt.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/serial.h> #include <linux/serial_reg.h> #include <linux/config.h> #include <linux/major.h> #include <linux/string.h> #include <linux/fcntl.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/mm.h> #ifdef CONFIG_SERIAL_PCI #include <linux/pci.h> #include <linux/bios32.h> #endif #include <asm/system.h> #if defined(CONFIG_eLIA) && defined(CONFIG_PCI) #include <asm/mcfpci.h> #else #include <asm/io.h> #endif #ifdef CONFIG_OR32 #include <asm/irq.h> #endif #include <asm/segment.h> #include <asm/bitops.h> static char *serial_name = "Serial driver"; static char *serial_version = "4.13p1"; DECLARE_TASK_QUEUE(tq_serial); struct tty_driver serial_driver, callout_driver; static int serial_refcount; /* serial subtype definitions */ #define SERIAL_TYPE_NORMAL 1 #define SERIAL_TYPE_CALLOUT 2 /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 #ifdef CONFIG_COLDFIRE #undef TTY_MAJOR #define TTY_MAJOR 24 #undef TTYAUX_MAJOR #define TTYAUX_MAJOR 25 #endif /* * Serial driver configuration section. Here are the various options: * * CONFIG_HUB6 * Enables support for the venerable Bell Technologies * HUB6 card. * * SERIAL_PARANOIA_CHECK * Check the magic number for the async_structure where * ever possible. */ #define SERIAL_PARANOIA_CHECK #define CONFIG_SERIAL_NOPAUSE_IO #define SERIAL_DO_RESTART #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #if 0 #define SERIAL_DEBUG_INTR 1 #endif #ifdef CONFIG_SERIAL_PCI # undef SERIAL_DEBUG_PCI #endif #define RS_STROBE_TIME (10*HZ) #define RS_ISR_PASS_LIMIT 256 #define IRQ_T(info) ((info->flags & ASYNC_SHARE_IRQ) ? SA_SHIRQ : SA_INTERRUPT) #define _INLINE_ inline #if defined(MODULE) && defined(SERIAL_DEBUG_MCOUNT) #define DBG_CNT(s) printk("(%s): [%x] refc=%d, serc=%d, ttyc=%d -> %s\n", \ kdevname(tty->device), (info->flags), serial_refcount,info->count,tty->count,s) #else #define DBG_CNT(s) #endif /* * IRQ_timeout - How long the timeout should be for each IRQ * should be after the IRQ has been active. */ static struct async_struct *IRQ_ports[16]; static struct rs_multiport_struct rs_multiport[16]; static int IRQ_timeout[16]; static volatile int rs_irq_triggered; static volatile int rs_triggered; static int rs_wild_int_mask; #ifdef CONFIG_COLDFIRE #define IRQMASK(i) ((i) & 0x0f) #endif #ifdef CONFIG_OR32 #define IRQMASK(i) ((i) & 0x1f) #endif static void autoconfig(struct async_struct * info); static void change_speed(struct async_struct *info); /* * This assumes you have a 1.8432 MHz clock for your UART. * * It'd be nice if someone built a serial card with a 24.576 MHz * clock, since the 16550A is capable of handling a top speed of 1.5 * megabits/second; but this requires the faster clock. */ #define BASE_BAUD ( 1843200 / 16 ) /* Base boud for or1k */ #define BASE_BAUD_OR1K ( SYS_CLK / 16 ) /* * Well, it is not a 24,756 MHz clock but it is at least a start. * This PCI board here has a 14,7456 MHz crystal oscillator which is * eight times as fast as the standard serial clock... */ #define PCI_BAUD ( 14745600 / 16 ) /* Standard COM flags (except for COM4, because of the 8514 problem) */ #define STD_COM_FLAGS (ASYNC_BOOT_AUTOCONF | ASYNC_SKIP_TEST ) #define STD_COM4_FLAGS ASYNC_BOOT_AUTOCONF #define FOURPORT_FLAGS ASYNC_FOURPORT #define ACCENT_FLAGS 0 #define BOCA_FLAGS 0 #define HUB6_FLAGS 0 #ifdef CONFIG_SERIAL_PCI #define PCI_FLAGS (ASYNC_PCI|ASYNC_BOOT_AUTOCONF) #ifndef PCI_DEVICE_ID_PLX_SPCOM200 #define PCI_DEVICE_ID_PLX_SPCOM200 0x1103 #endif /* * The chips we know about */ #define PCISER_PLX9050 0 /* PLX 9050 local bus bridge as serial card */ #define PCISER_PCCOM4 1 /* "PC COM PCI Bus 4 port serial Adapter" -- from Alvin Sim <alvin@alloycp.com.au> */ struct pci_serial_boards pci_serial_tbl[] = { { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_SPCOM200, "SPCom 200", PCISER_PLX9050, pci_space_0|pci_space_1, 1, 0, 128, PCI_BAUD }, { PCI_VENDOR_ID_DCI, PCI_DEVICE_ID_DCI_PCCOM4, "PC COM 4", PCISER_PCCOM4, pci_space_0, 4, 8, 128, BASE_BAUD }, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } }; #endif /* * The following define the access methods for the HUB6 card. All * access is through two ports for all 24 possible chips. The card is * selected through the high 2 bits, the port on that card with the * "middle" 3 bits, and the register on that port with the bottom * 3 bits. * * While the access port and interrupt is configurable, the default * port locations are 0x302 for the port control register, and 0x303 * for the data read/write register. Normally, the interrupt is at irq3 * but can be anything from 3 to 7 inclusive. Note that using 3 will * require disabling com2. */ #define C_P(card,port) (((card)<<6|(port)<<3) + 1) struct async_struct rs_table[] = { /* UART CLK PORT IRQ FLAGS */ #if defined(CONFIG_NETtel) && defined(CONFIG_M5206e) { 0, BASE_BAUD, 0x40000000, 28, STD_COM_FLAGS },/* ttyS0 */ #elif defined(CONFIG_eLIA) && defined(CONFIG_PCI) { 0, BASE_BAUD, 0x200, 25, STD_COM_FLAGS }, /* ttyS0 */ { 0, BASE_BAUD, 0x208, 25, STD_COM_FLAGS }, /* ttyS1 */ { 0, BASE_BAUD, 0x210, 25, STD_COM_FLAGS }, /* ttyS2 */ { 0, BASE_BAUD, 0x218, 25, STD_COM_FLAGS }, /* ttyS3 */ #elif defined(CONFIG_OR32) { 0, BASE_BAUD_OR1K, UART_BASE_ADD, IRQ_UART_0, STD_COM_FLAGS }, /* ttyS0 */ { 0, BASE_BAUD_OR1K, UART_BASE_ADD, IRQ_UART_0, STD_COM_FLAGS }, /* ttyS0 */ #else { 0, BASE_BAUD, 0x3F8, 4, STD_COM_FLAGS }, /* ttyS0 */ { 0, BASE_BAUD, 0x2F8, 3, STD_COM_FLAGS }, /* ttyS1 */ { 0, BASE_BAUD, 0x3E8, 4, STD_COM_FLAGS }, /* ttyS2 */ { 0, BASE_BAUD, 0x2E8, 3, STD_COM4_FLAGS }, /* ttyS3 */ { 0, BASE_BAUD, 0x1A0, 9, FOURPORT_FLAGS }, /* ttyS4 */ { 0, BASE_BAUD, 0x1A8, 9, FOURPORT_FLAGS }, /* ttyS5 */ { 0, BASE_BAUD, 0x1B0, 9, FOURPORT_FLAGS }, /* ttyS6 */ { 0, BASE_BAUD, 0x1B8, 9, FOURPORT_FLAGS }, /* ttyS7 */ { 0, BASE_BAUD, 0x2A0, 5, FOURPORT_FLAGS }, /* ttyS8 */ { 0, BASE_BAUD, 0x2A8, 5, FOURPORT_FLAGS }, /* ttyS9 */ { 0, BASE_BAUD, 0x2B0, 5, FOURPORT_FLAGS }, /* ttyS10 */ { 0, BASE_BAUD, 0x2B8, 5, FOURPORT_FLAGS }, /* ttyS11 */ { 0, BASE_BAUD, 0x330, 4, ACCENT_FLAGS }, /* ttyS12 */ { 0, BASE_BAUD, 0x338, 4, ACCENT_FLAGS }, /* ttyS13 */ { 0, BASE_BAUD, 0x000, 0, 0 }, /* ttyS14 (spare; user configurable) */ { 0, BASE_BAUD, 0x000, 0, 0 }, /* ttyS15 (spare; user configurable) */ { 0, BASE_BAUD, 0x100, 12, BOCA_FLAGS }, /* ttyS16 */ { 0, BASE_BAUD, 0x108, 12, BOCA_FLAGS }, /* ttyS17 */ { 0, BASE_BAUD, 0x110, 12, BOCA_FLAGS }, /* ttyS18 */ { 0, BASE_BAUD, 0x118, 12, BOCA_FLAGS }, /* ttyS19 */ { 0, BASE_BAUD, 0x120, 12, BOCA_FLAGS }, /* ttyS20 */ { 0, BASE_BAUD, 0x128, 12, BOCA_FLAGS }, /* ttyS21 */ { 0, BASE_BAUD, 0x130, 12, BOCA_FLAGS }, /* ttyS22 */ { 0, BASE_BAUD, 0x138, 12, BOCA_FLAGS }, /* ttyS23 */ { 0, BASE_BAUD, 0x140, 12, BOCA_FLAGS }, /* ttyS24 */ { 0, BASE_BAUD, 0x148, 12, BOCA_FLAGS }, /* ttyS25 */ { 0, BASE_BAUD, 0x150, 12, BOCA_FLAGS }, /* ttyS26 */ { 0, BASE_BAUD, 0x158, 12, BOCA_FLAGS }, /* ttyS27 */ { 0, BASE_BAUD, 0x160, 12, BOCA_FLAGS }, /* ttyS28 */ { 0, BASE_BAUD, 0x168, 12, BOCA_FLAGS }, /* ttyS29 */ { 0, BASE_BAUD, 0x170, 12, BOCA_FLAGS }, /* ttyS30 */ { 0, BASE_BAUD, 0x178, 12, BOCA_FLAGS }, /* ttyS31 */ /* You can have up to four HUB6's in the system, but I've only * included two cards here for a total of twelve ports. */ #ifdef CONFIG_HUB6 { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(0,0) }, /* ttyS32 */ { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(0,1) }, /* ttyS33 */ { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(0,2) }, /* ttyS34 */ { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(0,3) }, /* ttyS35 */ { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(0,4) }, /* ttyS36 */ { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(0,5) }, /* ttyS37 */ { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(1,0) }, /* ttyS38 */ { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(1,1) }, /* ttyS39 */ { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(1,2) }, /* ttyS40 */ { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(1,3) }, /* ttyS41 */ { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(1,4) }, /* ttyS42 */ { 0, BASE_BAUD, 0x302, 3, HUB6_FLAGS, C_P(1,5) }, /* ttyS43 */ #endif #ifdef CONFIG_SERIAL_PCI { 0, BASE_BAUD, 0x0, 0, 0 }, /* ttyS32 or bigger... */ { 0, BASE_BAUD, 0x0, 0, 0 }, /* ttyS33 */ { 0, BASE_BAUD, 0x0, 0, 0 }, /* ttyS34 */ { 0, BASE_BAUD, 0x0, 0, 0 }, /* ttyS35 */ { 0, BASE_BAUD, 0x0, 0, 0 }, /* ttyS36 */ { 0, BASE_BAUD, 0x0, 0, 0 }, /* ttyS37 */ { 0, BASE_BAUD, 0x0, 0, 0 }, /* ttyS38 */ { 0, BASE_BAUD, 0x0, 0, 0 }, /* ttyS39 */ #endif #endif /* CONFIG_COLDFIRE */ }; #define NR_PORTS (sizeof(rs_table)/sizeof(struct async_struct)) #ifdef CONFIG_SERIAL_PCI /* * currently you can have up to four PCI serial boards in your * system. Increase the size of this structure to have more */ struct pci_struct pci_rs_chips[] = { {0, 0,}, {0, 0,}, {0, 0,}, {0, 0,}, }; #define PCI_NR_BOARDS (sizeof(pci_rs_chips)/sizeof(struct pci_struct)) #define PCI_NR_PORTS 8 #define PCI_PORT_START (NR_PORTS - PCI_NR_PORTS) #endif static struct tty_struct *serial_table[NR_PORTS]; static struct termios *serial_termios[NR_PORTS]; static struct termios *serial_termios_locked[NR_PORTS]; #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif #ifdef CONFIG_OR32 #define REG8(x) (*(volatile unsigned char *)(x)) #define IN_CLK 20000000 #define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE) #define WAIT_FOR_XMITR \ do { \ lsr = REG8(UART_BASE_ADD + UART_LSR); \ } while ((lsr & BOTH_EMPTY) != BOTH_EMPTY) int rs_console_inited = 0; int rs_console_port = 0; int rs_console_baud = 9600; /* * or32_console_print is registered for printk. */ void console_print_or32(const char *p) { char c; return; } void rs_console_init(void) { int devisor; if(rs_console_port != 0) return; /* Reset receiver and transmiter */ REG8(UART_BASE_ADD + UART_FCR) = UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT; /* Disable all interrupts */ REG8(UART_BASE_ADD + UART_IER) = 0x00; /* Set 8 bit char, 1 stop bit, no parity */ REG8(UART_BASE_ADD + UART_LCR) = UART_LCR_WLEN8 & ~(UART_LCR_STOP | UART_LCR_PARITY); /* Set baud rate */ devisor = BASE_BAUD_OR1K/rs_console_baud; REG8(UART_BASE_ADD + UART_LCR) |= UART_LCR_DLAB; REG8(UART_BASE_ADD + UART_DLL) = devisor & 0x000000ff; REG8(UART_BASE_ADD + UART_DLM) = (devisor >> 8) & 0x000000ff; REG8(UART_BASE_ADD + UART_LCR) &= ~(UART_LCR_DLAB); rs_console_inited++; return; } /* * rs_console_print is registered for printk output. */ void rs_console_print(const char *p) { char c; unsigned char ier, lsr; extern void putc(char); #if 1 ier = REG8(UART_BASE_ADD + UART_IER); REG8(UART_BASE_ADD + UART_IER) = 0x00; #endif while ((c = *(p++)) != 0) { #if 1 WAIT_FOR_XMITR; REG8(UART_BASE_ADD + UART_TX) = c; if (c == '\n') { WAIT_FOR_XMITR; REG8(UART_BASE_ADD + UART_TX) = '\r'; } #else putc(c); #endif } #if 1 WAIT_FOR_XMITR; REG8(UART_BASE_ADD + UART_IER) = ier; /* Dummy read to clear all pending interrupt */ REG8(UART_BASE_ADD + UART_IIR); REG8(UART_BASE_ADD + UART_LSR); #endif return; } /* * Setup for console. Argument comes from the boot command line. */ int rs_console_setup(char *arg) { int rc = 0; if (!strncmp(arg, "/dev/ttyS", 9)) { rs_console_port = arg[9] - '0'; arg += 10; rc = 1; } else if (!strncmp(arg, "/dev/cua", 8)) { rs_console_port = arg[8] - '0'; arg += 9; rc = 1; } if (*arg == ',') rs_console_baud = simple_strtoul(arg+1,NULL,0); return(rc); } #endif /* * tmp_buf is used as a temporary buffer by serial_write. We need to * lock it in case the memcpy_fromfs blocks while swapping in a page, * and some other program tries to do a serial write at the same time. * Since the lock will only come under contention when the system is * swapping and available memory is low, it makes sense to share one * buffer across all the serial ports, since it significantly saves * memory if large numbers of serial ports are open. */ static unsigned char *tmp_buf = 0; static struct semaphore tmp_buf_sem = MUTEX; static inline int serial_paranoia_check(struct async_struct *info, kdev_t device, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%s) in %s\n"; static const char *badinfo = "Warning: null async_struct for (%s) in %s\n"; if (!info) { printk(badinfo, kdevname(device), routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, kdevname(device), routine); return 1; } #endif return 0; } /* * This is used to figure out the divisor speeds and the timeouts */ static int baud_table[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 0 }; static inline unsigned int serial_in(struct async_struct *info, int offset) { #ifdef CONFIG_HUB6 if (info->hub6) { outb(info->hub6 - 1 + offset, info->port); return inb(info->port+1); } else #endif return inb(info->port + offset); } static inline unsigned int serial_inp(struct async_struct *info, int offset) { #ifdef CONFIG_HUB6 if (info->hub6) { outb(info->hub6 - 1 + offset, info->port); return inb_p(info->port+1); } else #endif #ifdef CONFIG_SERIAL_NOPAUSE_IO return inb(info->port + offset); #else return inb_p(info->port + offset); #endif } static inline void serial_out(struct async_struct *info, int offset, int value) { #ifdef CONFIG_HUB6 if (info->hub6) { outb(info->hub6 - 1 + offset, info->port); outb(value, info->port+1); } else #endif outb(value, info->port+offset); } static inline void serial_outp(struct async_struct *info, int offset, int value) { #ifdef CONFIG_HUB6 if (info->hub6) { outb(info->hub6 - 1 + offset, info->port); outb_p(value, info->port+1); } else #endif #ifdef CONFIG_SERIAL_NOPAUSE_IO outb(value, info->port+offset); #else outb_p(value, info->port+offset); #endif } /* * ------------------------------------------------------------ * rs_stop() and rs_start() * * This routines are called before setting or resetting tty->stopped. * They enable or disable transmitter interrupts, as necessary. * ------------------------------------------------------------ */ static void rs_stop(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_stop")) return; save_flags(flags); cli(); if (info->IER & UART_IER_THRI) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); } restore_flags(flags); } static void rs_start(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_start")) return; save_flags(flags); cli(); if (info->xmit_cnt && info->xmit_buf && !(info->IER & UART_IER_THRI)) { info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); } restore_flags(flags); } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * rs_interrupt(). They were separated out for readability's sake. * * Note: rs_interrupt() is a "fast" interrupt, which means that it * runs with interrupts turned off. People who may want to modify * rs_interrupt() should try to keep the interrupt handler as fast as * possible. After you are done making modifications, it is not a bad * idea to do: * * gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c * * and look at the resulting assemble code in serial.s. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This is the serial driver's interrupt routine while we are probing * for submarines. */ static void rs_probe(int irq, void *dev_id, struct pt_regs * regs) { rs_irq_triggered = IRQMASK(irq); rs_triggered |= 1 << IRQMASK(irq); return; } /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static _INLINE_ void rs_sched_event(struct async_struct *info, int event) { info->event |= 1 << event; queue_task_irq_off(&info->tqueue, &tq_serial); mark_bh(SERIAL_BH); } static _INLINE_ void receive_chars(struct async_struct *info, int *status) { struct tty_struct *tty = info->tty; unsigned char ch; int ignored = 0; do { ch = serial_inp(info, UART_RX); if (*status & info->ignore_status_mask) { if (++ignored > 100) break; goto ignore_char; } if (tty->flip.count >= TTY_FLIPBUF_SIZE) break; tty->flip.count++; if (*status & (UART_LSR_BI)) { #ifdef SERIAL_DEBUG_INTR printk("handling break...."); #endif *tty->flip.flag_buf_ptr++ = TTY_BREAK; if (info->flags & ASYNC_SAK) do_SAK(tty); } else if (*status & UART_LSR_PE) *tty->flip.flag_buf_ptr++ = TTY_PARITY; else if (*status & UART_LSR_FE) *tty->flip.flag_buf_ptr++ = TTY_FRAME; else if (*status & UART_LSR_OE) *tty->flip.flag_buf_ptr++ = TTY_OVERRUN; else *tty->flip.flag_buf_ptr++ = 0; *tty->flip.char_buf_ptr++ = ch; ignore_char: *status = serial_inp(info, UART_LSR) & info->read_status_mask; } while (*status & UART_LSR_DR); queue_task_irq_off(&tty->flip.tqueue, &tq_timer); #ifdef SERIAL_DEBUG_INTR printk("DR..."); #endif } static _INLINE_ void transmit_chars(struct async_struct *info, int *intr_done) { int count; if (info->x_char) { serial_outp(info, UART_TX, info->x_char); info->x_char = 0; if (intr_done) *intr_done = 0; return; } if ((info->xmit_cnt <= 0) || info->tty->stopped || info->tty->hw_stopped) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); return; } count = info->xmit_fifo_size; do { serial_out(info, UART_TX, info->xmit_buf[info->xmit_tail++]); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); if (--info->xmit_cnt <= 0) break; } while (--count > 0); if (info->xmit_cnt < WAKEUP_CHARS) rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); #ifdef SERIAL_DEBUG_INTR printk("THRE..."); #endif if (intr_done) *intr_done = 0; if (info->xmit_cnt <= 0) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); } } static _INLINE_ void check_modem_status(struct async_struct *info) { int status; status = serial_in(info, UART_MSR); if (status & UART_MSR_ANY_DELTA) { /* update input line counters */ if (status & UART_MSR_TERI) info->icount.rng++; if (status & UART_MSR_DDSR) info->icount.dsr++; if (status & UART_MSR_DDCD) info->icount.dcd++; if (status & UART_MSR_DCTS) info->icount.cts++; wake_up_interruptible(&info->delta_msr_wait); } if ((info->flags & ASYNC_CHECK_CD) && (status & UART_MSR_DDCD)) { #if (defined(SERIAL_DEBUG_OPEN) || defined(SERIAL_DEBUG_INTR)) printk("ttys%d CD now %s...", info->line, (status & UART_MSR_DCD) ? "on" : "off"); #endif if (status & UART_MSR_DCD) wake_up_interruptible(&info->open_wait); else if (!((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_CALLOUT_NOHUP))) { #ifdef SERIAL_DEBUG_OPEN printk("scheduling hangup..."); #endif queue_task_irq_off(&info->tqueue_hangup, &tq_scheduler); } } if (info->flags & ASYNC_CTS_FLOW) { if (info->tty->hw_stopped) { if (status & UART_MSR_CTS) { #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) printk("CTS tx start..."); #endif info->tty->hw_stopped = 0; info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); return; } } else { if (!(status & UART_MSR_CTS)) { #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) printk("CTS tx stop..."); #endif info->tty->hw_stopped = 1; info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); } } } } /* * This is the serial driver's generic interrupt routine */ static void rs_interrupt(int irq, void *dev_id, struct pt_regs * regs) { int status; struct async_struct * info; int pass_counter = 0; struct async_struct *end_mark = 0; int first_multi = 0; struct rs_multiport_struct *multi; #ifdef SERIAL_DEBUG_INTR printk("rs_interrupt(%d)...", irq); #endif info = IRQ_ports[IRQMASK(irq)]; if (!info) return; multi = &rs_multiport[IRQMASK(irq)]; if (multi->port_monitor) first_multi = inb(multi->port_monitor); do { if (!info->tty || (serial_in(info, UART_IIR) & UART_IIR_NO_INT)) { if (!end_mark) end_mark = info; goto next; } end_mark = 0; info->last_active = jiffies; status = serial_inp(info, UART_LSR) & info->read_status_mask; #ifdef SERIAL_DEBUG_INTR printk("status = %x...", status); #endif if (status & UART_LSR_DR) receive_chars(info, &status); check_modem_status(info); if (status & UART_LSR_THRE) transmit_chars(info, 0); next: info = info->next_port; if (!info) { info = IRQ_ports[IRQMASK(irq)]; if (pass_counter++ > RS_ISR_PASS_LIMIT) { #if 0 printk("rs loop break\n"); #endif break; /* Prevent infinite loops */ } continue; } } while (end_mark != info); if (multi->port_monitor) printk("rs port monitor (normal) irq %d: 0x%x, 0x%x\n", info->irq, first_multi, inb(multi->port_monitor)); #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } /* * This is the serial driver's interrupt routine for a single port */ static void rs_interrupt_single(int irq, void *dev_id, struct pt_regs * regs) { int status; int pass_counter = 0; int first_multi = 0; struct async_struct * info; struct rs_multiport_struct *multi; #ifdef SERIAL_DEBUG_INTR printk("rs_interrupt_single(%d)...", irq); #endif info = IRQ_ports[IRQMASK(irq)]; if (!info || !info->tty) return; multi = &rs_multiport[IRQMASK(irq)]; if (multi->port_monitor) first_multi = inb(multi->port_monitor); do { status = serial_inp(info, UART_LSR) & info->read_status_mask; #ifdef SERIAL_DEBUG_INTR printk("status = %x...", status); #endif if (status & UART_LSR_DR) receive_chars(info, &status); check_modem_status(info); if (status & UART_LSR_THRE) transmit_chars(info, 0); if (pass_counter++ > RS_ISR_PASS_LIMIT) { #if 0 printk("rs_single loop break.