URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [drivers/] [net/] [ewrk3.c] - Rev 1765
Compare with Previous | Blame | View Log
/* ewrk3.c: A DIGITAL EtherWORKS 3 ethernet driver for Linux. Written 1994 by David C. Davies. Copyright 1994 Digital Equipment Corporation. This software may be used and distributed according to the terms of the GNU Public License, incorporated herein by reference. This driver is written for the Digital Equipment Corporation series of EtherWORKS ethernet cards: DE203 Turbo (BNC) DE204 Turbo (TP) DE205 Turbo (TP BNC) The driver has been tested on a relatively busy network using the DE205 card and benchmarked with 'ttcp': it transferred 16M of data at 975kB/s (7.8Mb/s) to a DECstation 5000/200. The author may be reached at davies@maniac.ultranet.com. ========================================================================= This driver has been written substantially from scratch, although its inheritance of style and stack interface from 'depca.c' and in turn from Donald Becker's 'lance.c' should be obvious. The DE203/4/5 boards all use a new proprietary chip in place of the LANCE chip used in prior cards (DEPCA, DE100, DE200/1/2, DE210, DE422). Use the depca.c driver in the standard distribution for the LANCE based cards from DIGITAL; this driver will not work with them. The DE203/4/5 cards have 2 main modes: shared memory and I/O only. I/O only makes all the card accesses through I/O transactions and no high (shared) memory is used. This mode provides a >48% performance penalty and is deprecated in this driver, although allowed to provide initial setup when hardstrapped. The shared memory mode comes in 3 flavours: 2kB, 32kB and 64kB. There is no point in using any mode other than the 2kB mode - their performances are virtually identical, although the driver has been tested in the 2kB and 32kB modes. I would suggest you uncomment the line: FORCE_2K_MODE; to allow the driver to configure the card as a 2kB card at your current base address, thus leaving more room to clutter your system box with other memory hungry boards. As many ISA and EISA cards can be supported under this driver as you wish, limited primarily by the available IRQ lines, rather than by the available I/O addresses (24 ISA, 16 EISA). I have checked different configurations of multiple depca cards and ewrk3 cards and have not found a problem yet (provided you have at least depca.c v0.38) ... The board IRQ setting must be at an unused IRQ which is auto-probed using Donald Becker's autoprobe routines. All these cards are at {5,10,11,15}. No 16MB memory limitation should exist with this driver as DMA is not used and the common memory area is in low memory on the network card (my current system has 20MB and I've not had problems yet). The ability to load this driver as a loadable module has been included and used extensively during the driver development (to save those long reboot sequences). To utilise this ability, you have to do 8 things: 0) have a copy of the loadable modules code installed on your system. 1) copy ewrk3.c from the /linux/drivers/net directory to your favourite temporary directory. 2) edit the source code near line 1898 to reflect the I/O address and IRQ you're using. 3) compile ewrk3.c, but include -DMODULE in the command line to ensure that the correct bits are compiled (see end of source code). 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a kernel with the ewrk3 configuration turned off and reboot. 5) insmod ewrk3.o [Alan Cox: Changed this so you can insmod ewrk3.o irq=x io=y] 6) run the net startup bits for your new eth?? interface manually (usually /etc/rc.inet[12] at boot time). 7) enjoy! Note that autoprobing is not allowed in loadable modules - the system is already up and running and you're messing with interrupts. To unload a module, turn off the associated interface 'ifconfig eth?? down' then 'rmmod ewrk3'. Promiscuous mode has been turned off in this driver, but all the multicast address bits have been turned on. This improved the send performance on a busy network by about 13%. Ioctl's have now been provided (primarily because I wanted to grab some packet size statistics). They are patterned after 'plipconfig.c' from a suggestion by Alan Cox. Using these ioctls, you can enable promiscuous mode, add/delete multicast addresses, change the hardware address, get packet size distribution statistics and muck around with the control and status register. I'll add others if and when the need arises. TO DO: ------ Revision History ---------------- Version Date Description 0.1 26-aug-94 Initial writing. ALPHA code release. 0.11 31-aug-94 Fixed: 2k mode memory base calc., LeMAC version calc., IRQ vector assignments during autoprobe. 0.12 31-aug-94 Tested working on LeMAC2 (DE20[345]-AC) card. Fixed up MCA hash table algorithm. 0.20 4-sep-94 Added IOCTL functionality. 0.21 14-sep-94 Added I/O mode. 0.21axp 15-sep-94 Special version for ALPHA AXP Linux V1.0. 0.22 16-sep-94 Added more IOCTLs & tidied up. 0.23 21-sep-94 Added transmit cut through. 0.24 31-oct-94 Added uid checks in some ioctls. 0.30 1-nov-94 BETA code release. 0.31 5-dec-94 Added check/allocate region code. 0.32 16-jan-95 Broadcast packet fix. 0.33 10-Feb-95 Fix recognition bug reported by <bkm@star.rl.ac.uk>. 0.40 27-Dec-95 Rationalise MODULE and autoprobe code. Rewrite for portability & updated. ALPHA support from <jestabro@amt.tay1.dec.com> Added verify_area() calls in ewrk3_ioctl() from suggestion by <heiko@colossus.escape.de>. Add new multicasting code. 0.41 20-Jan-96 Fix IRQ set up problem reported by <kenneth@bbs.sas.ntu.ac.sg>. 0.42 22-Apr-96 Fix alloc_device() bug <jari@markkus2.fimr.fi> 0.43 16-Aug-96 Update alloc_device() to conform to de4x5.c ========================================================================= */ static const char *version = "ewrk3.c:v0.43 96/8/16 davies@maniac.ultranet.com\n"; #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/malloc.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <asm/bitops.