URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [include/] [asm-mips/] [pgtable.h] - Rev 199
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef __ASM_MIPS_PGTABLE_H #define __ASM_MIPS_PGTABLE_H #ifndef __LANGUAGE_ASSEMBLY__ #include <linux/linkage.h> #include <asm/cachectl.h> /* * The Linux memory management assumes a three-level page table setup. In * 32 bit mode we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * i386 mmu expects. The 64 bit version uses a three level setup. * * This file contains the functions and defines necessary to modify and use * the MIPS page table tree. Note the frequent conversion between addresses * in KSEG0 and KSEG1. * * This is required due to the cache aliasing problem of the R4xx0 series. * Sometimes doing uncached accesses also to improve the cache performance * slightly. The R10000 caching mode "uncached accelerated" will help even * further. */ /* * TLB invalidation: * * - invalidate() invalidates the current mm struct TLBs * - invalidate_all() invalidates all processes TLBs * - invalidate_mm(mm) invalidates the specified mm context TLB's * - invalidate_page(mm, vmaddr) invalidates one page * - invalidate_range(mm, start, end) invalidates a range of pages * * FIXME: MIPS has full control of all TLB activity in the CPU. Though * we just stick with complete flushing of TLBs for now. */ extern asmlinkage void tlbflush(void); #define invalidate() ({sys_cacheflush(0, ~0, BCACHE);tlbflush();}) #define invalidate_all() invalidate() #define invalidate_mm(mm_struct) \ do { if ((mm_struct) == current->mm) invalidate(); } while (0) #define invalidate_page(mm_struct,addr) \ do { if ((mm_struct) == current->mm) invalidate(); } while (0) #define invalidate_range(mm_struct,start,end) \ do { if ((mm_struct) == current->mm) invalidate(); } while (0) /* * We need a special version of copy_page that can handle virtual caches. * While we're at tweaking with caches we can use that to make it faster. * The R10000's accelerated caching mode will further accelerate it. */ extern void __copy_page(unsigned long from, unsigned long to); #define copy_page(from,to) __copy_page((unsigned long)from, (unsigned long)to) /* Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) #endif /* !defined (__LANGUAGE_ASSEMBLY__) */ /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT 22 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 22 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: we use two-level, so * we don't really have any PMD directory physically. */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PMD 1 #define PTRS_PER_PGD 1024 #define VMALLOC_START KSEG2 #define VMALLOC_VMADDR(x) ((unsigned long)(x)) /* * Note that we shift the lower 32bits of each EntryLo[01] entry * 6 bits to the left. That way we can convert the PFN into the * physical address by a single 'and' operation and gain 6 additional * bits for storing information which isn't present in a normal * MIPS page table. * Since the Mips has chosen some quite misleading names for the * valid and dirty bits they're defined here but only their synonyms * will be used. */ #define _PAGE_PRESENT (1<<0) /* implemented in software */ #define _PAGE_COW (1<<1) /* implemented in software */ #define _PAGE_READ (1<<2) /* implemented in software */ #define _PAGE_WRITE (1<<3) /* implemented in software */ #define _PAGE_ACCESSED (1<<4) /* implemented in software */ #define _PAGE_MODIFIED (1<<5) /* implemented in software */ #define _PAGE_GLOBAL (1<<6) #define _PAGE_VALID (1<<7) #define _PAGE_SILENT_READ (1<<7) /* synonym */ #define _PAGE_DIRTY (1<<8) /* The MIPS dirty bit */ #define _PAGE_SILENT_WRITE (1<<8) #define _CACHE_CACHABLE_NO_WA (0<<9) /* R4600 only */ #define _CACHE_CACHABLE_WA (1<<9) /* R4600 only */ #define _CACHE_UNCACHED (2<<9) /* R4[0246]00 */ #define _CACHE_CACHABLE_NONCOHERENT (3<<9) /* R4[0246]00 */ #define _CACHE_CACHABLE_CE (4<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_COW (5<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_CUW (6<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_ACCELERATED (7<<9) /* R10000 only */ #define _CACHE_MASK (7<<9) #define __READABLE (_PAGE_READ|_PAGE_SILENT_READ|_PAGE_ACCESSED) #define __WRITEABLE (_PAGE_WRITE|_PAGE_SILENT_WRITE|_PAGE_MODIFIED) #define _PAGE_TABLE (_PAGE_PRESENT | __READABLE | __WRITEABLE | \ _PAGE_DIRTY | _CACHE_UNCACHED) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _CACHE_MASK) #define PAGE_NONE __pgprot(_PAGE_PRESENT | __READABLE | _CACHE_UNCACHED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | __READABLE | _PAGE_WRITE | \ _PAGE_ACCESSED | _CACHE_CACHABLE_NONCOHERENT) #define PAGE_COPY __pgprot(_PAGE_PRESENT | __READABLE | _PAGE_COW | \ _CACHE_CACHABLE_NONCOHERENT) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | __READABLE | \ _CACHE_CACHABLE_NONCOHERENT) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \ _CACHE_CACHABLE_NONCOHERENT) /* * MIPS can't do page protection for execute, and considers that the same like * read. Also, write permissions imply read permissions. This is the closest * we can get by reasonable means.