\n"); #endif break; } } while (!(serial_in(info, UART_IIR) & UART_IIR_NO_INT)); info->last_active = jiffies; if (multi->port_monitor) printk("rs port monitor (single) irq %d: 0x%x, 0x%x\n", info->irq, first_multi, inb(multi->port_monitor)); #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } /* * This is the serial driver's for multiport boards */ static void rs_interrupt_multi(int irq, void *dev_id, struct pt_regs * regs) { int status; struct async_struct * info; int pass_counter = 0; int first_multi= 0; struct rs_multiport_struct *multi; #ifdef SERIAL_DEBUG_INTR printk("rs_interrupt_multi(%d)...", irq); #endif info = IRQ_ports[IRQMASK(irq)]; if (!info) return; multi = &rs_multiport[IRQMASK(irq)]; if (!multi->port1) { /* Should never happen */ printk("rs_interrupt_multi: NULL port1!\n"); return; } if (multi->port_monitor) first_multi = inb(multi->port_monitor); while (1) { if (!info->tty || (serial_in(info, UART_IIR) & UART_IIR_NO_INT)) goto next; info->last_active = jiffies; status = serial_inp(info, UART_LSR) & info->read_status_mask; #ifdef SERIAL_DEBUG_INTR printk("status = %x...", status); #endif if (status & UART_LSR_DR) receive_chars(info, &status); check_modem_status(info); if (status & UART_LSR_THRE) transmit_chars(info, 0); next: info = info->next_port; if (info) continue; info = IRQ_ports[IRQMASK(irq)]; if (pass_counter++ > RS_ISR_PASS_LIMIT) { #if 1 printk("rs_multi loop break\n"); #endif break; /* Prevent infinite loops */ } if (multi->port_monitor) printk("rs port monitor irq %d: 0x%x, 0x%x\n", info->irq, first_multi, inb(multi->port_monitor)); if ((inb(multi->port1) & multi->mask1) != multi->match1) continue; if (!multi->port2) break; if ((inb(multi->port2) & multi->mask2) != multi->match2) continue; if (!multi->port3) break; if ((inb(multi->port3) & multi->mask3) != multi->match3) continue; if (!multi->port4) break; if ((inb(multi->port4) & multi->mask4) == multi->match4) continue; break; } #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using rs_sched_event(), and they get done here. */ static void do_serial_bh(void) { run_task_queue(&tq_serial); } static void do_softint(void *private_) { struct async_struct *info = (struct async_struct *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); wake_up_interruptible(&tty->write_wait); } } /* * This routine is called from the scheduler tqueue when the interrupt * routine has signalled that a hangup has occurred. The path of * hangup processing is: * * serial interrupt routine -> (scheduler tqueue) -> * do_serial_hangup() -> tty->hangup() -> rs_hangup() * */ static void do_serial_hangup(void *private_) { struct async_struct *info = (struct async_struct *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; tty_hangup(tty); } /* * This subroutine is called when the RS_TIMER goes off. It is used * by the serial driver to handle ports that do not have an interrupt * (irq=0). This doesn't work very well for 16450's, but gives barely * passable results for a 16550A. (Although at the expense of much * CPU overhead). */ static void rs_timer(void) { static unsigned long last_strobe = 0; struct async_struct *info; unsigned int i; if ((jiffies - last_strobe) >= RS_STROBE_TIME) { for (i=1; i < 16; i++) { info = IRQ_ports[IRQMASK(i)]; if (!info) continue; cli(); if (info->next_port) { do { serial_out(info, UART_IER, 0); info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); info = info->next_port; } while (info); if (rs_multiport[IRQMASK(i)].port1) rs_interrupt_multi(i, NULL, NULL); else rs_interrupt(i, NULL, NULL); } else rs_interrupt_single(i, NULL, NULL); sti(); } } last_strobe = jiffies; timer_table[RS_TIMER].expires = jiffies + RS_STROBE_TIME; timer_active |= 1 << RS_TIMER; if (IRQ_ports[IRQMASK(0)]) { cli(); rs_interrupt(0, NULL, NULL); sti(); timer_table[RS_TIMER].expires = jiffies + IRQ_timeout[0] - 2; } } /* * --------------------------------------------------------------- * Low level utility subroutines for the serial driver: routines to * figure out the appropriate timeout for an interrupt chain, routines * to initialize and startup a serial port, and routines to shutdown a * serial port. Useful stuff like that. * --------------------------------------------------------------- */ #ifndef CONFIG_COLDFIRE /* * Grab all interrupts in preparation for doing an automatic irq * detection. dontgrab is a mask of irq's _not_ to grab. Returns a * mask of irq's which were grabbed and should therefore be freed * using free_all_interrupts(). */ static int grab_all_interrupts(int dontgrab) { int irq_lines = 0; int i, mask; for (i = 0, mask = 1; i < 16; i++, mask <<= 1) { if (!(mask & dontgrab) && !request_irq(i, rs_probe, SA_INTERRUPT, "serial probe", NULL)) { irq_lines |= mask; } } return irq_lines; } /* * Release all interrupts grabbed by grab_all_interrupts */ static void free_all_interrupts(int irq_lines) { int i; for (i = 0; i < 16; i++) { if (irq_lines & (1 << i)) free_irq(i, NULL); } } #endif /* CONFIG_COLDFIRE */ /* * This routine figures out the correct timeout for a particular IRQ. * It uses the smallest timeout of all of the serial ports in a * particular interrupt chain. Now only used for IRQ 0.... */ static void figure_IRQ_timeout(int irq) { struct async_struct *info; int timeout = 60*HZ; /* 60 seconds === a long time :-) */ info = IRQ_ports[IRQMASK(irq)]; if (!info) { IRQ_timeout[IRQMASK(irq)] = 60*HZ; return; } while (info) { if (info->timeout < timeout) timeout = info->timeout; info = info->next_port; } if (!irq) timeout = timeout / 2; IRQ_timeout[IRQMASK(irq)] = timeout ? timeout : 1; } static int startup(struct async_struct * info) { unsigned int ICP; unsigned long flags; int retval; void (*handler)(int, void *, struct pt_regs *); unsigned long page; page = get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; save_flags(flags); cli(); if (info->flags & ASYNC_INITIALIZED) { free_page(page); restore_flags(flags); return 0; } if (!info->port || !info->type) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); free_page(page); restore_flags(flags); return 0; } if (info->xmit_buf) free_page(page); else info->xmit_buf = (unsigned char *) page; #ifdef SERIAL_DEBUG_OPEN printk("starting up ttys%d (irq %d)...", info->line, info->irq); #endif /* * Clear the FIFO buffers and disable them * (they will be reenabled in change_speed()) */ if (info->type == PORT_16650) { serial_outp(info, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); info->xmit_fifo_size = 1; /* disabled for now */ } else if (info->type == PORT_16550A) { serial_outp(info, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); info->xmit_fifo_size = 16; } else info->xmit_fifo_size = 1; /* * At this point there's no way the LSR could still be 0xFF; * if it is, then bail out, because there's likely no UART * here. */ if (serial_inp(info, UART_LSR) == 0xff) { restore_flags(flags); if (suser()) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); return 0; } else return -ENODEV; } #ifndef CONFIG_COLDFIRE /* * Allocate the IRQ if necessary */ if (info->irq && (!IRQ_ports[IRQMASK(info->irq)] || !IRQ_ports[IRQMASK(info->irq)]->next_port)) { if (IRQ_ports[IRQMASK(info->irq)]) { free_irq(info->irq, NULL); if (rs_multiport[IRQMASK(info->irq)].port1) handler = rs_interrupt_multi; else handler = rs_interrupt; } else handler = rs_interrupt_single; retval = request_irq(info->irq, handler, IRQ_T(info), "serial", NULL); if (retval) { restore_flags(flags); if (suser()) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); return 0; } else return retval; } } #endif /* * Clear the interrupt registers. */ /* (void) serial_inp(info, UART_LSR); */ /* (see above) */ (void) serial_inp(info, UART_RX); (void) serial_inp(info, UART_IIR); (void) serial_inp(info, UART_MSR); /* * Now, initialize the UART */ serial_outp(info, UART_LCR, UART_LCR_WLEN8); /* reset DLAB */ if (info->flags & ASYNC_FOURPORT) { info->MCR = UART_MCR_DTR | UART_MCR_RTS; info->MCR_noint = UART_MCR_DTR | UART_MCR_OUT1; } else { info->MCR = UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2; info->MCR_noint = UART_MCR_DTR | UART_MCR_RTS; } #if defined(__alpha__) && !defined(CONFIG_PCI) info->MCR |= UART_MCR_OUT1 | UART_MCR_OUT2; info->MCR_noint |= UART_MCR_OUT1 | UART_MCR_OUT2; #endif if (info->irq == 0) info->MCR = info->MCR_noint; serial_outp(info, UART_MCR, info->MCR); /* * Finally, enable interrupts */ info->IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI; serial_outp(info, UART_IER, info->IER); /* enable interrupts */ if (info->flags & ASYNC_FOURPORT) { /* Enable interrupts on the AST Fourport board */ ICP = (info->port & 0xFE0) | 0x01F; outb_p(0x80, ICP); (void) inb_p(ICP); } /* * And clear the interrupt registers again for luck. */ (void)serial_inp(info, UART_LSR); (void)serial_inp(info, UART_RX); (void)serial_inp(info, UART_IIR); (void)serial_inp(info, UART_MSR); if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; /* * Insert serial port into IRQ chain. */ info->prev_port = 0; info->next_port = IRQ_ports[IRQMASK(info->irq)]; if (info->next_port) info->next_port->prev_port = info; IRQ_ports[IRQMASK(info->irq)] = info; figure_IRQ_timeout(info->irq); /* * Set up serial timers... */ timer_table[RS_TIMER].expires = jiffies + 2*HZ/100; timer_active |= 1 << RS_TIMER; /* * and set the speed of the serial port */ change_speed(info); info->flags |= ASYNC_INITIALIZED; restore_flags(flags); return 0; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(struct async_struct * info) { unsigned long flags; int retval; if (!