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/segment.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/time.h> #include <linux/types.h> #include <linux/unistd.h> #include <linux/ctype.h> #include "ewrk3.h" #ifdef EWRK3_DEBUG static int ewrk3_debug = EWRK3_DEBUG; #else static int ewrk3_debug = 1; #endif #define EWRK3_NDA 0xffe0 /* No Device Address */ #define PROBE_LENGTH 32 #define ETH_PROM_SIG 0xAA5500FFUL #ifndef EWRK3_SIGNATURE #define EWRK3_SIGNATURE {"DE203","DE204","DE205",""} #define EWRK3_STRLEN 8 #endif #ifndef EWRK3_RAM_BASE_ADDRESSES #define EWRK3_RAM_BASE_ADDRESSES {0xc0000,0xd0000,0x00000} #endif /* ** Sets up the I/O area for the autoprobe. */ #define EWRK3_IO_BASE 0x100 /* Start address for probe search */ #define EWRK3_IOP_INC 0x20 /* I/O address increment */ #define EWRK3_TOTAL_SIZE 0x20 /* required I/O address length */ #ifndef MAX_NUM_EWRK3S #define MAX_NUM_EWRK3S 21 #endif #ifndef EWRK3_EISA_IO_PORTS #define EWRK3_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */ #endif #ifndef MAX_EISA_SLOTS #define MAX_EISA_SLOTS 16 #define EISA_SLOT_INC 0x1000 #endif #define CRC_POLYNOMIAL_BE 0x04c11db7UL /* Ethernet CRC, big endian */ #define CRC_POLYNOMIAL_LE 0xedb88320UL /* Ethernet CRC, little endian */ #define QUEUE_PKT_TIMEOUT (1*HZ) /* Jiffies */ /* ** EtherWORKS 3 shared memory window sizes */ #define IO_ONLY 0x00 #define SHMEM_2K 0x800 #define SHMEM_32K 0x8000 #define SHMEM_64K 0x10000 /* ** EtherWORKS 3 IRQ ENABLE/DISABLE */ #define ENABLE_IRQs { \ icr |= lp->irq_mask;\ outb(icr, EWRK3_ICR); /* Enable the IRQs */\ } #define DISABLE_IRQs { \ icr = inb(EWRK3_ICR);\ icr &= ~lp->irq_mask;\ outb(icr, EWRK3_ICR); /* Disable the IRQs */\ } /* ** EtherWORKS 3 START/STOP */ #define START_EWRK3 { \ csr = inb(EWRK3_CSR);\ csr &= ~(CSR_TXD|CSR_RXD);\ outb(csr, EWRK3_CSR); /* Enable the TX and/or RX */\ } #define STOP_EWRK3 { \ csr = (CSR_TXD|CSR_RXD);\ outb(csr, EWRK3_CSR); /* Disable the TX and/or RX */\ } /* ** The EtherWORKS 3 private structure */ #define EWRK3_PKT_STAT_SZ 16 #define EWRK3_PKT_BIN_SZ 128 /* Should be >=100 unless you increase EWRK3_PKT_STAT_SZ */ struct ewrk3_private { char adapter_name[80]; /* Name exported to /proc/ioports */ u_long shmem_base; /* Shared memory start address */ u_long shmem_length; /* Shared memory window length */ struct enet_statistics stats; /* Public stats */ struct { u32 bins[EWRK3_PKT_STAT_SZ]; /* Private stats counters */ u32 unicast; u32 multicast; u32 broadcast; u32 excessive_collisions; u32 tx_underruns; u32 excessive_underruns; } pktStats; u_char irq_mask; /* Adapter IRQ mask bits */ u_char mPage; /* Maximum 2kB Page number */ u_char lemac; /* Chip rev. level */ u_char hard_strapped; /* Don't allow a full open */ u_char lock; /* Lock the page register */ u_char txc; /* Transmit cut through */ u_char *mctbl; /* Pointer to the multicast table */ }; /* ** Force the EtherWORKS 3 card to be in 2kB MODE */ #define FORCE_2K_MODE { \ shmem_length = SHMEM_2K;\ outb(((mem_start - 0x80000) >> 11), EWRK3_MBR);\ } /* ** Public Functions */ static int ewrk3_open(struct device *dev); static int ewrk3_queue_pkt(struct sk_buff *skb, struct device *dev); static void ewrk3_interrupt(int irq, void *dev_id, struct pt_regs *regs); static int ewrk3_close(struct device *dev); static struct enet_statistics *ewrk3_get_stats(struct device *dev); static void set_multicast_list(struct device *dev); static int ewrk3_ioctl(struct device *dev, struct ifreq *rq, int cmd); /* ** Private functions */ static int ewrk3_hw_init(struct device *dev, u_long iobase); static void ewrk3_init(struct device *dev); static int ewrk3_rx(struct device *dev); static int ewrk3_tx(struct device *dev); static void EthwrkSignature(char * name, char *eeprom_image); static int DevicePresent(u_long iobase); static void SetMulticastFilter(struct device *dev); static int EISA_signature(char *name, s32 eisa_id); static int Read_EEPROM(u_long iobase, u_char eaddr); static int Write_EEPROM(short data, u_long iobase, u_char eaddr); static u_char get_hw_addr (struct device *dev, u_char *eeprom_image, char chipType); static void isa_probe(struct device *dev, u_long iobase); static void eisa_probe(struct device *dev, u_long iobase); static struct device *alloc_device(struct device *dev, u_long iobase); static int ewrk3_dev_index(char *s); static struct device *insert_device(struct device *dev, u_long iobase, int (*init)(struct device *)); #ifdef MODULE int init_module(void); void cleanup_module(void); static int autoprobed = 1, loading_module = 1; # else static u_char irq[] = {5,0,10,3,11,9,15,12}; static int autoprobed = 0, loading_module = 0; #endif /* MODULE */ static char name[EWRK3_STRLEN + 1]; static int num_ewrk3s = 0, num_eth = 0; /* ** Miscellaneous defines... */ #define INIT_EWRK3 {\ outb(EEPROM_INIT, EWRK3_IOPR);\ udelay(1000);\ } int ewrk3_probe(struct device *dev) { int tmp = num_ewrk3s, status = -ENODEV; u_long iobase = dev->base_addr; if ((iobase == 0) && loading_module){ printk("Autoprobing is not supported when loading a module based driver.\n"); status = -EIO; } else { /* First probe for the Ethernet */ /* Address PROM pattern */ isa_probe(dev, iobase); eisa_probe(dev, iobase); if ((tmp == num_ewrk3s) && (iobase != 0) && loading_module) { printk("%s: ewrk3_probe() cannot find device at 0x%04lx.\n", dev->name, iobase); } /* ** Walk the device list to check that at least one device ** initialised OK */ for (; (dev->priv == NULL) && (dev->next != NULL); dev = dev->next); if (dev->priv) status = 0; if (iobase == 0) autoprobed = 1; } return status; } static int ewrk3_hw_init(struct device *dev, u_long iobase) { struct ewrk3_private *lp; int i, status=0; u_long mem_start, shmem_length; u_char cr, cmr, icr, nicsr, lemac, hard_strapped = 0; u_char eeprom_image[EEPROM_MAX], chksum, eisa_cr = 0; /* ** Stop the EWRK3. Enable the DBR ROM. Disable interrupts and remote boot. ** This also disables the EISA_ENABLE bit in the EISA Control Register. */ if (iobase > 0x400) eisa_cr = inb(EISA_CR); INIT_EWRK3; nicsr = inb(EWRK3_CSR); icr = inb(EWRK3_ICR); icr &= 0x70; outb(icr, EWRK3_ICR); /* Disable all the IRQs */ if (nicsr == (CSR_TXD|CSR_RXD)) { /* Check that the EEPROM is alive and well and not living on Pluto... */ for (chksum=0, i=0; i<EEPROM_MAX; i+=2) { union { short val; char c[2]; } tmp; tmp.val = (short)Read_EEPROM(iobase, (i>>1)); eeprom_image[i] = tmp.c[0]; eeprom_image[i+1] = tmp.c[1]; chksum += eeprom_image[i] + eeprom_image[i+1]; } if (chksum != 0) { /* Bad EEPROM Data! */ printk("%s: Device has a bad on-board EEPROM.