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED #if !defined (__LANGUAGE_ASSEMBLY__) /* page table for 0-4MB for everybody */ extern unsigned long pg0[1024]; /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t * __bad_pagetable(void); extern unsigned long __zero_page(void); #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE __zero_page() /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* * sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ #if __mips == 3 #define SIZEOF_PTR_LOG2 3 #else #define SIZEOF_PTR_LOG2 2 #endif /* to find an entry in a page-table */ #define PAGE_PTR(address) \ ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) /* to set the page-dir */ #define SET_PAGE_DIR(tsk,pgdir) \ do { \ (tsk)->tss.pg_dir = ((unsigned long) (pgdir)) - PT_OFFSET; \ if ((tsk) == current) \ { \ void load_pgd(unsigned long pg_dir); \ \ load_pgd((tsk)->tss.pg_dir); \ } \ } while (0) extern unsigned long high_memory; extern pmd_t invalid_pte_table[PAGE_SIZE/sizeof(pmd_t)]; /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline unsigned long pte_page(pte_t pte) { return PAGE_OFFSET + (pte_val(pte) & PAGE_MASK); } extern inline unsigned long pmd_page(pmd_t pmd) { return PAGE_OFFSET + (pmd_val(pmd) & PAGE_MASK); } extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) { pmd_val(*pmdp) = _PAGE_TABLE | ((unsigned long) ptep - PT_OFFSET); } extern inline int pte_none(pte_t pte) { return !pte_val(pte); } extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } extern inline int pte_inuse(pte_t *ptep) { return mem_map[MAP_NR(ptep)].reserved || mem_map[MAP_NR(ptep)].count != 1; } extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; } extern inline void pte_reuse(pte_t * ptep) { if (!mem_map[MAP_NR(ptep)].reserved) mem_map[MAP_NR(ptep)].count++; } /* * Empty pgd/pmd entries point to the invalid_pte_table. */ extern inline int pmd_none(pmd_t pmd) { return (pmd_val(pmd) & PAGE_MASK) == ((unsigned long) invalid_pte_table - PAGE_OFFSET); } extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~PAGE_MASK) != _PAGE_TABLE || pmd_page(pmd) > high_memory || pmd_page(pmd) < PAGE_OFFSET; } extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_PRESENT; } extern inline int pmd_inuse(pmd_t *pmdp) { return 0; } extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = ((unsigned long) invalid_pte_table - PAGE_OFFSET); } extern inline void pmd_reuse(pmd_t * pmdp) { } /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */ extern inline int pgd_none(pgd_t pgd) { return 0; } extern inline int pgd_bad(pgd_t pgd) { return 0; } extern inline int pgd_present(pgd_t pgd) { return 1; } extern inline int pgd_inuse(pgd_t * pgdp) { return mem_map[MAP_NR(pgdp)].reserved; } extern inline void pgd_clear(pgd_t * pgdp) { } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_READ; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline int pte_cow(pte_t pte) { return pte_val(pte) & _PAGE_COW; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); return pte; } extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); return pte; } extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_MODIFIED|_PAGE_SILENT_WRITE); return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ|_PAGE_SILENT_WRITE); return pte; } extern inline pte_t pte_uncow(pte_t pte) { pte_val(pte) &= ~_PAGE_COW; return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; if (pte_val(pte) & _PAGE_MODIFIED) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; if (pte_val(pte) & _PAGE_ACCESSED) pte_val(pte) |= _PAGE_SILENT_READ; return pte; } extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_READ; if (pte_val(pte) & _PAGE_ACCESSED) pte_val(pte) |= _PAGE_SILENT_READ; return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_MODIFIED; if (pte_val(pte) & _PAGE_WRITE) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; if (pte_val(pte) & _PAGE_READ) { pte_val(pte) |= _PAGE_SILENT_READ; if ((pte_val(pte) & (_PAGE_WRITE|_PAGE_MODIFIED)) == (_PAGE_WRITE|_PAGE_MODIFIED)) pte_val(pte) |= _PAGE_SILENT_WRITE; } return pte; } extern inline pte_t pte_mkcow(pte_t