(info->flags & ASYNC_INITIALIZED)) return; #ifdef SERIAL_DEBUG_OPEN printk("Shutting down serial port %d (irq %d)....", info->line, info->irq); #endif save_flags(flags); cli(); /* Disable interrupts */ /* * clear delta_msr_wait queue to avoid mem leaks: we may free the irq * here so the queue might never be waken up */ wake_up_interruptible(&info->delta_msr_wait); /* * First unlink the serial port from the IRQ chain... */ if (info->next_port) info->next_port->prev_port = info->prev_port; if (info->prev_port) info->prev_port->next_port = info->next_port; else IRQ_ports[IRQMASK(info->irq)] = info->next_port; figure_IRQ_timeout(info->irq); #ifndef CONFIG_COLDFIRE /* * Free the IRQ, if necessary */ if (info->irq && (!IRQ_ports[IRQMASK(info->irq)] || !IRQ_ports[IRQMASK(info->irq)]->next_port)) { if (IRQ_ports[IRQMASK(info->irq)]) { free_irq(info->irq, NULL); retval = request_irq(info->irq, rs_interrupt_single, IRQ_T(info), "serial", NULL); if (retval) printk("serial shutdown: request_irq: error %d" " Couldn't reacquire IRQ.\n", retval); } else free_irq(info->irq, NULL); } #endif /* CONFIG_COLDFIRE */ if (info->xmit_buf) { free_page((unsigned long) info->xmit_buf); info->xmit_buf = 0; } info->IER = 0; serial_outp(info, UART_IER, 0x00); /* disable all intrs */ if (info->flags & ASYNC_FOURPORT) { /* reset interrupts on the AST Fourport board */ (void) inb((info->port & 0xFE0) | 0x01F); } if (!info->tty || (info->tty->termios->c_cflag & HUPCL)) { info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); info->MCR_noint &= ~(UART_MCR_DTR|UART_MCR_RTS); } serial_outp(info, UART_MCR, info->MCR_noint); /* disable FIFO's */ serial_outp(info, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); (void)serial_in(info, UART_RX); /* read data port to reset things */ if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); info->flags &= ~ASYNC_INITIALIZED; restore_flags(flags); } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(struct async_struct *info) { unsigned int port; int quot = 0; unsigned cflag,cval,fcr; int i; unsigned long flags; if (!info->tty || !info->tty->termios) return; cflag = info->tty->termios->c_cflag; if (!(port = info->port)) return; i = cflag & CBAUD; if (i & CBAUDEX) { i &= ~CBAUDEX; if (i < 1 || i > 2) info->tty->termios->c_cflag &= ~CBAUDEX; else i += 15; } if (i == 15) { if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI) i += 1; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) i += 2; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST) quot = info->custom_divisor; } if (quot) { info->timeout = ((info->xmit_fifo_size*HZ*15*quot) / info->baud_base) + 2; } else if (baud_table[i] == 134) { quot = (2*info->baud_base / 269); info->timeout = (info->xmit_fifo_size*HZ*30/269) + 2; } else if (baud_table[i]) { quot = info->baud_base / baud_table[i]; info->timeout = (info->xmit_fifo_size*HZ*15/baud_table[i]) + 2; } else { quot = 0; info->timeout = 0; } if (quot) { info->MCR |= UART_MCR_DTR; info->MCR_noint |= UART_MCR_DTR; save_flags(flags); cli(); serial_out(info, UART_MCR, info->MCR); restore_flags(flags); } else { info->MCR &= ~UART_MCR_DTR; info->MCR_noint &= ~UART_MCR_DTR; save_flags(flags); cli(); serial_out(info, UART_MCR, info->MCR); restore_flags(flags); return; } /* byte size and parity */ switch (cflag & CSIZE) { case CS5: cval = 0x00; break; case CS6: cval = 0x01; break; case CS7: cval = 0x02; break; case CS8: cval = 0x03; break; default: cval = 0x00; break; /* too keep GCC shut... */ } if (cflag & CSTOPB) { cval |= 0x04; } if (cflag & PARENB) cval |= UART_LCR_PARITY; if (!(cflag & PARODD)) cval |= UART_LCR_EPAR; if (info->type == PORT_16550A) { if ((info->baud_base / quot) < 2400) fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_1; else fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_8; } else if (info->type == PORT_16650) { /* * On the 16650, we disable the FIFOs altogether * because of a design bug in how the implement * things. We could support it by completely changing * how we handle the interrupt driver, but not today.... * * N.B. Because there's no way to set a FIFO trigger * at 1 char, we'd probably disable at speed below * 2400 baud anyway... */ fcr = 0; } else fcr = 0; /* CTS flow control flag and modem status interrupts */ info->IER &= ~UART_IER_MSI; if (cflag & CRTSCTS) { info->flags |= ASYNC_CTS_FLOW; info->IER |= UART_IER_MSI; } else info->flags &= ~ASYNC_CTS_FLOW; if (cflag & CLOCAL) info->flags &= ~ASYNC_CHECK_CD; else { info->flags |= ASYNC_CHECK_CD; info->IER |= UART_IER_MSI; } serial_out(info, UART_IER, info->IER); /* * Set up parity check flag */ #define RELEVANT_IFLAG(iflag) (iflag & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK)) info->read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR; if (I_INPCK(info->tty)) info->read_status_mask |= UART_LSR_FE | UART_LSR_PE; if (I_BRKINT(info->tty) || I_PARMRK(info->tty)) info->read_status_mask |= UART_LSR_BI; info->ignore_status_mask = 0; #if 0 /* This should be safe, but for some broken bits of hardware... */ if (I_IGNPAR(info->tty)) { info->ignore_status_mask |= UART_LSR_PE | UART_LSR_FE; info->read_status_mask |= UART_LSR_PE | UART_LSR_FE; } #endif if (I_IGNBRK(info->tty)) { info->ignore_status_mask |= UART_LSR_BI; info->read_status_mask |= UART_LSR_BI; /* * If we're ignore parity and break indicators, ignore * overruns too. (For real raw support). */ if (I_IGNPAR(info->tty)) { info->ignore_status_mask |= UART_LSR_OE | \ UART_LSR_PE | UART_LSR_FE; info->read_status_mask |= UART_LSR_OE | \ UART_LSR_PE | UART_LSR_FE; } } save_flags(flags); cli(); serial_outp(info, UART_LCR, cval | UART_LCR_DLAB); /* set DLAB */ serial_outp(info, UART_DLL, quot & 0xff); /* LS of divisor */ serial_outp(info, UART_DLM, quot >> 8); /* MS of divisor */ serial_outp(info, UART_LCR, cval); /* reset DLAB */ serial_outp(info, UART_FCR, fcr); /* set fcr */ restore_flags(flags); } static void rs_put_char(struct tty_struct *tty, unsigned char ch) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_put_char")) return; if (!tty || !info->xmit_buf) return; save_flags(flags); cli(); if (info->xmit_cnt >= SERIAL_XMIT_SIZE - 1) { restore_flags(flags); return; } info->xmit_buf[info->xmit_head++] = ch; info->xmit_head &= SERIAL_XMIT_SIZE-1; info->xmit_cnt++; restore_flags(flags); } static void rs_flush_chars(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_flush_chars")) return; if (info->xmit_cnt <= 0 || tty->stopped || tty->hw_stopped || !info->xmit_buf) return; save_flags(flags); cli(); info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); restore_flags(flags); } static int rs_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) { int c, total = 0; struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_write")) return 0; if (!tty || !info->xmit_buf || !tmp_buf) return 0; if (from_user) down(&tmp_buf_sem); save_flags(flags); while (1) { cli(); c = MIN(count, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) break; if (from_user) { memcpy_fromfs(tmp_buf, buf, c); c = MIN(c, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); memcpy(info->xmit_buf + info->xmit_head, tmp_buf, c); } else memcpy(info->xmit_buf + info->xmit_head, buf, c); info->xmit_head = (info->xmit_head + c) & (SERIAL_XMIT_SIZE-1); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; total += c; } if (from_user) up(&tmp_buf_sem); if (info->xmit_cnt && !tty->stopped && !tty->hw_stopped && !(info->IER & UART_IER_THRI)) { info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); } restore_flags(flags); return total; } static int rs_write_room(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->device, "rs_write_room")) return 0; ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1; if (ret < 0) ret = 0; return ret; } static int rs_chars_in_buffer(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_chars_in_buffer")) return 0; return info->xmit_cnt; } static void rs_flush_buffer(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_flush_buffer")) return; cli(); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; sti(); wake_up_interruptible(&tty->write_wait); if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); } /* * ------------------------------------------------------------ * rs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void rs_throttle(struct tty_struct * tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_throttle")) return; if (I_IXOFF(tty)) info->x_char = STOP_CHAR(tty); info->MCR &= ~UART_MCR_RTS; info->MCR_noint &= ~UART_MCR_RTS; cli(); serial_out(info, UART_MCR, info->MCR); sti(); } static void rs_unthrottle(struct tty_struct * tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_unthrottle")) return; if (I_IXOFF(tty)) { if (info->x_char) info->x_char = 0; else info->x_char = START_CHAR(tty); } info->MCR |= UART_MCR_RTS; info->MCR_noint |= UART_MCR_RTS; cli(); serial_out(info, UART_MCR, info->MCR); sti(); } /* * ------------------------------------------------------------ * rs_ioctl() and friends * ------------------------------------------------------------ */ static int get_serial_info(struct async_struct * info, struct serial_struct * retinfo) { struct serial_struct tmp; if (!retinfo) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.type = info->type; tmp.line = info->line; tmp.port = info->port; tmp.irq = info->irq; tmp.flags = info->flags; tmp.baud_base = info->baud_base; tmp.close_delay = info->close_delay; tmp.closing_wait = info->closing_wait; tmp.custom_divisor = info->custom_divisor; tmp.hub6 = info->hub6; memcpy_tofs(retinfo,&tmp,sizeof(*retinfo)); return 0; } static int set_serial_info(struct async_struct * info, struct serial_struct * new_info) { struct serial_struct new_serial; struct async_struct old_info; unsigned int i,change_irq,change_port; int