\n", dev->name); status = -ENXIO; } else { EthwrkSignature(name, eeprom_image); if (*name != '\0') { /* found a EWRK3 device */ dev->base_addr = iobase; if (iobase > 0x400) { outb(eisa_cr, EISA_CR); /* Rewrite the EISA CR */ } lemac = eeprom_image[EEPROM_CHIPVER]; cmr = inb(EWRK3_CMR); if (((lemac == LeMAC) && ((cmr & CMR_NO_EEPROM) != CMR_NO_EEPROM)) || ((lemac == LeMAC2) && !(cmr & CMR_HS))) { printk("%s: %s at %#4lx", dev->name, name, iobase); hard_strapped = 1; } else if ((iobase&0x0fff)==EWRK3_EISA_IO_PORTS) { /* EISA slot address */ printk("%s: %s at %#4lx (EISA slot %ld)", dev->name, name, iobase, ((iobase>>12)&0x0f)); } else { /* ISA port address */ printk("%s: %s at %#4lx", dev->name, name, iobase); } if (!status) { printk(", h/w address "); if (lemac!=LeMAC2) DevicePresent(iobase);/* need after EWRK3_INIT */ status = get_hw_addr(dev, eeprom_image, lemac); for (i = 0; i < ETH_ALEN - 1; i++) { /* get the ethernet addr. */ printk("%2.2x:", dev->dev_addr[i]); } printk("%2.2x,\n", dev->dev_addr[i]); if (status) { printk(" which has an EEPROM CRC error.\n"); status = -ENXIO; } else { if (lemac == LeMAC2) { /* Special LeMAC2 CMR things */ cmr &= ~(CMR_RA | CMR_WB | CMR_LINK | CMR_POLARITY | CMR_0WS); if (eeprom_image[EEPROM_MISC0] & READ_AHEAD) cmr |= CMR_RA; if (eeprom_image[EEPROM_MISC0] & WRITE_BEHIND) cmr |= CMR_WB; if (eeprom_image[EEPROM_NETMAN0] & NETMAN_POL) cmr |= CMR_POLARITY; if (eeprom_image[EEPROM_NETMAN0] & NETMAN_LINK) cmr |= CMR_LINK; if (eeprom_image[EEPROM_MISC0] & _0WS_ENA) cmr |= CMR_0WS; } if (eeprom_image[EEPROM_SETUP] & SETUP_DRAM) cmr |= CMR_DRAM; outb(cmr, EWRK3_CMR); cr = inb(EWRK3_CR); /* Set up the Control Register */ cr |= eeprom_image[EEPROM_SETUP] & SETUP_APD; if (cr & SETUP_APD) cr |= eeprom_image[EEPROM_SETUP] & SETUP_PS; cr |= eeprom_image[EEPROM_MISC0] & FAST_BUS; cr |= eeprom_image[EEPROM_MISC0] & ENA_16; outb(cr, EWRK3_CR); /* ** Determine the base address and window length for the EWRK3 ** RAM from the memory base register. */ mem_start = inb(EWRK3_MBR); shmem_length = 0; if (mem_start != 0) { if ((mem_start >= 0x0a) && (mem_start <= 0x0f)) { mem_start *= SHMEM_64K; shmem_length = SHMEM_64K; } else if ((mem_start >= 0x14) && (mem_start <= 0x1f)) { mem_start *= SHMEM_32K; shmem_length = SHMEM_32K; } else if ((mem_start >= 0x40) && (mem_start <= 0xff)) { mem_start = mem_start * SHMEM_2K + 0x80000; shmem_length = SHMEM_2K; } else { status = -ENXIO; } } /* ** See the top of this source code for comments about ** uncommenting this line. */ /* FORCE_2K_MODE;*/ if (!status) { if (hard_strapped) { printk(" is hard strapped.\n"); } else if (mem_start) { printk(" has a %dk RAM window", (int)(shmem_length >> 10)); printk(" at 0x%.5lx", mem_start); } else { printk(" is in I/O only mode"); } /* private area & initialise */ dev->priv = (void *) kmalloc(sizeof(struct ewrk3_private), GFP_KERNEL); if (dev->priv == NULL) { return -ENOMEM; } lp = (struct ewrk3_private *)dev->priv; memset(dev->priv, 0, sizeof(struct ewrk3_private)); lp->shmem_base = mem_start; lp->shmem_length = shmem_length; lp->lemac = lemac; lp->hard_strapped = hard_strapped; lp->mPage = 64; if (cmr & CMR_DRAM) lp->mPage <<= 1 ;/* 2 DRAMS on module */ sprintf(lp->adapter_name,"%s (%s)", name, dev->name); request_region(iobase, EWRK3_TOTAL_SIZE, lp->adapter_name); lp->irq_mask = ICR_TNEM|ICR_TXDM|ICR_RNEM|ICR_RXDM; if (!hard_strapped) { /* ** Enable EWRK3 board interrupts for autoprobing */ icr |= ICR_IE; /* Enable interrupts */ outb(icr, EWRK3_ICR); /* The DMA channel may be passed in on this parameter. */ dev->dma = 0; /* To auto-IRQ we enable the initialization-done and DMA err, interrupts. For now we will always get a DMA error. */ if (dev->irq < 2) { #ifndef MODULE u_char irqnum; autoirq_setup(0); /* ** Trigger a TNE interrupt. */ icr |=ICR_TNEM; outb(1,EWRK3_TDQ); /* Write to the TX done queue */ outb(icr, EWRK3_ICR); /* Unmask the TXD interrupt */ irqnum = irq[((icr & IRQ_SEL) >> 4)]; dev->irq = autoirq_report(1); if ((dev->irq) && (irqnum == dev->irq)) { printk(" and uses IRQ%d.\n", dev->irq); } else { if (!dev->irq) { printk(" and failed to detect IRQ line.\n"); } else if ((irqnum == 1) && (lemac == LeMAC2)) { printk(" and an illegal IRQ line detected.\n"); } else { printk(", but incorrect IRQ line detected.\n"); } status = -ENXIO; } DISABLE_IRQs; /* Mask all interrupts */ #endif /* MODULE */ } else { printk(" and requires IRQ%d.\n", dev->irq); } } if (status) release_region(iobase, EWRK3_TOTAL_SIZE); } else { status = -ENXIO; } } } } else { status = -ENXIO; } } if (!status) { if (ewrk3_debug > 1) { printk(version); } /* The EWRK3-specific entries in the device structure. */ dev->open = &ewrk3_open; dev->hard_start_xmit = &ewrk3_queue_pkt; dev->stop = &ewrk3_close; dev->get_stats = &ewrk3_get_stats; dev->set_multicast_list = &set_multicast_list; dev->do_ioctl = &ewrk3_ioctl; dev->mem_start = 0; /* Fill in the generic field of the device structure. */ ether_setup(dev); } } else { status = -ENXIO; } return status; } static int ewrk3_open(struct device *dev) { struct ewrk3_private *lp = (struct ewrk3_private *)dev->priv; u_long iobase = dev->base_addr; int i, status = 0; u_char icr, csr; /* ** Stop the TX and RX... */ STOP_EWRK3; if (!lp->hard_strapped) { irq2dev_map[dev->irq] = dev; /* For latched interrupts */ if (request_irq(dev->irq, (void *)ewrk3_interrupt, 0, "ewrk3", NULL)) { printk("ewrk3_open(): Requested IRQ%d is busy\n",dev->irq); status = -EAGAIN; } else { /* ** Re-initialize the EWRK3... */ ewrk3_init(dev); if (ewrk3_debug > 1){ printk("%s: ewrk3 open with irq %d\n",dev->name,dev->irq); printk(" physical address: "); for (i=0;i<5;i++){ printk("%2.2x:",(u_char)dev->dev_addr[i]); } printk("%2.2x\n",(u_char)dev->dev_addr[i]); if (lp->shmem_length == 0) { printk(" no shared memory, I/O only mode\n"); } else { printk(" start of shared memory: 0x%08lx\n",lp->shmem_base); printk(" window length: 0x%04lx\n",lp->shmem_length); } printk(" # of DRAMS: %d\n",((inb(EWRK3_CMR) & 0x02) ? 