OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [uclinux/] [uClinux-2.0.x/] [net/] [rose/] [af_rose.c] - Rev 1765

Compare with Previous | Blame | View Log

/*
 *	ROSE release 006
 *
 *	This code REQUIRES 2.1.0 or higher/ NET3.029
 *
 *	This module:
 *		This module is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 *
 *	History
 *	ROSE 001	Jonathan(G4KLX)	Cloned from af_netrom.c.
 *			Terry (VK2KTJ)	Added support for variable length
 *					address masks.
 *	ROSE 002	Jonathan(G4KLX)	Changed hdrincl to qbitincl.
 *	            Added random number facilities entry.
 *	ROSE 003	Jonathan(G4KLX)	Added use count to neighbour.
 *	ROSE 004	Jean-Paul(F6FBB) Added LoopBack, M-Bit and
 *					FPAC facilities.
 *  ROSE 005    Jean-Paul(F6FBB) Added rose_clean_neighbour
 *  ROSE 006    Jean-Paul(F6FBB) Accept up to 6 digis
 *              Fixed a possible loop in facilities
 */
 
#include <linux/config.h>
#if defined(CONFIG_ROSE) || defined(CONFIG_ROSE_MODULE)
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/stat.h>
#include <net/ax25.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <asm/segment.h>
#include <asm/system.h>
#include <linux/fcntl.h>
#include <linux/termios.h>	/* For TIOCINQ/OUTQ */
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <net/rose.h>
#include <linux/proc_fs.h>
#include <net/ip.h>
#include <net/arp.h>
#include <linux/if_arp.h>
 
int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
int sysctl_rose_call_request_timeout    = ROSE_DEFAULT_T1;
int sysctl_rose_reset_request_timeout   = ROSE_DEFAULT_T2;
int sysctl_rose_clear_request_timeout   = ROSE_DEFAULT_T3;
int sysctl_rose_ack_hold_back_timeout   = ROSE_DEFAULT_HB;
int sysctl_rose_routing_control         = ROSE_DEFAULT_ROUTING;
int sysctl_rose_link_fail_timeout       = ROSE_DEFAULT_FAIL_TIMEOUT;
int sysctl_rose_maximum_vcs             = ROSE_DEFAULT_MAXVC;
int sysctl_rose_window_size             = ROSE_DEFAULT_WINDOW_SIZE;
 
static struct sock *volatile rose_list = NULL;
 
ax25_address rose_callsign;
 
/*
 *	Convert a ROSE address into text.
 */
char *rose2asc(rose_address *addr)
{
	static char buffer[11];
 
	if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
	    addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
	    addr->rose_addr[4] == 0x00) {
		strcpy(buffer, "*");
	} else {
		sprintf(buffer, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
						addr->rose_addr[1] & 0xFF,
						addr->rose_addr[2] & 0xFF,
						addr->rose_addr[3] & 0xFF,
						addr->rose_addr[4] & 0xFF);
	}
 
	return buffer;
}
 
/*
 *	Compare two ROSE addresses, 0 == equal.
 */
int rosecmp(rose_address *addr1, rose_address *addr2)
{
	int i;
 
	for (i = 0; i < 5; i++)
		if (addr1->rose_addr[i] != addr2->rose_addr[i])
			return 1;
 
	return 0;
}
 
/*
 *	Compare two ROSE addresses for only mask digits, 0 == equal.
 */
int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
{
	int i, j;
 
	if (mask > 10)
		return 1;
 
	for (i = 0; i < mask; i++) {
		j = i / 2;
 
		if ((i % 2) != 0) {
			if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
				return 1;
		} else {
			if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
				return 1;
		}
	}
 
	return 0;
}
 
static void rose_free_sock(struct sock *sk)
{
	kfree_s(sk->protinfo.rose, sizeof(*sk->protinfo.rose));
 
	sk_free(sk);
 
	MOD_DEC_USE_COUNT;
}
 
static struct sock *rose_alloc_sock(void)
{
	struct sock *sk;
	rose_cb *rose;
 
	if ((sk = sk_alloc(GFP_ATOMIC)) == NULL)
		return NULL;
 
	if ((rose = (rose_cb *)kmalloc(sizeof(*rose), GFP_ATOMIC)) == NULL) {
		sk_free(sk);
		return NULL;
	}
 
	MOD_INC_USE_COUNT;
 
	memset(rose, 0x00, sizeof(*rose));
 
	sk->protinfo.rose = rose;
	rose->sk          = sk;
 
	return sk;
}
 
/*
 *	Socket removal during an interrupt is now safe.
 */
static void rose_remove_socket(struct sock *sk)
{
	struct sock *s;
	unsigned long flags;
 
	save_flags(flags);
	cli();
 
	if ((s = rose_list) == sk) {
		rose_list = s->next;
		restore_flags(flags);
		return;
	}
 
	while (s != NULL && s->next != NULL) {
		if (s->next == sk) {
			s->next = sk->next;
			restore_flags(flags);
			return;
		}
 