retval = 0; if (!new_info) return -EFAULT; memcpy_fromfs(&new_serial,new_info,sizeof(new_serial)); old_info = *info; change_irq = new_serial.irq != info->irq; change_port = (new_serial.port != info->port) || (new_serial.hub6 != info->hub6); if (!suser()) { if (change_irq || change_port || (new_serial.baud_base != info->baud_base) || (new_serial.type != info->type) || (new_serial.close_delay != info->close_delay) || ((new_serial.flags & ~ASYNC_USR_MASK) != (info->flags & ~ASYNC_USR_MASK))) return -EPERM; info->flags = ((info->flags & ~ASYNC_USR_MASK) | (new_serial.flags & ASYNC_USR_MASK)); info->custom_divisor = new_serial.custom_divisor; goto check_and_exit; } /* SIMON */ #if 0 #ifndef CONFIG_COLDFIRE if (new_serial.irq == 2) new_serial.irq = 9; if ((new_serial.irq > 15) || (new_serial.port > 0xffff) || (new_serial.type < PORT_UNKNOWN) || (new_serial.type > PORT_MAX)) { return -EINVAL; } #endif #endif /* Make sure address is not already in use */ if (new_serial.type) { for (i = 0 ; i < NR_PORTS; i++) if ((info != &rs_table[i]) && (rs_table[i].port == new_serial.port) && rs_table[i].type) return -EADDRINUSE; } if ((change_port || change_irq) && (info->count > 1)) return -EBUSY; /* * OK, past this point, all the error checking has been done. * At this point, we start making changes..... */ info->baud_base = new_serial.baud_base; info->flags = ((info->flags & ~ASYNC_FLAGS) | (new_serial.flags & ASYNC_FLAGS)); info->custom_divisor = new_serial.custom_divisor; info->type = new_serial.type; info->close_delay = new_serial.close_delay * HZ/100; info->closing_wait = new_serial.closing_wait * HZ/100; release_region(info->port,8); if (change_port || change_irq) { /* * We need to shutdown the serial port at the old * port/irq combination. */ shutdown(info); info->irq = new_serial.irq; info->port = new_serial.port; info->hub6 = new_serial.hub6; } if(info->type != PORT_UNKNOWN) request_region(info->port,8,"serial(set)"); check_and_exit: if (!info->port || !info->type) return 0; if (info->flags & ASYNC_INITIALIZED) { if (((old_info.flags & ASYNC_SPD_MASK) != (info->flags & ASYNC_SPD_MASK)) || (old_info.custom_divisor != info->custom_divisor)) change_speed(info); } else retval = startup(info); return retval; } /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct async_struct * info, unsigned int *value) { unsigned char status; unsigned int result; cli(); status = serial_in(info, UART_LSR); sti(); result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0); put_user(result,value); return 0; } static int get_modem_info(struct async_struct * info, unsigned int *value) { unsigned char control, status; unsigned int result; control = info->MCR; cli(); status = serial_in(info, UART_MSR); sti(); result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0) | ((control & UART_MCR_DTR) ? TIOCM_DTR : 0) | ((status & UART_MSR_DCD) ? TIOCM_CAR : 0) | ((status & UART_MSR_RI) ? TIOCM_RNG : 0) | ((status & UART_MSR_DSR) ? TIOCM_DSR : 0) | ((status & UART_MSR_CTS) ? TIOCM_CTS : 0); put_user(result,value); return 0; } static int set_modem_info(struct async_struct * info, unsigned int cmd, unsigned int *value) { int error; unsigned int arg; error = verify_area(VERIFY_READ, value, sizeof(int)); if (error) return error; arg = get_user(value); switch (cmd) { case TIOCMBIS: if (arg & TIOCM_RTS) { info->MCR |= UART_MCR_RTS; info->MCR_noint |= UART_MCR_RTS; } if (arg & TIOCM_DTR) { info->MCR |= UART_MCR_DTR; info->MCR_noint |= UART_MCR_DTR; } break; case TIOCMBIC: if (arg & TIOCM_RTS) { info->MCR &= ~UART_MCR_RTS; info->MCR_noint &= ~UART_MCR_RTS; } if (arg & TIOCM_DTR) { info->MCR &= ~UART_MCR_DTR; info->MCR_noint &= ~UART_MCR_DTR; } break; case TIOCMSET: info->MCR = ((info->MCR & ~(UART_MCR_RTS | UART_MCR_DTR)) | ((arg & TIOCM_RTS) ? UART_MCR_RTS : 0) | ((arg & TIOCM_DTR) ? UART_MCR_DTR : 0)); info->MCR_noint = ((info->MCR_noint & ~(UART_MCR_RTS | UART_MCR_DTR)) | ((arg & TIOCM_RTS) ? UART_MCR_RTS : 0) | ((arg & TIOCM_DTR) ? UART_MCR_DTR : 0)); break; default: return -EINVAL; } cli(); serial_out(info, UART_MCR, info->MCR); sti(); return 0; } static int do_autoconfig(struct async_struct * info) { int retval; if (!suser()) return -EPERM; if (info->count > 1) return -EBUSY; shutdown(info); cli(); autoconfig(info); sti(); retval = startup(info); if (retval) return retval; return 0; } /* * rs_break() --- routine which turns the break handling on or off * adapted from 2.1.124 */ static void rs_break(struct async_struct * info, int break_state) { unsigned long flags; if (!info->port) return; save_flags(flags);cli(); if (break_state == -1) serial_out(info, UART_LCR, serial_inp(info, UART_LCR) | UART_LCR_SBC); else serial_out(info, UART_LCR, serial_inp(info, UART_LCR) & ~UART_LCR_SBC); restore_flags(flags); } /* * This routine sends a break character out the serial port. */ static void send_break( struct async_struct * info, int duration) { if (!info->port) return; current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + duration; cli(); serial_out(info, UART_LCR, serial_inp(info, UART_LCR) | UART_LCR_SBC); schedule(); serial_out(info, UART_LCR, serial_inp(info, UART_LCR) & ~UART_LCR_SBC); sti(); } #ifndef CONFIG_COLDFIRE /* * This routine returns a bitfield of "wild interrupts". Basically, * any unclaimed interrupts which is flapping around. */ static int check_wild_interrupts(int doprint) { int i, mask; int wild_interrupts = 0; int irq_lines; unsigned long timeout; unsigned long flags; /* Turn on interrupts (they may be off) */ save_flags(flags); sti(); irq_lines = grab_all_interrupts(0); /* * Delay for 0.1 seconds -- we use a busy loop since this may * occur during the bootup sequence */ timeout = jiffies+HZ/10; while (timeout >= jiffies) ; rs_triggered = 0; /* Reset after letting things settle */ timeout = jiffies+HZ/10; while (timeout >= jiffies) ; for (i = 0, mask = 1; i < 16; i++, mask <<= 1) { if ((rs_triggered & (1 << i)) && (irq_lines & (1 << i))) { wild_interrupts |= mask; if (doprint) printk("Wild interrupt? (IRQ %d)\n", i); } } free_all_interrupts(irq_lines); restore_flags(flags); return wild_interrupts; } static int get_multiport_struct(struct async_struct * info, struct serial_multiport_struct *retinfo) { struct serial_multiport_struct ret; struct rs_multiport_struct *multi; multi = &rs_multiport[IRQMASK(info->irq)]; ret.port_monitor = multi->port_monitor; ret.port1 = multi->port1; ret.mask1 = multi->mask1; ret.match1 = multi->match1; ret.port2 = multi->port2; ret.mask2 = multi->mask2; ret.match2 = multi->match2; ret.port3 = multi->port3; ret.mask3 = multi->mask3; ret.match3 = multi->match3; ret.port4 = multi->port4; ret.mask4 = multi->mask4; ret.match4 = multi->match4; ret.irq = info->irq; memcpy_tofs(retinfo,&ret,sizeof(*retinfo)); return 0; } static int set_multiport_struct(struct async_struct * info, struct serial_multiport_struct *in_multi) { struct serial_multiport_struct new_multi; struct rs_multiport_struct *multi; int was_multi, now_multi; int retval; void (*handler)(int, void *, struct pt_regs *); if (!suser()) return -EPERM; if (!in_multi) return -EFAULT; memcpy_fromfs(&new_multi, in_multi, sizeof(struct serial_multiport_struct)); if (new_multi.irq != info->irq || info->irq == 0 || !IRQ_ports[IRQMASK(info->irq)]) return -EINVAL; multi = &rs_multiport[IRQMASK(info->irq)]; was_multi = (multi->port1 != 0); multi->port_monitor = new_multi.port_monitor; if (multi->port1) release_region(multi->port1,1); multi->port1 = new_multi.port1; multi->mask1 = new_multi.mask1; multi->match1 = new_multi.match1; if (multi->port1) request_region(multi->port1,1,"serial(multiport1)"); if (multi->port2) release_region(multi->port2,1); multi->port2 = new_multi.port2; multi->mask2 = new_multi.mask2; multi->match2 = new_multi.match2; if (multi->port2) request_region(multi->port2,1,"serial(multiport2)"); if (multi->port3) release_region(multi->port3,1); multi->port3 = new_multi.port3; multi->mask3 = new_multi.mask3; multi->match3 = new_multi.match3; if (multi->port3) request_region(multi->port3,1,"serial(multiport3)"); if (multi->port4) release_region(multi->port4,1); multi->port4 = new_multi.port4; multi->mask4 = new_multi.mask4; multi->match4 = new_multi.match4; if (multi->port4) request_region(multi->port4,1,"serial(multiport4)"); now_multi = (multi->port1 != 0); if (IRQ_ports[IRQMASK(info->irq)]->next_port && (was_multi != now_multi)) { free_irq(info->irq, NULL); if (now_multi) handler = rs_interrupt_multi; else handler = rs_interrupt; retval = request_irq(info->irq, handler, IRQ_T(info), "serial", NULL); if (retval) { printk("Couldn't reallocate serial interrupt " "driver!!\n"); } } return 0; } #endif /* CONFIG_COLDFIRE */ static int rs_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int error; struct async_struct * info = (struct async_struct *)tty->driver_data; int retval; struct async_icount cprev, cnow; /* kernel counter temps */ struct serial_icounter_struct *p_cuser; /* user space */ if (serial_paranoia_check(info, tty->device, "rs_ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGWILD) && (cmd != TIOCSERSWILD) && (cmd != TIOCSERGSTRUCT) && (cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TIOCSBRK: /* Turn break on, unconditionally */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); rs_break(info,-1); return 0; case TIOCCBRK: /* Turn break off, unconditionally */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); rs_break(info,0); return 0; case TCSBRK: /* SVID version: non-zero arg --> no break */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); if (!arg) send_break(info, HZ/4); /* 1/4 second */ return 0; case TCSBRKP: /* support for POSIX tcsendbreak() */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); send_break(info, arg ? arg*(HZ/10) : HZ/4); return 0; case TIOCGSOFTCAR: error = verify_area(VERIFY_WRITE, (void *) arg,sizeof(long)); if (error) return error; put_fs_long(C_CLOCAL(tty) ? 