2 : 1)); printk(" csr: 0x%02x\n", inb(EWRK3_CSR)); printk(" cr: 0x%02x\n", inb(EWRK3_CR)); printk(" icr: 0x%02x\n", inb(EWRK3_ICR)); printk(" cmr: 0x%02x\n", inb(EWRK3_CMR)); printk(" fmqc: 0x%02x\n", inb(EWRK3_FMQC)); } dev->tbusy = 0; dev->start = 1; dev->interrupt = UNMASK_INTERRUPTS; /* ** Unmask EWRK3 board interrupts */ icr = inb(EWRK3_ICR); ENABLE_IRQs; } } else { dev->start = 0; dev->tbusy = 1; printk("%s: ewrk3 available for hard strapped set up only.\n", dev->name); printk(" Run the 'ewrk3setup' utility or remove the hard straps.\n"); } MOD_INC_USE_COUNT; return status; } /* ** Initialize the EtherWORKS 3 operating conditions */ static void ewrk3_init(struct device *dev) { struct ewrk3_private *lp = (struct ewrk3_private *)dev->priv; u_char csr, page; u_long iobase = dev->base_addr; /* ** Enable any multicasts */ set_multicast_list(dev); /* ** Clean out any remaining entries in all the queues here */ while (inb(EWRK3_TQ)); while (inb(EWRK3_TDQ)); while (inb(EWRK3_RQ)); while (inb(EWRK3_FMQ)); /* ** Write a clean free memory queue */ for (page=1;page<lp->mPage;page++) { /* Write the free page numbers */ outb(page, EWRK3_FMQ); /* to the Free Memory Queue */ } lp->lock = 0; /* Ensure there are no locks */ START_EWRK3; /* Enable the TX and/or RX */ } /* ** Writes a socket buffer to the free page queue */ static int ewrk3_queue_pkt(struct sk_buff *skb, struct device *dev) { struct ewrk3_private *lp = (struct ewrk3_private *)dev->priv; u_long iobase = dev->base_addr; int status = 0; u_char icr, csr; /* Transmitter timeout, serious problems. */ if (dev->tbusy || lp->lock) { int tickssofar = jiffies - dev->trans_start; if (tickssofar < QUEUE_PKT_TIMEOUT) { status = -1; } else if (!lp->hard_strapped) { printk("%s: transmit timed/locked out, status %04x, resetting.\n", dev->name, inb(EWRK3_CSR)); /* ** Mask all board interrupts */ DISABLE_IRQs; /* ** Stop the TX and RX... */ STOP_EWRK3; ewrk3_init(dev); /* ** Unmask EWRK3 board interrupts */ ENABLE_IRQs; dev->tbusy=0; dev->trans_start = jiffies; dev_kfree_skb(skb, FREE_WRITE); } } else if (skb == NULL) { dev_tint(dev); } else if (skb->len > 0) { /* ** Block a timer-based transmit from overlapping. This could better be ** done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */ if (set_bit(0, (void*)&dev->tbusy) != 0) printk("%s: Transmitter access conflict.\n", dev->name); DISABLE_IRQs; /* So that the page # remains correct */ /* ** Get a free page from the FMQ when resources are available */ if (inb(EWRK3_FMQC) > 0) { u_long buf = 0; u_char page; if ((page = inb(EWRK3_FMQ)) < lp->mPage) { /* ** Set up shared memory window and pointer into the window */ while (set_bit(0, (void *)&lp->lock) != 0); /* Wait for lock to free */ if (lp->shmem_length == IO_ONLY) { outb(page, EWRK3_IOPR); } else if (lp->shmem_length == SHMEM_2K) { buf = lp->shmem_base; outb(page, EWRK3_MPR); } else if (lp->shmem_length == SHMEM_32K) { buf = ((((short)page << 11) & 0x7800) + lp->shmem_base); outb((page >> 4), EWRK3_MPR); } else if (lp->shmem_length == SHMEM_64K) { buf = ((((short)page << 11) & 0xf800) + lp->shmem_base); outb((page >> 5), EWRK3_MPR); } else { status = -1; printk("%s: Oops - your private data area is hosed!\n",dev->name); } if (!status) { /* ** Set up the buffer control structures and copy the data from ** the socket buffer to the shared memory . */ if (lp->shmem_length == IO_ONLY) { int i; u_char *p = skb->data; outb((char)(TCR_QMODE | TCR_PAD | TCR_IFC), EWRK3_DATA); outb((char)(skb->len & 0xff), EWRK3_DATA); outb((char)((skb->len >> 8) & 0xff), EWRK3_DATA); outb((char)0x04, EWRK3_DATA); for (i=0; i<skb->len; i++) { outb(*p++, EWRK3_DATA); } outb(page, EWRK3_TQ); /* Start sending pkt */ } else { writeb((char)(TCR_QMODE|TCR_PAD|TCR_IFC), (char *)buf);/* ctrl byte*/ buf+=1; writeb((char)(skb->len & 0xff), (char *)buf);/* length (16 bit xfer)*/ buf+=1; if (lp->txc) { writeb((char)(((skb->len >> 8) & 0xff) | XCT), (char *)buf); buf+=1; writeb(0x04, (char *)buf); /* index byte */ buf+=1; writeb(0x00, (char *)(buf + skb->len)); /* Write the XCT flag */ memcpy_toio(buf, skb->data, PRELOAD);/* Write PRELOAD bytes*/ outb(page, EWRK3_TQ); /* Start sending pkt */ memcpy_toio(buf+PRELOAD, skb->data+PRELOAD, skb->len-PRELOAD); writeb(0xff, (char *)(buf + skb->len)); /* Write the XCT flag */ } else { writeb((char)((skb->len >> 8) & 0xff), (char *)buf); buf+=1; writeb(0x04, (char *)buf); /* index byte */ buf+=1; memcpy_toio((char *)buf, skb->data, skb->len);/* Write data bytes */ outb(page, EWRK3_TQ); /* Start sending pkt */ } } dev->trans_start = jiffies; dev_kfree_skb (skb, FREE_WRITE); } else { /* return unused page to the free memory queue */ outb(page, EWRK3_FMQ); } lp->lock = 0; /* unlock the page register */ } else { printk("ewrk3_queue_pkt(): Invalid free memory page (%d).\n", (u_char) page); } } else { printk("ewrk3_queue_pkt(): No free resources...\n"); printk("ewrk3_queue_pkt(): CSR: %02x ICR: %02x FMQC: %02x\n",inb(EWRK3_CSR),inb(EWRK3_ICR),inb(EWRK3_FMQC)); } /* Check for free resources: clear 'tbusy' if there are some */ if (inb(EWRK3_FMQC) > 0) { dev->tbusy = 0; } ENABLE_IRQs; } return status; } /* ** The EWRK3 interrupt handler. */ static void ewrk3_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct device *dev = (struct device *)(irq2dev_map[irq]); struct ewrk3_private *lp; u_long iobase; u_char icr, cr, csr; if (dev == NULL) { printk ("ewrk3_interrupt(): irq %d for unknown device.