		s = s->next;
	}
 
	restore_flags(flags);
}
 
/*
 *	Kill all bound sockets on a broken link layer connection to a
 *	particular neighbour.
 */
void rose_kill_by_neigh(struct rose_neigh *neigh)
{
	struct sock *s;
 
	for (s = rose_list; s != NULL; s = s->next) {
		if (s->protinfo.rose->neighbour == neigh) {
			rose_clear_queues(s); /* F6FBB */
			s->protinfo.rose->cause      = ROSE_OUT_OF_ORDER;
			s->protinfo.rose->diagnostic = 0;
			s->protinfo.rose->state     = ROSE_STATE_0;
			s->protinfo.rose->neighbour->use--;
			s->protinfo.rose->neighbour = NULL;
			s->state                    = TCP_CLOSE;
			s->err                      = ENETUNREACH;
			s->shutdown                |= SEND_SHUTDOWN;
			s->state_change(s);
			s->dead                     = 1;
		}
	}
}
 
/*
 *	Kill all bound sockets on a dropped device.
 */
static void rose_kill_by_device(struct device *dev)
{
	struct sock *s;
 
	for (s = rose_list; s != NULL; s = s->next) {
		if (s->protinfo.rose->device == dev) {
			rose_clear_queues(s); /* F6FBB */
			s->protinfo.rose->cause  = ROSE_OUT_OF_ORDER;
			s->protinfo.rose->diagnostic = 0;
			s->protinfo.rose->state  = ROSE_STATE_0;
			s->protinfo.rose->neighbour->use--;
			s->protinfo.rose->device = NULL;
			s->state                 = TCP_CLOSE;
			s->err                   = ENETUNREACH;
			s->shutdown             |= SEND_SHUTDOWN;
			s->state_change(s);
			s->dead                  = 1;
		}
	}
}
 
/*
 *	Handle device status changes.
 */
static int rose_device_event(struct notifier_block *this, unsigned long event, void *ptr)
{
	struct device *dev = (struct device *)ptr;
 
	if (event != NETDEV_DOWN)
		return NOTIFY_DONE;
 
	switch (dev->type) {
		case ARPHRD_ROSE:
			rose_kill_by_device(dev);
			break;
		case ARPHRD_AX25:
			rose_link_device_down(dev);
			rose_rt_device_down(dev);
			break;
	}
 
	return NOTIFY_DONE;
}
 
/*
 *	Add a socket to the bound sockets list.
 */
static void rose_insert_socket(struct sock *sk)
{
	unsigned long flags;
 
	save_flags(flags);
	cli();
 
	sk->next  = rose_list;
	rose_list = sk;
 
	restore_flags(flags);
}
 
/*
 *	Find a socket that wants to accept the Call Request we just
 *	received.
 */
static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
{
	unsigned long flags;
	struct sock *s;
 
	save_flags(flags);
	cli();
 
	for (s = rose_list; s != NULL; s = s->next) {
		if (rosecmp(&s->protinfo.rose->source_addr, addr) == 0 && ax25cmp(&s->protinfo.rose->source_call, call) == 0 && s->protinfo.rose->source_ndigis == 0 && s->state == TCP_LISTEN) {
			restore_flags(flags);
			return s;
		}
	}
 
	for (s = rose_list; s != NULL; s = s->next) {
		if (rosecmp(&s->protinfo.rose->source_addr, addr) == 0 && ax25cmp(&s->protinfo.rose->source_call, &null_ax25_address) == 0 && s->state == TCP_LISTEN) {
			restore_flags(flags);
			return s;
		}
	}
 
	restore_flags(flags);
	return NULL;
}
 
/*
 *	Find a connected ROSE socket given my LCI and device.
 */
struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
{
	struct sock *s;
	unsigned long flags;
 
	save_flags(flags);
	cli();
 
	for (s = rose_list; s != NULL; s = s->next) {
		if (s->protinfo.rose->lci == lci && s->protinfo.rose->neighbour == neigh) {
			restore_flags(flags);
			return s;
		}
	}
 
	restore_flags(flags);
 
	return NULL;
}
 
/*
 *	Find a unique LCI for a given device.
 */
unsigned int rose_new_lci(struct rose_neigh *neigh)
{
	int lci;
 
	if (neigh->dce_mode) {
		for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
			if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
				return lci;
	} else {
		for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
			if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
				return lci;
	}
 
	return 0;
}
 
/*
 *	Deferred destroy.
 */
void rose_destroy_socket(struct sock *);
 
/*
 *	Handler for deferred kills.
 */
static void rose_destroy_timer(unsigned long data)
{
	rose_destroy_socket((struct sock *)data);
}
 