1 : 0, (unsigned long *) arg); return 0; case TIOCSSOFTCAR: error = verify_area(VERIFY_READ, (void *) arg,sizeof(long)); if (error) return error; arg = get_fs_long((unsigned long *) arg); tty->termios->c_cflag = ((tty->termios->c_cflag & ~CLOCAL) | (arg ? CLOCAL : 0)); return 0; case TIOCMGET: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned int)); if (error) return error; return get_modem_info(info, (unsigned int *) arg); case TIOCMBIS: case TIOCMBIC: case TIOCMSET: return set_modem_info(info, cmd, (unsigned int *) arg); case TIOCGSERIAL: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct serial_struct)); if (error) return error; return get_serial_info(info, (struct serial_struct *) arg); case TIOCSSERIAL: error = verify_area(VERIFY_READ, (void *) arg, sizeof(struct serial_struct)); if (error) return error; return set_serial_info(info, (struct serial_struct *) arg); case TIOCSERCONFIG: return do_autoconfig(info); #ifndef CONFIG_COLDFIRE case TIOCSERGWILD: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(int)); if (error) return error; put_fs_long(rs_wild_int_mask, (unsigned long *) arg); return 0; #endif /* CONFIG_COLDFIRE */ case TIOCSERGETLSR: /* Get line status register */ error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned int)); if (error) return error; else return get_lsr_info(info, (unsigned int *) arg); #ifndef CONFIG_COLDFIRE case TIOCSERSWILD: if (!suser()) return -EPERM; error = verify_area(VERIFY_READ, (void *) arg,sizeof(long)); if (error) return error; rs_wild_int_mask = get_fs_long((unsigned long *) arg); if (rs_wild_int_mask < 0) rs_wild_int_mask = check_wild_interrupts(0); #endif /* CONFIG_COLDFIRE */ return 0; case TIOCSERGSTRUCT: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct async_struct)); if (error) return error; memcpy_tofs((struct async_struct *) arg, info, sizeof(struct async_struct)); return 0; #ifndef CONFIG_COLDFIRE case TIOCSERGETMULTI: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct serial_multiport_struct)); if (error) return error; return get_multiport_struct(info, (struct serial_multiport_struct *) arg); case TIOCSERSETMULTI: error = verify_area(VERIFY_READ, (void *) arg, sizeof(struct serial_multiport_struct)); if (error) return error; return set_multiport_struct(info, (struct serial_multiport_struct *) arg); #endif /* CONFIG_COLDFIRE */ /* * Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change * - mask passed in arg for lines of interest * (use |'ed TIOCM_RNG/DSR/CD/CTS for masking) * Caller should use TIOCGICOUNT to see which one it was */ case TIOCMIWAIT: cli(); cprev = info->icount; /* note the counters on entry */ sti(); while (1) { interruptible_sleep_on(&info->delta_msr_wait); /* see if a signal did it */ if (current->signal & ~current->blocked) return -ERESTARTSYS; cli(); cnow = info->icount; /* atomic copy */ sti(); if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) return -EIO; /* no change => error */ if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) || ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) { return 0; } cprev = cnow; } /* NOTREACHED */ /* * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) * Return: write counters to the user passed counter struct * NB: both 1->0 and 0->1 transitions are counted except for * RI where only 0->1 is counted. */ case TIOCGICOUNT: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct serial_icounter_struct)); if (error) return error; cli(); cnow = info->icount; sti(); p_cuser = (struct serial_icounter_struct *) arg; put_user(cnow.cts, &p_cuser->cts); put_user(cnow.dsr, &p_cuser->dsr); put_user(cnow.rng, &p_cuser->rng); put_user(cnow.dcd, &p_cuser->dcd); return 0; default: return -ENOIOCTLCMD; } return 0; } static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios) { struct async_struct *info = (struct async_struct *)tty->driver_data; if ( (tty->termios->c_cflag == old_termios->c_cflag) && ( RELEVANT_IFLAG(tty->termios->c_iflag) == RELEVANT_IFLAG(old_termios->c_iflag))) return; change_speed(info); if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) { tty->hw_stopped = 0; rs_start(tty); } #if 0 /* * No need to wake up processes in open wait, since they * sample the CLOCAL flag once, and don't recheck it. * XXX It's not clear whether the current behavior is correct * or not. Hence, this may change..... */ if (!(old_termios->c_cflag & CLOCAL) && (tty->termios->c_cflag & CLOCAL)) wake_up_interruptible(&info->open_wait); #endif } /* * ------------------------------------------------------------ * rs_close() * * This routine is called when the serial port gets closed. First, we * wait for the last remaining data to be sent. Then, we unlink its * async structure from the interrupt chain if necessary, and we free * that IRQ if nothing is left in the chain. * ------------------------------------------------------------ */ static void rs_close(struct tty_struct *tty, struct file * filp) { struct async_struct * info = (struct async_struct *)tty->driver_data; unsigned long flags; unsigned long timeout; if (!info || serial_paranoia_check(info, tty->device, "rs_close")) return; save_flags(flags); cli(); if (tty_hung_up_p(filp)) { DBG_CNT("before DEC-hung"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("rs_close ttys%d, count = %d\n", info->line, info->count); #endif if ((tty->count == 1) && (info->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. Info->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("rs_close: bad serial port count; tty->count is 1, " "info->count is %d\n", info->count); info->count = 1; } if (--info->count < 0) { printk("rs_close: bad serial port count for ttys%d: %d\n", info->line, info->count); info->count = 0; } if (info->count) { DBG_CNT("before DEC-2"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } info->flags |= ASYNC_CLOSING; /* * Save the termios structure, since this port may have * separate termios for callout and dialin. */ if (info->flags & ASYNC_NORMAL_ACTIVE) info->normal_termios = *tty->termios; if (info->flags & ASYNC_CALLOUT_ACTIVE) info->callout_termios = *tty->termios; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (info->closing_wait != ASYNC_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receive line status interrupts, and tell the * interrupt driver to stop checking the data ready bit in the * line status register. */ info->IER &= ~UART_IER_RLSI; info->read_status_mask &= ~UART_LSR_DR; if (info->flags & ASYNC_INITIALIZED) { serial_out(info, UART_IER, info->IER); /* * Before we drop DTR, make sure the UART transmitter * has completely drained; this is especially * important if there is a transmit FIFO! */ timeout = jiffies+HZ; while (!(serial_inp(info, UART_LSR) & UART_LSR_TEMT)) { current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + info->timeout; schedule(); if (jiffies > timeout) break; } } shutdown(info); if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (info->blocked_open) { if (info->close_delay) { current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + info->close_delay; schedule(); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE| ASYNC_CLOSING); wake_up_interruptible(&info->close_wait); MOD_DEC_USE_COUNT; restore_flags(flags); } /* * rs_hangup() --- called by tty_hangup() when a hangup is signaled. */ void rs_hangup(struct tty_struct *tty) { struct async_struct * info = (struct async_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_hangup")) return; rs_flush_buffer(tty); shutdown(info); info->event = 0; info->count = 0; info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE); info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * rs_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, struct async_struct *info) { struct wait_queue wait = { current, NULL }; int retval; int do_clocal = 0; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (tty_hung_up_p(filp) || (info->flags & ASYNC_CLOSING)) { if (info->flags & ASYNC_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) return -EAGAIN; else return -ERESTARTSYS; #else return -EAGAIN; #endif } /* * If this is a callout device, then just make sure the normal * device isn't being used. */ if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) { if (info->flags & ASYNC_NORMAL_ACTIVE) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_SESSION_LOCKOUT) && (info->session != current->session)) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_PGRP_LOCKOUT) && (info->pgrp != current->pgrp)) return -EBUSY; info->flags |= ASYNC_CALLOUT_ACTIVE; return 0; } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { if (info->flags & ASYNC_CALLOUT_ACTIVE) return -EBUSY; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } if (info->flags & ASYNC_CALLOUT_ACTIVE) { if (info->normal_termios.c_cflag & CLOCAL) do_clocal = 1; } else { if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; } /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, info->count is dropped by one, so that * rs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttys%d, count = %d\n", info->line, info->count); #endif cli(); if (!tty_hung_up_p(filp)) info->count--; sti(); info->blocked_open++; while (1) { cli(); if (!(info->flags & ASYNC_CALLOUT_ACTIVE)) serial_out(info, UART_MCR, serial_inp(info, UART_MCR) | (UART_MCR_DTR | UART_MCR_RTS)); sti(); current->state = TASK_INTERRUPTIBLE; if (tty_hung_up_p(filp) || !(info->flags & ASYNC_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } if (!(info->flags & ASYNC_CALLOUT_ACTIVE) && !