\n", irq); } else { lp = (struct ewrk3_private *)dev->priv; iobase = dev->base_addr; if (dev->interrupt) printk("%s: Re-entering the interrupt handler.\n", dev->name); dev->interrupt = MASK_INTERRUPTS; /* get the interrupt information */ csr = inb(EWRK3_CSR); /* ** Mask the EWRK3 board interrupts and turn on the LED */ DISABLE_IRQs; cr = inb(EWRK3_CR); cr |= CR_LED; outb(cr, EWRK3_CR); if (csr & CSR_RNE) /* Rx interrupt (packet[s] arrived) */ ewrk3_rx(dev); if (csr & CSR_TNE) /* Tx interrupt (packet sent) */ ewrk3_tx(dev); /* ** Now deal with the TX/RX disable flags. These are set when there ** are no more resources. If resources free up then enable these ** interrupts, otherwise mask them - failure to do this will result ** in the system hanging in an interrupt loop. */ if (inb(EWRK3_FMQC)) { /* any resources available? */ lp->irq_mask |= ICR_TXDM|ICR_RXDM;/* enable the interrupt source */ csr &= ~(CSR_TXD|CSR_RXD);/* ensure restart of a stalled TX or RX */ outb(csr, EWRK3_CSR); dev->tbusy = 0; /* clear TX busy flag */ mark_bh(NET_BH); } else { lp->irq_mask &= ~(ICR_TXDM|ICR_RXDM);/* disable the interrupt source */ } /* Unmask the EWRK3 board interrupts and turn off the LED */ cr &= ~CR_LED; outb(cr, EWRK3_CR); dev->interrupt = UNMASK_INTERRUPTS; ENABLE_IRQs; } return; } static int ewrk3_rx(struct device *dev) { struct ewrk3_private *lp = (struct ewrk3_private *)dev->priv; u_long iobase = dev->base_addr; int i, status = 0; u_char page, tmpPage = 0, tmpLock = 0; u_long buf = 0; while (inb(EWRK3_RQC) && !status) { /* Whilst there's incoming data */ if ((page = inb(EWRK3_RQ)) < lp->mPage) {/* Get next entry's buffer page */ /* ** Preempt any process using the current page register. Check for ** an existing lock to reduce time taken in I/O transactions. */ if ((tmpLock = set_bit(0, (void *)&lp->lock)) == 1) { /* Assert lock */ if (lp->shmem_length == IO_ONLY) { /* Get existing page */ tmpPage = inb(EWRK3_IOPR); } else { tmpPage = inb(EWRK3_MPR); } } /* ** Set up shared memory window and pointer into the window */ if (lp->shmem_length == IO_ONLY) { outb(page, EWRK3_IOPR); } else if (lp->shmem_length == SHMEM_2K) { buf = lp->shmem_base; outb(page, EWRK3_MPR); } else if (lp->shmem_length == SHMEM_32K) { buf = ((((short)page << 11) & 0x7800) + lp->shmem_base); outb((page >> 4), EWRK3_MPR); } else if (lp->shmem_length == SHMEM_64K) { buf = ((((short)page << 11) & 0xf800) + lp->shmem_base); outb((page >> 5), EWRK3_MPR); } else { status = -1; printk("%s: Oops - your private data area is hosed!\n",dev->name); } if (!status) { char rx_status; int pkt_len; if (lp->shmem_length == IO_ONLY) { rx_status = inb(EWRK3_DATA); pkt_len = inb(EWRK3_DATA); pkt_len |= ((u_short)inb(EWRK3_DATA) << 8); } else { rx_status = readb(buf); buf+=1; pkt_len = readw(buf); buf+=3; } if (!(rx_status & R_ROK)) { /* There was an error. */ lp->stats.rx_errors++; /* Update the error stats. */ if (rx_status & R_DBE) lp->stats.rx_frame_errors++; if (rx_status & R_CRC) lp->stats.rx_crc_errors++; if (rx_status & R_PLL) lp->stats.rx_fifo_errors++; } else { struct sk_buff *skb; if ((skb = dev_alloc_skb(pkt_len+2)) != NULL) { unsigned char *p; skb->dev = dev; skb_reserve(skb,2); /* Align to 16 bytes */ p = skb_put(skb,pkt_len); if (lp->shmem_length == IO_ONLY) { *p = inb(EWRK3_DATA); /* dummy read */ for (i=0; i<pkt_len; i++) { *p++ = inb(EWRK3_DATA); } } else { memcpy_fromio(p, buf, pkt_len); } /* ** Notify the upper protocol layers that there is another ** packet to handle */ skb->protocol=eth_type_trans(skb,dev); netif_rx(skb); /* ** Update stats */ lp->stats.rx_packets++; for (i=1; i<EWRK3_PKT_STAT_SZ-1; i++) { if (pkt_len < i*EWRK3_PKT_BIN_SZ) { lp->pktStats.bins[i]++; i = EWRK3_PKT_STAT_SZ; } } p = skb->data; /* Look at the dest addr */ if (p[0] & 0x01) { /* Multicast/Broadcast */ if ((*(s32 *)&p[0] == -1) && (*(s16 *)&p[4] == -1)) { lp->pktStats.broadcast++; } else { lp->pktStats.multicast++; } } else if ((*(s32 *)&p[0] == *(s32 *)&dev->dev_addr[0]) && (*(s16 *)&p[4] == *(s16 *)&dev->dev_addr[4])) { lp->pktStats.unicast++; } lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */ if (lp->pktStats.bins[0] == 0) { /* Reset counters */ memset(&lp->pktStats, 0, sizeof(lp->pktStats)); } } else { printk("%s: Insufficient memory; nuking packet.\n", dev->name); lp->stats.rx_dropped++; /* Really, deferred. */ break; } } } /* ** Return the received buffer to the free memory queue */ outb(page, EWRK3_FMQ); if (tmpLock) { /* If a lock was preempted */ if (lp->shmem_length == IO_ONLY) { /* Replace old page */ outb(tmpPage, EWRK3_IOPR); } else { outb(tmpPage, EWRK3_MPR); } } lp->lock = 0; /* Unlock the page register */ } else { printk("ewrk3_rx(): Illegal page number, page %d\n",page); printk("ewrk3_rx(): CSR: %02x ICR: %02x FMQC: %02x\n",inb(EWRK3_CSR),inb(EWRK3_ICR),inb(EWRK3_FMQC)); } } return status; } /* ** Buffer sent - check for TX buffer errors. */ static int ewrk3_tx(struct device *dev) { struct ewrk3_private *lp = (struct ewrk3_private *)dev->priv; u_long iobase = dev->base_addr; u_char tx_status; while ((tx_status = inb(EWRK3_TDQ)) > 0) { /* Whilst there's old buffers */ if (tx_status & T_VSTS) { /* The status is valid */ if (tx_status & T_TXE) { lp->stats.tx_errors++; if (tx_status & T_NCL) lp->stats.tx_carrier_errors++; if (tx_status & T_LCL) lp->stats.tx_window_errors++; if (tx_status & T_CTU) { if ((tx_status & T_COLL) ^ T_XUR) { lp->pktStats.tx_underruns++; } else { lp->pktStats.excessive_underruns++; } } else if (tx_status & T_COLL) { if ((tx_status & T_COLL) ^ T_XCOLL) { lp->stats.collisions++; } else { lp->pktStats.excessive_collisions++; } } } else { lp->stats.tx_packets++; } } } return 0; } static int ewrk3_close(struct device *dev) { struct ewrk3_private *lp = (struct ewrk3_private *)dev->priv; u_long iobase = dev->base_addr; u_char icr, csr; dev->start = 0; dev->tbusy = 1; if (ewrk3_debug > 1) { printk("%s: Shutting down ethercard, status was %2.2x.