pte) { pte_val(pte) |= _PAGE_COW; return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot) { pte_t pte; pte_val(pte) = (page - PAGE_OFFSET) | pgprot_val(pgprot); return pte; } extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } /* to find an entry in a page-table-directory */ extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address) { return mm->pgd + (address >> PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) (pmd_page(*dir) + (PT_OFFSET - PAGE_OFFSET)) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any, and marks the page tables reserved. */ extern inline void pte_free_kernel(pte_t * pte) { unsigned long page = (unsigned long) pte; mem_map[MAP_NR(pte)].reserved = 0; if(!page) return; page -= (PT_OFFSET - PAGE_OFFSET); free_page(page); } extern inline pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { unsigned long page = __get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { mem_map[MAP_NR(page)].reserved = 1; memset((void *) page, 0, PAGE_SIZE); sys_cacheflush((void *)page, PAGE_SIZE, DCACHE); sync_mem(); page += (PT_OFFSET - PAGE_OFFSET); pmd_set(pmd, (pte_t *)page); return ((pte_t *)page) + address; } pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } free_page(page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc_kernel: %08lx\n", pmd_val(*pmd)); pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } return (pte_t *) (pmd_page(*pmd) + (PT_OFFSET - PAGE_OFFSET)) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free_kernel(pmd_t * pmd) { } extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } extern inline void pte_free(pte_t * pte) { unsigned long page = (unsigned long) pte; if(!page) return; page -= (PT_OFFSET - PAGE_OFFSET); free_page(page); } extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { unsigned long page = __get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { memset((void *) page, 0, PAGE_SIZE); sys_cacheflush((void *)page, PAGE_SIZE, DCACHE); sync_mem(); page += (PT_OFFSET - PAGE_OFFSET); pmd_set(pmd, (pte_t *)page); return ((pte_t *)page) + address; } pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } free_page(page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } return (pte_t *) (pmd_page(*pmd) + (PT_OFFSET - PAGE_OFFSET)) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ extern inline void pmd_free(pmd_t * pmd) { } extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } extern inline void pgd_free(pgd_t * pgd) { unsigned long page = (unsigned long) pgd; if(!page) return; page -= (PT_OFFSET - PAGE_OFFSET); free_page(page); } /* * Initialize new page directory with pointers to invalid ptes */ extern inline void pgd_init(unsigned long page) { unsigned long dummy1, dummy2; page += (PT_OFFSET - PAGE_OFFSET); #if __mips >= 3 /* * Ich will Spass - ich geb Gas ich geb Gas... */ __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" ".set\tmips3\n\t" "dsll32\t$1,%2,0\n\t" "dsrl32\t%2,$1,0\n\t" "or\t%2,$1\n" "1:\tsd\t%2,(%0)\n\t" "subu\t%1,1\n\t" "bnez\t%1,1b\n\t" "addiu\t%0,8\n\t" ".set\tmips0\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (dummy1), "=r" (dummy2) :"r" (((unsigned long) invalid_pte_table - PAGE_OFFSET) | _PAGE_TABLE), "0" (page), "1" (PAGE_SIZE/(sizeof(pmd_t)*2)) :"$1"); #else __asm__ __volatile__( ".set\tnoreorder\n" "1:\tsw\t%2,(%0)\n\t" "subu\t%1,1\n\t" "bnez\t%1,1b\n\t" "addiu\t%0,4\n\t" ".set\treorder" :"=r" (dummy1), "=r" (dummy2) :"r" (((unsigned long) invalid_pte_table - PAGE_OFFSET) | _PAGE_TABLE), "0" (page), "1" (PAGE_SIZE/sizeof(pmd_t))); #endif } extern inline pgd_t * pgd_alloc(void) { unsigned long page; if(!(page = __get_free_page(GFP_KERNEL))) return NULL; sys_cacheflush((void *)page, PAGE_SIZE, DCACHE); sync_mem(); pgd_init(page); return (pgd_t *) (page + (PT_OFFSET - PAGE_OFFSET)); } extern pgd_t swapper_pg_dir[1024]; /* * MIPS doesn't need any external MMU info: the kernel page tables contain * all the necessary information. We use this hook though to load the * TLB as early as possible with uptodate information avoiding unnecessary * exceptions. */ extern void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte); #if __mips >= 3 #define SWP_TYPE(entry) (((entry) >> 32) & 0xff) #define SWP_OFFSET(entry) ((entry) >> 40) #define SWP_ENTRY(type,offset) pte_val(mk_swap_pte((type),(offset))) #else #define SWP_TYPE(entry) (((entry) >> 1) & 0x7f) #define SWP_OFFSET(entry) ((entry) >> 8) #define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8)) #endif #endif /* !defined (__LANGUAGE_ASSEMBLY__) */ #endif /* __ASM_MIPS_PGTABLE_H */
Go to most recent revision | Compare with Previous | Blame | View Log