(info->flags & ASYNC_CLOSING) && (do_clocal || (serial_in(info, UART_MSR) & UART_MSR_DCD))) break; if (current->signal & ~current->blocked) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttys%d, count = %d\n", info->line, info->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (!tty_hung_up_p(filp)) info->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttys%d, count = %d\n", info->line, info->count); #endif if (retval) return retval; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its async structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ int rs_open(struct tty_struct *tty, struct file * filp) { struct async_struct *info; int retval, line; unsigned long page; line = MINOR(tty->device) - tty->driver.minor_start; if ((line < 0) || (line >= NR_PORTS)) return -ENODEV; info = rs_table + line; if (serial_paranoia_check(info, tty->device, "rs_open")) return -ENODEV; #ifdef SERIAL_DEBUG_OPEN printk("rs_open %s%d, count = %d\n", tty->driver.name, info->line, info->count); #endif info->count++; tty->driver_data = info; info->tty = tty; if (!tmp_buf) { page = get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; if (tmp_buf) free_page(page); else tmp_buf = (unsigned char *) page; } /* * Start up serial port */ retval = startup(info); if (retval) return retval; MOD_INC_USE_COUNT; retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("rs_open returning after block_til_ready with %d\n", retval); #endif return retval; } if ((info->count == 1) && (info->flags & ASYNC_SPLIT_TERMIOS)) { if (tty->driver.subtype == SERIAL_TYPE_NORMAL) *tty->termios = info->normal_termios; else *tty->termios = info->callout_termios; change_speed(info); } info->session = current->session; info->pgrp = current->pgrp; #ifdef SERIAL_DEBUG_OPEN printk("rs_open ttys%d successful...", info->line); #endif return 0; } /* * --------------------------------------------------------------------- * rs_init() and friends * * rs_init() is called at boot-time to initialize the serial driver. * --------------------------------------------------------------------- */ /* * This routine prints out the appropriate serial driver version * number, and identifies which options were configured into this * driver. */ static void show_serial_version(void) { printk(KERN_INFO "%s version %s with", serial_name, serial_version); #ifdef CONFIG_SERIAL_PCI printk(" PCI"); #define SERIAL_OPT #endif #ifdef CONFIG_HUB6 printk(" HUB-6"); #define SERIAL_OPT #endif #ifdef SERIAL_OPT printk(" enabled\n"); #else printk(" no serial options enabled\n"); #endif #undef SERIAL_OPT } #ifndef CONFIG_COLDFIRE /* * This routine is called by do_auto_irq(); it attempts to determine * which interrupt a serial port is configured to use. It is not * fool-proof, but it works a large part of the time. */ static int get_auto_irq(struct async_struct *info) { unsigned char save_MCR, save_IER, save_ICP=0; unsigned int ICP=0, port = info->port; unsigned long timeout; /* * Enable interrupts and see who answers */ rs_irq_triggered = 0; cli(); save_IER = serial_inp(info, UART_IER); save_MCR = serial_inp(info, UART_MCR); if (info->flags & ASYNC_FOURPORT) { serial_outp(info, UART_MCR, UART_MCR_DTR | UART_MCR_RTS); serial_outp(info, UART_IER, 0x0f); /* enable all intrs */ ICP = (port & 0xFE0) | 0x01F; save_ICP = inb_p(ICP); outb_p(0x80, ICP); (void) inb_p(ICP); } else { serial_outp(info, UART_MCR, UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2); serial_outp(info, UART_IER, 0x0f); /* enable all intrs */ } sti(); /* * Next, clear the interrupt registers. */ (void)serial_inp(info, UART_LSR); (void)serial_inp(info, UART_RX); (void)serial_inp(info, UART_IIR); (void)serial_inp(info, UART_MSR); timeout = jiffies+2*HZ/100; while (timeout >= jiffies) { if (rs_irq_triggered) break; } /* * Now check to see if we got any business, and clean up. */ cli(); serial_outp(info, UART_IER, save_IER); serial_outp(info, UART_MCR, save_MCR); if (info->flags & ASYNC_FOURPORT) outb_p(save_ICP, ICP); sti(); return(rs_irq_triggered); } /* * Calls get_auto_irq() multiple times, to make sure we don't get * faked out by random interrupts */ static int do_auto_irq(struct async_struct * info) { unsigned port = info->port; int irq_lines = 0; int irq_try_1 = 0, irq_try_2 = 0; int retries; unsigned long flags; if (!port) return 0; /* Turn on interrupts (they may be off) */ save_flags(flags); sti(); irq_lines = grab_all_interrupts(rs_wild_int_mask); for (retries = 0; retries < 5; retries++) { if (!irq_try_1) irq_try_1 = get_auto_irq(info); if (!irq_try_2) irq_try_2 = get_auto_irq(info); if (irq_try_1 && irq_try_2) { if (irq_try_1 == irq_try_2) break; irq_try_1 = irq_try_2 = 0; } } restore_flags(flags); free_all_interrupts(irq_lines); return (irq_try_1 == irq_try_2) ? irq_try_1 : 0; } #endif /* CONFIG_COLDFIRE */ /* * This routine is called by rs_init() to initialize a specific serial * port. It determines what type of UART chip this serial port is * using: 8250, 16450, 16550, 16550A. The important question is * whether or not this UART is a 16550A or not, since this will * determine whether or not we can use its FIFO features or not. */ static void autoconfig(struct async_struct * info) { unsigned char status1, status2, scratch, scratch2; unsigned port = info->port; unsigned long flags; info->type = PORT_UNKNOWN; if (!port) return; save_flags(flags); cli(); /* * Do a simple existence test first; if we fail this, there's * no point trying anything else. * * 0x80 is used as a nonsense port to prevent against false * positives due to ISA bus float. The assumption is that * 0x80 is a non-existent port; which should be safe since * include/asm/io.h also makes this assumption. */ scratch = serial_inp(info, UART_IER); serial_outp(info, UART_IER, 0); #ifndef CONFIG_COLDFIRE outb(0xff, 0x080); #endif scratch2 = serial_inp(info, UART_IER); serial_outp(info, UART_IER, scratch); if (scratch2) { restore_flags(flags); return; /* We failed; there's nothing here */ } /* * Check to see if a UART is really there. Certain broken * internal modems based on the Rockwell chipset fail this * test, because they apparently don't implement the loopback * test mode. So this test is skipped on the COM 1 through * COM 4 ports. This *should* be safe, since no board * manufacturer would be stupid enough to design a board * that conflicts with COM 1-4 --- we hope! */ if (!(info->flags & ASYNC_SKIP_TEST)) { scratch = serial_inp(info, UART_MCR); serial_outp(info, UART_MCR, UART_MCR_LOOP | scratch); scratch2 = serial_inp(info, UART_MSR); serial_outp(info, UART_MCR, UART_MCR_LOOP | 0x0A); status1 = serial_inp(info, UART_MSR) & 0xF0; serial_outp(info, UART_MCR, scratch); serial_outp(info, UART_MSR, scratch2); if (status1 != 0x90) { restore_flags(flags); return; } } /* * If the AUTO_IRQ flag is set, try to do the automatic IRQ * detection. */ if (info->flags & ASYNC_AUTO_IRQ) #ifdef CONFIG_COLDFIRE printk("SERIAL: auto-irq not supported\n"); #else info->irq = do_auto_irq(info); #endif scratch2 = serial_in(info, UART_LCR); serial_outp(info, UART_LCR, scratch2 | UART_LCR_DLAB); serial_outp(info, UART_EFR, 0); /* EFR is the same as FCR */ serial_outp(info, UART_LCR, scratch2); serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO); scratch = serial_in(info, UART_IIR) >> 6; info->xmit_fifo_size = 1; switch (scratch) { case 0: info->type = PORT_16450; break; case 1: info->type = PORT_UNKNOWN; break; case 2: info->type = PORT_16550; break; case 3: serial_outp(info, UART_LCR, scratch2 | UART_LCR_DLAB); if (serial_in(info, UART_EFR) == 0) { info->type = PORT_16650; info->xmit_fifo_size = 32; } else { info->type = PORT_16550A; info->xmit_fifo_size = 16; } serial_outp(info, UART_LCR, scratch2); break; } if (info->type == PORT_16450) { scratch = serial_in(info, UART_SCR); serial_outp(info, UART_SCR, 0xa5); status1 = serial_in(info, UART_SCR); serial_outp(info, UART_SCR, 0x5a); status2 = serial_in(info, UART_SCR); serial_outp(info, UART_SCR, scratch); if ((status1 != 0xa5) || (status2 != 0x5a)) { info->type = PORT_8250; } } request_region(info->port,8,"serial(auto)"); /* * Reset the UART. */ #if defined(__alpha__) && !defined(CONFIG_PCI) /* * I wonder what DEC did to the OUT1 and OUT2 lines? * clearing them results in endless interrupts. */ serial_outp(info, UART_MCR, 0x0c); #else serial_outp(info, UART_MCR, 0x00); #endif serial_outp(info, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); (void)serial_in(info, UART_RX); restore_flags(flags); } void display_uart_type(int type) { switch (type) { case PORT_8250: printk(" is a 8250\n"); break; case PORT_16450: printk(" is a 16450\n"); break; case PORT_16550: printk(" is a 16550\n"); break; case PORT_16550A: printk(" is a 16550A\n"); break; case PORT_16650: printk(" is a 16650\n"); break; default: printk("\n"); break; } } void init_port(struct async_struct *info, int num) { info->magic = SERIAL_MAGIC; info->line = num; info->tty = 0; info->type = PORT_UNKNOWN; info->custom_divisor = 0; info->close_delay = 5*HZ/10; info->closing_wait = 30*HZ; info->x_char = 0; info->event = 0; info->count = 0; info->blocked_open = 0; info->tqueue.routine = do_softint; info->tqueue.data = info; info->tqueue_hangup.routine = do_serial_hangup; info->tqueue_hangup.data = info; info->callout_termios =callout_driver.init_termios; info->normal_termios = serial_driver.init_termios; info->open_wait = 0; info->close_wait = 0; info->delta_msr_wait = 0; info->icount.cts = info->icount.dsr = info->icount.rng = info->icount.dcd = 0; info->next_port = 0; info->prev_port = 0; #ifdef CONFIG_COLDFIRE { int retval; #if defined(CONFIG_NETtel) mcf_autovector(info->irq); #endif retval = request_irq(info->irq, rs_interrupt, IRQ_T(info), "serial", NULL); if (retval) printk("SERIAL: failed to register interrup %d\n", info->irq); } #else /* SIMON */ /* if (info->irq == 2) info->irq = 9; */ #endif if (info->type == PORT_UNKNOWN) { if (!