\n", dev->name, inb(EWRK3_CSR)); } /* ** We stop the EWRK3 here... mask interrupts and stop TX & RX */ DISABLE_IRQs; STOP_EWRK3; /* ** Clean out the TX and RX queues here (note that one entry ** may get added to either the TXD or RX queues if the TX or RX ** just starts processing a packet before the STOP_EWRK3 command ** is received. This will be flushed in the ewrk3_open() call). */ while (inb(EWRK3_TQ)); while (inb(EWRK3_TDQ)); while (inb(EWRK3_RQ)); if (!lp->hard_strapped) { free_irq(dev->irq, NULL); irq2dev_map[dev->irq] = 0; } MOD_DEC_USE_COUNT; return 0; } static struct enet_statistics * ewrk3_get_stats(struct device *dev) { struct ewrk3_private *lp = (struct ewrk3_private *)dev->priv; /* Null body since there is no framing error counter */ return &lp->stats; } /* ** Set or clear the multicast filter for this adapter. */ static void set_multicast_list(struct device *dev) { struct ewrk3_private *lp = (struct ewrk3_private *)dev->priv; u_long iobase = dev->base_addr; u_char csr; if (irq2dev_map[dev->irq] != NULL) { csr = inb(EWRK3_CSR); if (lp->shmem_length == IO_ONLY) { lp->mctbl = (char *) PAGE0_HTE; } else { lp->mctbl = (char *)(lp->shmem_base + PAGE0_HTE); } csr &= ~(CSR_PME | CSR_MCE); if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */ csr |= CSR_PME; outb(csr, EWRK3_CSR); } else { SetMulticastFilter(dev); csr |= CSR_MCE; outb(csr, EWRK3_CSR); } } } /* ** Calculate the hash code and update the logical address filter ** from a list of ethernet multicast addresses. ** Little endian crc one liner from Matt Thomas, DEC. ** ** Note that when clearing the table, the broadcast bit must remain asserted ** to receive broadcast messages. */ static void SetMulticastFilter(struct device *dev) { struct ewrk3_private *lp = (struct ewrk3_private *)dev->priv; struct dev_mc_list *dmi=dev->mc_list; u_long iobase = dev->base_addr; int i; char *addrs, j, bit, byte; short *p = (short *) lp->mctbl; u16 hashcode; s32 crc, poly = CRC_POLYNOMIAL_LE; while (set_bit(0, (void *)&lp->lock) != 0); /* Wait for lock to free */ if (lp->shmem_length == IO_ONLY) { outb(0, EWRK3_IOPR); outw(EEPROM_OFFSET(lp->mctbl), EWRK3_PIR1); } else { outb(0, EWRK3_MPR); } if (dev->flags & IFF_ALLMULTI) { for (i=0; i<(HASH_TABLE_LEN >> 3); i++) { if (lp->shmem_length == IO_ONLY) { outb(0xff, EWRK3_DATA); } else { /* memset didn't work here */ writew(0xffff, p); p++; i++; } } } else { /* Clear table except for broadcast bit */ if (lp->shmem_length == IO_ONLY) { for (i=0; i<(HASH_TABLE_LEN >> 4) - 1; i++) { outb(0x00, EWRK3_DATA); } outb(0x80, EWRK3_DATA); i++; /* insert the broadcast bit */ for (; i<(HASH_TABLE_LEN >> 3); i++) { outb(0x00, EWRK3_DATA); } } else { memset_io(lp->mctbl, 0, (HASH_TABLE_LEN >> 3)); writeb(0x80, (char *)(lp->mctbl + (HASH_TABLE_LEN >> 4) - 1)); } /* Update table */ for (i=0;i<dev->mc_count;i++) { /* for each address in the list */ addrs=dmi->dmi_addr; dmi=dmi->next; if ((*addrs & 0x01) == 1) { /* multicast address? */ crc = 0xffffffff; /* init CRC for each address */ for (byte=0;byte<ETH_ALEN;byte++) { /* for each address byte */ /* process each address bit */ for (bit = *addrs++,j=0;j<8;j++, bit>>=1) { crc = (crc >> 1) ^ (((crc ^ bit) & 0x01) ? poly : 0); } } hashcode = crc & ((1 << 9) - 1); /* hashcode is 9 LSb of CRC */ byte = hashcode >> 3; /* bit[3-8] -> byte in filter */ bit = 1 << (hashcode & 0x07); /* bit[0-2] -> bit in byte */ if (lp->shmem_length == IO_ONLY) { u_char tmp; outw((short)((long)lp->mctbl) + byte, EWRK3_PIR1); tmp = inb(EWRK3_DATA); tmp |= bit; outw((short)((long)lp->mctbl) + byte, EWRK3_PIR1); outb(tmp, EWRK3_DATA); } else { writeb(readb(lp->mctbl + byte) | bit, lp->mctbl + byte); } } } } lp->lock = 0; /* Unlock the page register */ return; } /* ** ISA bus I/O device probe */ static void isa_probe(struct device *dev, u_long ioaddr) { int i = num_ewrk3s, maxSlots; u_long iobase; if (!ioaddr && autoprobed) return ; /* Been here before ! */ if (ioaddr >= 0x400) return; /* Not ISA */ if (ioaddr == 0) { /* Autoprobing */ iobase = EWRK3_IO_BASE; /* Get the first slot address */ maxSlots = 24; } else { /* Probe a specific location */ iobase = ioaddr; maxSlots = i + 1; } for (; (i<maxSlots) && (dev!=NULL);iobase+=EWRK3_IOP_INC, i++) { if (!check_region(iobase, EWRK3_TOTAL_SIZE)) { if (DevicePresent(iobase) == 0) { if ((dev = alloc_device(dev, iobase)) != NULL) { if (ewrk3_hw_init(dev, iobase) == 0) { num_ewrk3s++; } num_eth++; } } } else if (autoprobed) { printk("%s: region already allocated at 0x%04lx.\n", dev->name, iobase); } } return; } /* ** EISA bus I/O device probe. Probe from slot 1 since slot 0 is usually ** the motherboard. */ static void eisa_probe(struct device *dev, u_long ioaddr) { int i, maxSlots; u_long iobase; char name[EWRK3_STRLEN]; if (!ioaddr && autoprobed) return ; /* Been here before ! */ if (ioaddr < 0x1000) return; /* Not EISA */ if (ioaddr == 0) { /* Autoprobing */ iobase = EISA_SLOT_INC; /* Get the first slot address */ i = 1; maxSlots = MAX_EISA_SLOTS; } else { /* Probe a specific location */ iobase = ioaddr; i = (ioaddr >> 12); maxSlots = i + 1; } for (i=1; (i<maxSlots) && (dev!=NULL); i++, iobase+=EISA_SLOT_INC) { if (EISA_signature(name, EISA_ID) == 0) { if (!check_region(iobase, EWRK3_TOTAL_SIZE)) { if (DevicePresent(iobase) == 0) { if ((dev = alloc_device(dev, iobase)) != NULL) { if (ewrk3_hw_init(dev, iobase) == 0) { num_ewrk3s++; } num_eth++; } } } else if (autoprobed) { printk("%s: region already allocated at 0x%04lx.\n", dev->name, iobase); } } } return; } /* ** Search the entire 'eth' device list for a fixed probe. If a match isn't ** found then check for an autoprobe or unused device location. If they ** are not available then insert a new device structure at the end of ** the current list. */ static struct device * alloc_device(struct device *dev, u_long iobase) { struct device *adev = NULL; int fixed = 0, new_dev = 0; num_eth = ewrk3_dev_index(dev->name); if (loading_module) return dev; while (1) { if (((dev->base_addr == EWRK3_NDA) || (dev->base_addr==0)) && !adev) { adev=dev; } else if ((dev->priv == NULL) && (dev->base_addr==iobase)) { fixed = 1; } else { if (dev->next == NULL) { new_dev = 1; } else if (strncmp(dev->next->name, "eth", 3) != 0) { new_dev = 1; } } if ((dev->next == NULL) || new_dev || fixed) break; dev = dev->next; num_eth++; } if (adev && !fixed) { dev = adev; num_eth = ewrk3_dev_index(dev->name); new_dev = 0; } if (((dev->next == NULL) && ((dev->base_addr != EWRK3_NDA) && (dev->base_addr != 0)) && !fixed) || new_dev) { num_eth++; /* New device */ dev = insert_device(dev, iobase, ewrk3_probe); } return dev; } /* ** If at end of eth device list and can't use current entry, malloc ** one up. If memory could not be allocated, print an error message. */ static struct device * insert_device(struct device *dev, u_long iobase, int (*init)(struct device *)) { struct device *new; new = (struct device *)kmalloc(sizeof(struct device)+8, GFP_KERNEL); if (new == NULL) { printk("eth%d: Device not initialised, insufficient memory\n",num_eth); return NULL; } else { new->next = dev->next; dev->next = new; dev = dev->next; /* point to the new device */ dev->name = (char *)(dev + 1); if (num_eth > 9999) { sprintf(dev->name,"eth????");/* New device name */ } else { sprintf(dev->name,"eth%d", num_eth);/* New device name */ } dev->base_addr = iobase; /* assign the io address */ dev->init = init; /* initialisation routine */ } return dev; } static int ewrk3_dev_index(char *s) { int i=0, j=0; for (;*s; s++) { if (isdigit(*s)) { j=1; i = (i * 10) + (*s - '0'); } else if (j) break; } return i; } /* ** Read the EWRK3 EEPROM using this routine */ static int Read_EEPROM(u_long iobase, u_char eaddr) { int i; outb((eaddr & 0x3f), EWRK3_PIR1); /* set up 6 bits of address info */ outb(EEPROM_RD, EWRK3_IOPR); /* issue read command */ for (i=0;i<5000;i++) inb(EWRK3_CSR); /* wait 1msec */ return inw(EWRK3_EPROM1); /* 16 bits data return */ } /* ** Write the EWRK3 EEPROM using this routine */ static int Write_EEPROM(short data, u_long iobase, u_char eaddr) { int i; outb(EEPROM_WR_EN, EWRK3_IOPR); /* issue write enable command */ for (i=0;i<5000;i++) inb(EWRK3_CSR); /* wait 1msec */ outw(data, EWRK3_EPROM1); /* write data to register */ outb((eaddr & 0x3f), EWRK3_PIR1); /* set up 6 bits of address info */ outb(EEPROM_WR, EWRK3_IOPR); /* issue write command */ for (i=0;i<75000;i++) inb(EWRK3_CSR); /* wait 15msec */ outb(EEPROM_WR_DIS, EWRK3_IOPR); /* issue write disable command */ for (i=0;i<5000;i++) inb(EWRK3_CSR); /* wait 1msec */ return 0; } /* ** Look for a particular board name in the on-board EEPROM. */ static void EthwrkSignature(char *name, char *eeprom_image) { u_long i,j,k; char *signatures[] = EWRK3_SIGNATURE; strcpy(name, ""); for (i=0;*signatures[i] != '\0' && *name == '\0';i++) { for (j=EEPROM_PNAME7,k=0;j<=EEPROM_PNAME0 && k<strlen(signatures[i]);j++) { if (signatures[i][k] == eeprom_image[j]) { /* track signature */ k++; } else { /* lost signature; begin search again */ k=0; } } if (k == strlen(signatures[i])) { for (k=0; k<EWRK3_STRLEN; k++) { name[k] = eeprom_image[EEPROM_PNAME7 + k]; name[EWRK3_STRLEN] = '\0'; } } } return; /* return the device name string */ } /* ** Look for a special sequence in the Ethernet station address PROM that ** is common across all EWRK3 products. ** ** Search the Ethernet address ROM for the signature. Since the ROM address ** counter can start at an arbitrary point, the search must include the entire ** probe sequence length plus the (length_of_the_signature - 1). ** Stop the search IMMEDIATELY after the signature is found so that the ** PROM address counter is correctly positioned at the start of the ** ethernet address for later read out. */ static int DevicePresent(u_long iobase) { union { struct { u32 a; u32 b; } llsig; char Sig[sizeof(u32) << 1]; } dev; short sigLength; char data; int i, j, status = 0; dev.llsig.a = ETH_PROM_SIG; dev.llsig.b = ETH_PROM_SIG; sigLength = sizeof(u32) << 1; for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) { data = inb(EWRK3_APROM); if (dev.Sig[j] == data) { /* track signature */ j++; } else { /* lost signature; begin search again */ if (data == dev.Sig[0]) { j=1; } else { j=0; } } } if (j!=sigLength) { status = -ENODEV; /* search failed */ } return status; } static u_char get_hw_addr(struct device *dev, u_char *eeprom_image, char chipType) { int i, j, k; u_short chksum; u_char crc, lfsr, sd, status = 0; u_long iobase = dev->base_addr; u16 tmp; if (chipType == LeMAC2) { for (crc=0x6a, j=0; j<ETH_ALEN; j++) { sd = dev->dev_addr[j] = eeprom_image[EEPROM_PADDR0 + j]; outb(dev->dev_addr[j], EWRK3_PAR0 + j); for (k=0; k<8; k++, sd >>= 1) { lfsr = ((((crc & 0x02) >> 1) ^ (crc & 0x01)) ^ (sd & 0x01)) << 7; crc = (crc >> 1) + lfsr; } } if (crc != eeprom_image[EEPROM_PA_CRC]) status = -1; } else { for (i=0,k=0;i<ETH_ALEN;) { k <<= 1 ; if (k > 0xffff) k-=0xffff; k += (u_char) (tmp = inb(EWRK3_APROM)); dev->dev_addr[i] = (u_char) tmp; outb(dev->dev_addr[i], EWRK3_PAR0 + i); i++; k += (u_short) ((tmp = inb(EWRK3_APROM)) << 8); dev->dev_addr[i] = (u_char) tmp; outb(dev->dev_addr[i], EWRK3_PAR0 + i); i++; if (k > 0xffff) k-=0xffff; } if (k == 0xffff) k=0; chksum = inb(EWRK3_APROM); chksum |= (inb(EWRK3_APROM)<<8); if (k != chksum) status = -1; } return status; } /* ** Look for a particular board name in the EISA configuration space */ static int EISA_signature(char *name, s32 eisa_id) { u_long i; char *signatures[] = EWRK3_SIGNATURE; char ManCode[EWRK3_STRLEN]; union { s32 ID; char Id[4]; } Eisa; int status = 0; *name = '\0'; for (i=0; i<4; i++) { Eisa.Id[i] = inb(eisa_id + i); } ManCode[0]=(((Eisa.Id[0]>>2)&0x1f)+0x40); ManCode[1]=(((Eisa.Id[1]&0xe0)>>5)+((Eisa.Id[0]&0x03)<<3)+0x40); ManCode[2]=(((Eisa.Id[2]>>4)&0x0f)+0x30); ManCode[3]=((Eisa.Id[2]&0x0f)+0x30); ManCode[4]=(((Eisa.Id[3]>>4)&0x0f)+0x30); ManCode[5]='\0'; for (i=0;(*signatures[i] != '\0') && (*name == '\0');i++) { if (strstr(ManCode, signatures[i]) != NULL) { strcpy(name,ManCode); status = 1; } } return status; /* return the device name string */ } /* ** Perform IOCTL call functions here. Some are privileged operations and the ** effective uid is checked in those cases. */ static int ewrk3_ioctl(struct device *dev, struct ifreq *rq, int cmd) { struct ewrk3_private *lp = (struct ewrk3_private *)dev->priv; struct ewrk3_ioctl *ioc = (struct ewrk3_ioctl *) &rq->ifr_data; u_long iobase = dev->base_addr; int i, j, status = 0; u_char csr; union { u_char addr[HASH_TABLE_LEN * ETH_ALEN]; u_short val[(HASH_TABLE_LEN * ETH_ALEN) >> 1]; } tmp; switch(ioc->cmd) { case EWRK3_GET_HWADDR: /* Get the hardware address */ for (i=0; i<ETH_ALEN; i++) { tmp.addr[i] = dev->dev_addr[i]; } ioc->len = ETH_ALEN; if (!