(info->flags & ASYNC_BOOT_AUTOCONF)) return; autoconfig(info); if (info->type == PORT_UNKNOWN) return; } printk(KERN_INFO "ttyS%02d%s%s at 0x%04x (irq = %d)", info->line, (info->flags & ASYNC_FOURPORT) ? " FourPort" : "", (info->flags & ASYNC_PCI) ? " PCI" : "", info->port, info->irq); display_uart_type(info->type); } int register_serial(struct serial_struct *req); void unregister_serial(int line); static struct symbol_table serial_syms = { #include <linux/symtab_begin.h> X(register_serial), X(unregister_serial), #include <linux/symtab_end.h> }; #ifdef CONFIG_SERIAL_PCI /* * Query PCI space for known serial boards * If found, add them to the PCI device space in rs_table[] * * Accept a maximum of eight boards * */ static void probe_serial_pci(void) { u16 vendor, device; static int pci_index = 0; unsigned char pci_bus, pci_device_fn; struct async_struct *pci_boards = &rs_table[PCI_PORT_START]; unsigned int port_num = 0; unsigned int card_num = 0; u32 device_ioaddr; u8 device_irq; enum pci_spc pci_space = pci_space_0; unsigned int pci_space_offset = 0; #ifdef SERIAL_DEBUG_PCI printk(KERN_DEBUG "Entered probe_serial_pci()\n"); #endif if (! pcibios_present()) { #ifdef SERIAL_DEBUG_PCI printk(KERN_DEBUG "Leaving probe_serial_pci() (no pcibios)\n"); #endif return; } /* * Start scanning the PCI bus for serial controllers ... * */ for (;pci_index < 0xff; pci_index++) { int i = 0; if (pcibios_find_class(PCI_CLASS_COMMUNICATION_SERIAL << 8, pci_index, &pci_bus, &pci_device_fn) != PCIBIOS_SUCCESSFUL) break; /* for (; pci_index ... */ pcibios_read_config_word(pci_bus, pci_device_fn, PCI_VENDOR_ID, &vendor); pcibios_read_config_word(pci_bus, pci_device_fn, PCI_DEVICE_ID, &device); for (i = 0; pci_serial_tbl[i].board_name; i++) { if (vendor == pci_serial_tbl[i].vendor_id && device == pci_serial_tbl[i].device_id) break; /* for(i=0... */ } if (pci_serial_tbl[i].board_name == 0) { #ifdef SERIAL_DEBUG_PCI printk(KERN_DEBUG "Found Board (%x/%x) (not one of us)\n", vendor, device); #endif continue; /* Found a serial communication controller but not one we know */ } /* * At this point we found a serial board which we know */ if(card_num >= PCI_NR_BOARDS) { printk(KERN_ERR "Already %d boards configured, skipping\n", PCI_NR_BOARDS); continue; /* for (;pci_index < 0xff */ } pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_INTERRUPT_LINE, &device_irq); pcibios_read_config_dword(pci_bus, pci_device_fn, PCI_BASE_ADDRESS_1, &device_ioaddr); #ifdef SERIAL_DEBUG_PCI printk(KERN_DEBUG "Device %s at #%x found\n", pci_serial_tbl[i].board_name, device_ioaddr); #endif if (check_region(device_ioaddr, pci_serial_tbl[i].io_size)) { printk(KERN_ERR "Could not reserve %d bytes of I/O Space at %x\n", pci_serial_tbl[i].io_size, device_ioaddr); continue; /* for (;pci_index < 0xff */ } /* * Every PCI device brings 128 bytes (at least) of IO-Space with it * reserve a region for it. It is not exactly necessary as PCI will * ensure that no other device will be mapped onto this space (LOL) * but we do it nevertheless so it will show up nicely on * /proc/ioports -- hps */ if((device_ioaddr & 1) == 0) { #ifdef SERIAL_DEBUG_PCI device_ioaddr &= ~0x7f; printk(KERN_DEBUG "%s has its config registers memory-mapped at #%x (ignoring)\n", pci_serial_tbl[i].board_name, device_ioaddr); #endif continue; /* for (;pci_index < 0xff */ } device_ioaddr &= ~0x7f; /* Mask out the flag bits * from this register. At least on the PLX9050 * they're always 0 but this is here nevertheless * for sanity's sake */ request_region(device_ioaddr, pci_serial_tbl[i].io_size, "serial (PCI Controller)"); pci_rs_chips[card_num].start = device_ioaddr; pci_rs_chips[card_num].type = &pci_serial_tbl[i]; /* * Every PCI device can bring up to four PCI memory or IO spaces (at * least according to the documentation I have. So we will now check * with our config whether this device has one of these spaces and we * should configure UARTs inside -- hps */ for(; pci_space <= pci_space_3; pci_space <<= 1, pci_space_offset+= 4) { u32 uart_chip_base; u32 uart_chip_count; if((pci_serial_tbl[i].pci_space & pci_space) == 0) continue; /* for(;pci_space... */ pcibios_read_config_dword(pci_bus, pci_device_fn, PCI_BASE_ADDRESS_2+pci_space_offset, &uart_chip_base); if((uart_chip_base & 1) == 0) { #ifdef SERIAL_DEBUG_PCI chip_base &= ~0x0f; printk(KERN_DEBUG "%s has a memory-mapped IO Chip at #%x (ignoring)\n", pci_serial_tbl[i].board_name, chip_base); #endif continue; /* for(;pci_space... */ } uart_chip_base &= ~0x0f; /* * uart_chip_base now points to the IO-Space. * * Alvin Sim <alvin@alloycp.com.au> told me the following thing: * * UARTS can be "setserial"d by kernel 2.0.35, but ports needed to be * manually specified. 4 ports start at 0x6100, in increments of 8 * addresses. * * so there is at least one board out there which can do more than one * UART in a single PCI config space. My trustworthy SPCom 200 PCI has * just one UART in one config space. So I added a check for more than * one chip in a config space -- hps * */ for(uart_chip_count=0;uart_chip_count < pci_serial_tbl[i].dev_per_space; uart_chip_count++) { #ifdef SERIAL_DEBUG_PCI printk(KERN_DEBUG "%s has an IO Chip at #%x\n", pci_serial_tbl[i].board_name, uart_chip_base); #endif if(port_num >= PCI_NR_PORTS) { printk(KERN_ERR "Already %d ports configured, skipping\n", PCI_NR_PORTS); break; /* for(;uart_chip_count... */ } if (check_region(uart_chip_base, 8)) { printk(KERN_ERR "Could not reserve %d bytes of I/O Space at %x\n", 8, uart_chip_base); break; /* for(;uart_chip_count... */ } request_region(uart_chip_base, 8, "serial (PCI)"); pci_boards[port_num].port = uart_chip_base; pci_boards[port_num].irq = device_irq; pci_boards[port_num].flags = PCI_FLAGS; pci_boards[port_num].baud_base = pci_serial_tbl[i].baud_base; port_num++; uart_chip_base += pci_serial_tbl[i].dev_spacing; } /* for(uart_chip_count... */ } /* for(pci_space ... */ card_num++; } /* for */ #ifdef SERIAL_DEBUG_PCI printk(KERN_DEBUG "Leaving probe_serial_pci() (probe finished)\n"); #endif return; } #endif /* CONFIG_SERIAL_PCI */ /* * The serial driver boot-time initialization code! */ int rs_init(void) { int i; struct async_struct * info; init_bh(SERIAL_BH, do_serial_bh); timer_table[RS_TIMER].fn = rs_timer; timer_table[RS_TIMER].expires = 0; #ifdef CONFIG_AUTO_IRQ rs_wild_int_mask = check_wild_interrupts(1); #endif for (i = 0; i < 16; i++) { IRQ_ports[IRQMASK(i)] = 0; IRQ_timeout[IRQMASK(i)] = 0; memset(&rs_multiport[IRQMASK(i)], 0, sizeof(struct rs_multiport_struct)); } show_serial_version(); #ifdef CONFIG_SERIAL_PCI probe_serial_pci(); #endif /* Initialize the tty_driver structure */ memset(&serial_driver, 0, sizeof(struct tty_driver)); serial_driver.magic = TTY_DRIVER_MAGIC; serial_driver.name = "ttyS"; serial_driver.major = TTY_MAJOR; serial_driver.minor_start = 64; serial_driver.num = NR_PORTS; serial_driver.type = TTY_DRIVER_TYPE_SERIAL; serial_driver.subtype = SERIAL_TYPE_NORMAL; serial_driver.init_termios = tty_std_termios; serial_driver.init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver.flags = TTY_DRIVER_REAL_RAW; serial_driver.refcount = &serial_refcount; serial_driver.table = serial_table; serial_driver.termios = serial_termios; serial_driver.termios_locked = serial_termios_locked; serial_driver.open = rs_open; serial_driver.close = rs_close; serial_driver.write = rs_write; serial_driver.put_char = rs_put_char; serial_driver.flush_chars = rs_flush_chars; serial_driver.write_room = rs_write_room; serial_driver.chars_in_buffer = rs_chars_in_buffer; serial_driver.flush_buffer = rs_flush_buffer; serial_driver.ioctl = rs_ioctl; serial_driver.throttle = rs_throttle; serial_driver.unthrottle = rs_unthrottle; serial_driver.set_termios = rs_set_termios; serial_driver.stop = rs_stop; serial_driver.start = rs_start; serial_driver.hangup = rs_hangup; /* * The callout device is just like normal device except for * major number and the subtype code. */ callout_driver = serial_driver; callout_driver.name = "cua"; callout_driver.major = TTYAUX_MAJOR; callout_driver.subtype = SERIAL_TYPE_CALLOUT; if (tty_register_driver(&serial_driver)) panic("Couldn't register serial driver\n"); if (tty_register_driver(&callout_driver)) panic("Couldn't register callout driver\n"); for (i = 0, info = rs_table; i < NR_PORTS; i++,info++) { init_port(info, i); }; register_symtab(&serial_syms); return 0; } /* * register_serial and unregister_serial allows for serial ports to be * configured at run-time, to support PCMCIA modems. */ int register_serial(struct serial_struct *req) { int i; unsigned long flags; struct async_struct *info; save_flags(flags); cli(); for (i = 0; i < NR_PORTS; i++) { if (rs_table[i].port == req->port) break; } if (i == NR_PORTS) { for (i = 0; i < NR_PORTS; i++) if ((rs_table[i].type == PORT_UNKNOWN) && (rs_table[i].count == 0)) break; } if (i == NR_PORTS) { restore_flags(flags); return -1; } info = &rs_table[i]; if (rs_table[i].count) { restore_flags(flags); printk("Couldn't configure serial #%d (port=%d,irq=%d): " "device already open\n", i, req->port, req->irq); return -1; } info->irq = req->irq; info->port = req->port; info->flags = req->flags; autoconfig(info); if (info->type == PORT_UNKNOWN) { restore_flags(flags); printk("register_serial(): autoconfig failed\n"); return -1; } printk(KERN_INFO "ttyS%02d at 0x%04x (irq = %d)", info->line, info->port, info->irq); display_uart_type(info->type); restore_flags(flags); return info->line; } void unregister_serial(int line) { unsigned long flags; struct async_struct *info = &rs_table[line]; save_flags(flags); cli(); if (info->tty) tty_hangup(info->tty); info->type = PORT_UNKNOWN; printk(KERN_INFO "ttyS%02d unloaded\n", info->line); restore_flags(flags); } #ifdef MODULE int init_module(void) { return rs_init(); } void cleanup_module(void) { unsigned long flags; int e1, e2; int i; /* printk("Unloading %s: version %s\n", serial_name, serial_version); */ save_flags(flags); cli(); timer_active &= ~(1 << RS_TIMER); timer_table[RS_TIMER].fn = NULL; timer_table[RS_TIMER].expires = 0; if ((e1 = tty_unregister_driver(&serial_driver))) printk("SERIAL: failed to unregister serial driver (%d)\n", e1); if ((e2 = tty_unregister_driver(&callout_driver))) printk("SERIAL: failed to unregister callout driver (%d)\n", e2); restore_flags(flags); for (i = 0; i < NR_PORTS; i++) { if (rs_table[i].type != PORT_UNKNOWN) release_region(rs_table[i].port, 8); } #ifdef CONFIG_SERIAL_PCI for (i = 0; i < PCI_NR_BOARDS; i++) { if (pci_rs_chips[i].start != 0x0) { #ifdef SERIAL_DEBUG_PCI printk(KERN_DEBUG "Releasing %d Bytes at #%x\n", pci_rs_chips[i].type->io_size, pci_rs_chips[i].start); #endif release_region(pci_rs_chips[i].start, pci_rs_chips[i].type->io_size); } } #endif if (tmp_buf) { free_page((unsigned long) tmp_buf); tmp_buf = NULL; } } #endif /* MODULE */
Go to most recent revision | Compare with Previous | Blame | View Log