(status = verify_area(VERIFY_WRITE, (void *)ioc->data, ioc->len))) { memcpy_tofs(ioc->data, tmp.addr, ioc->len); } break; case EWRK3_SET_HWADDR: /* Set the hardware address */ if (suser()) { if (!(status = verify_area(VERIFY_READ, (void *)ioc->data, ETH_ALEN))) { csr = inb(EWRK3_CSR); csr |= (CSR_TXD|CSR_RXD); outb(csr, EWRK3_CSR); /* Disable the TX and RX */ memcpy_fromfs(tmp.addr,ioc->data,ETH_ALEN); for (i=0; i<ETH_ALEN; i++) { dev->dev_addr[i] = tmp.addr[i]; outb(tmp.addr[i], EWRK3_PAR0 + i); } csr &= ~(CSR_TXD|CSR_RXD); /* Enable the TX and RX */ outb(csr, EWRK3_CSR); } } else { status = -EPERM; } break; case EWRK3_SET_PROM: /* Set Promiscuous Mode */ if (suser()) { csr = inb(EWRK3_CSR); csr |= CSR_PME; csr &= ~CSR_MCE; outb(csr, EWRK3_CSR); } else { status = -EPERM; } break; case EWRK3_CLR_PROM: /* Clear Promiscuous Mode */ if (suser()) { csr = inb(EWRK3_CSR); csr &= ~CSR_PME; outb(csr, EWRK3_CSR); } else { status = -EPERM; } break; case EWRK3_SAY_BOO: /* Say "Boo!" to the kernel log file */ printk("%s: Boo!\n", dev->name); break; case EWRK3_GET_MCA: /* Get the multicast address table */ if (!(status = verify_area(VERIFY_WRITE, ioc->data, ioc->len))) { while (set_bit(0, (void *)&lp->lock) != 0); /* Wait for lock to free */ if (lp->shmem_length == IO_ONLY) { outb(0, EWRK3_IOPR); outw(PAGE0_HTE, EWRK3_PIR1); for (i=0; i<(HASH_TABLE_LEN >> 3); i++) { tmp.addr[i] = inb(EWRK3_DATA); } } else { outb(0, EWRK3_MPR); memcpy_fromio(tmp.addr, (char *)(lp->shmem_base + PAGE0_HTE), (HASH_TABLE_LEN >> 3)); } ioc->len = (HASH_TABLE_LEN >> 3); memcpy_tofs(ioc->data, tmp.addr, ioc->len); } lp->lock = 0; /* Unlock the page register */ break; case EWRK3_SET_MCA: /* Set a multicast address */ if (suser()) { if (!(status=verify_area(VERIFY_READ, ioc->data, ETH_ALEN*ioc->len))) { memcpy_fromfs(tmp.addr, ioc->data, ETH_ALEN * ioc->len); set_multicast_list(dev); } } else { status = -EPERM; } break; case EWRK3_CLR_MCA: /* Clear all multicast addresses */ if (suser()) { set_multicast_list(dev); } else { status = -EPERM; } break; case EWRK3_MCA_EN: /* Enable multicast addressing */ if (suser()) { csr = inb(EWRK3_CSR); csr |= CSR_MCE; csr &= ~CSR_PME; outb(csr, EWRK3_CSR); } else { status = -EPERM; } break; case EWRK3_GET_STATS: /* Get the driver statistics */ cli(); ioc->len = sizeof(lp->pktStats); if (!(status=verify_area(VERIFY_WRITE, ioc->data, ioc->len))) { memcpy_tofs(ioc->data, &lp->pktStats, ioc->len); } sti(); break; case EWRK3_CLR_STATS: /* Zero out the driver statistics */ if (suser()) { cli(); memset(&lp->pktStats, 0, sizeof(lp->pktStats)); sti(); } else { status = -EPERM; } break; case EWRK3_GET_CSR: /* Get the CSR Register contents */ tmp.addr[0] = inb(EWRK3_CSR); ioc->len = 1; if (!(status=verify_area(VERIFY_WRITE, ioc->data, ioc->len))) { memcpy_tofs(ioc->data, tmp.addr, ioc->len); } break; case EWRK3_SET_CSR: /* Set the CSR Register contents */ if (suser()) { if (!(status=verify_area(VERIFY_READ, ioc->data, 1))) { memcpy_fromfs(tmp.addr, ioc->data, 1); outb(tmp.addr[0], EWRK3_CSR); } } else { status = -EPERM; } break; case EWRK3_GET_EEPROM: /* Get the EEPROM contents */ if (suser()) { for (i=0; i<(EEPROM_MAX>>1); i++) { tmp.val[i] = (short)Read_EEPROM(iobase, i); } i = EEPROM_MAX; tmp.addr[i++] = inb(EWRK3_CMR); /* Config/Management Reg. */ for (j=0;j<ETH_ALEN;j++) { tmp.addr[i++] = inb(EWRK3_PAR0 + j); } ioc->len = EEPROM_MAX + 1 + ETH_ALEN; if (!(status=verify_area(VERIFY_WRITE, ioc->data, ioc->len))) { memcpy_tofs(ioc->data, tmp.addr, ioc->len); } } else { status = -EPERM; } break; case EWRK3_SET_EEPROM: /* Set the EEPROM contents */ if (suser()) { if (!(status=verify_area(VERIFY_READ, ioc->data, EEPROM_MAX))) { memcpy_fromfs(tmp.addr, ioc->data, EEPROM_MAX); for (i=0; i<(EEPROM_MAX>>1); i++) { Write_EEPROM(tmp.val[i], iobase, i); } } } else { status = -EPERM; } break; case EWRK3_GET_CMR: /* Get the CMR Register contents */ tmp.addr[0] = inb(EWRK3_CMR); ioc->len = 1; if (!(status=verify_area(VERIFY_WRITE, ioc->data, ioc->len))) { memcpy_tofs(ioc->data, tmp.addr, ioc->len); } break; case EWRK3_SET_TX_CUT_THRU: /* Set TX cut through mode */ if (suser()) { lp->txc = 1; } else { status = -EPERM; } break; case EWRK3_CLR_TX_CUT_THRU: /* Clear TX cut through mode */ if (suser()) { lp->txc = 0; } else { status = -EPERM; } break; default: status = -EOPNOTSUPP; } return status; } #ifdef MODULE static char devicename[9] = { 0, }; static struct device thisEthwrk = { devicename, /* device name is inserted by /linux/drivers/net/net_init.c */ 0, 0, 0, 0, 0x300, 5, /* I/O address, IRQ */ 0, 0, 0, NULL, ewrk3_probe }; static int io=0x300; /* <--- EDIT THESE LINES FOR YOUR CONFIGURATION */ static int irq=5; /* or use the insmod io= irq= options */ int init_module(void) { thisEthwrk.base_addr=io; thisEthwrk.irq=irq; if (register_netdev(&thisEthwrk) != 0) return -EIO; return 0; } void cleanup_module(void) { if (thisEthwrk.priv) { kfree(thisEthwrk.priv); thisEthwrk.priv = NULL; } thisEthwrk.irq = 0; unregister_netdev(&thisEthwrk); release_region(thisEthwrk.base_addr, EWRK3_TOTAL_SIZE); } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -D__KERNEL__ -I/linux/include -Wall -Wstrict-prototypes -fomit-frame-pointer -fno-strength-reduce -malign-loops=2 -malign-jumps=2 -malign-functions=2 -O2 -m486 -c ewrk3.c" * * compile-command: "gcc -D__KERNEL__ -DMODULE -I/linux/include -Wall -Wstrict-prototypes -fomit-frame-pointer -fno-strength-reduce -malign-loops=2 -malign-jumps=2 -malign-functions=2 -O2 -m486 -c ewrk3.c" * End: */