/*
 *	This is called from user mode and the timers. Thus it protects itself against
 *	interrupt users but doesn't worry about being called during work.
 *	Once it is removed from the queue no interrupt or bottom half will
 *	touch it and we are (fairly 8-) ) safe.
 */
void rose_destroy_socket(struct sock *sk)	/* Not static as it's used by the timer */
{
	struct sk_buff *skb;
	unsigned long flags;
 
	save_flags(flags);
	cli();
 
	del_timer(&sk->timer);
 
	rose_remove_socket(sk);
	rose_clear_queues(sk);		/* Flush the queues */
 
	while ((skb = skb_dequeue(&sk->receive_queue)) != NULL) {
		if (skb->sk != sk) {			/* A pending connection */
			skb->sk->dead = 1;	/* Queue the unaccepted socket for death */
			rose_set_timer(skb->sk);
			skb->sk->protinfo.rose->state = ROSE_STATE_0;
		}
 
		kfree_skb(skb, FREE_READ);
	}
 
	if (sk->wmem_alloc != 0 || sk->rmem_alloc != 0) {	/* Defer: outstanding buffers */
		init_timer(&sk->timer);
		sk->timer.expires  = jiffies + 10 * HZ;
		sk->timer.function = rose_destroy_timer;
		sk->timer.data     = (unsigned long)sk;
		add_timer(&sk->timer);
	} else {
		rose_free_sock(sk);
	}
 
	restore_flags(flags);
}
 
/*
 *	Handling for system calls applied via the various interfaces to a
 *	ROSE socket object.
 */
 
static int rose_fcntl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
	return -EINVAL;
}
 
static int rose_setsockopt(struct socket *sock, int level, int optname,
	char *optval, int optlen)
{
	struct sock *sk = (struct sock *)sock->data;
	int err, opt;
 
	if (level == SOL_SOCKET)
		return sock_setsockopt(sk, level, optname, optval, optlen);
 
	if (level != SOL_ROSE)
		return -EOPNOTSUPP;
 
	if (optval == NULL)
		return -EINVAL;
 
	if ((err = verify_area(VERIFY_READ, optval, sizeof(int))) != 0)
		return err;
 
	opt = get_fs_long((unsigned long *)optval);
 
	switch (optname) {
		case ROSE_DEFER:
			sk->protinfo.rose->defer = opt ? 1 : 0;
			return 0;
 
		case ROSE_T1:
			if (opt < 1)
				return -EINVAL;
			sk->protinfo.rose->t1 = opt * ROSE_SLOWHZ;
			return 0;
 
		case ROSE_T2:
			if (opt < 1)
				return -EINVAL;
			sk->protinfo.rose->t2 = opt * ROSE_SLOWHZ;
			return 0;
 
		case ROSE_T3:
			if (opt < 1)
				return -EINVAL;
			sk->protinfo.rose->t3 = opt * ROSE_SLOWHZ;
			return 0;
 
		case ROSE_HOLDBACK:
			if (opt < 1)
				return -EINVAL;
			sk->protinfo.rose->hb = opt * ROSE_SLOWHZ;
			return 0;
 
		case ROSE_IDLE:
			if (opt < 0)
				return -EINVAL;
			return 0;
 
		case ROSE_QBITINCL:
			sk->protinfo.rose->qbitincl = opt ? 1 : 0;
			return 0;
 
		default:
			return -ENOPROTOOPT;
	}
}
 
static int rose_getsockopt(struct socket *sock, int level, int optname,
	char *optval, int *optlen)
{
	struct sock *sk = (struct sock *)sock->data;
	int val = 0;
	int err; 
 
	if (level == SOL_SOCKET)
		return sock_getsockopt(sk, level, optname, optval, optlen);
 
	if (level != SOL_ROSE)
		return -EOPNOTSUPP;
 
	switch (optname) {
		case ROSE_DEFER:
			val = sk->protinfo.rose->defer;
			break;
 
		case ROSE_T1:
			val = sk->protinfo.rose->t1 / ROSE_SLOWHZ;
			break;
 
		case ROSE_T2:
			val = sk->protinfo.rose->t2 / ROSE_SLOWHZ;
			break;
 
		case ROSE_T3:
			val = sk->protinfo.rose->t3 / ROSE_SLOWHZ;
			break;
 
		case ROSE_HOLDBACK:
			val = sk->protinfo.rose->hb / ROSE_SLOWHZ;
			break;
 
		case ROSE_IDLE:
			val = 0;
			break;
 
		case ROSE_QBITINCL:
			val = sk->protinfo.rose->qbitincl;
			break;
 
		default:
			return -ENOPROTOOPT;
	}
 
	if ((err = verify_area(VERIFY_WRITE, optlen, sizeof(int))) != 0)
		return err;
 
	put_fs_long(sizeof(int), (unsigned long *)optlen);
 
	if ((err = verify_area(VERIFY_WRITE, optval, sizeof(int))) != 0)
		return err;
 
	put_fs_long(val, (unsigned long *)optval);
 
	return 0;
}
 
static int rose_listen(struct socket *sock, int backlog)
{
	struct sock *sk = (struct sock *)sock->data;
 
	if (sk->state != TCP_LISTEN) {
		sk->protinfo.rose->dest_ndigis = 0;
		memset(&sk->protinfo.rose->dest_addr, '\0', ROSE_ADDR_LEN);
		memset(&sk->protinfo.rose->dest_call, '\0', AX25_ADDR_LEN);
		memset(sk->protinfo.rose->dest_digis, '\0', AX25_ADDR_LEN*ROSE_MAX_DIGIS);
		sk->max_ack_backlog = backlog;
		sk->state           = TCP_LISTEN;
		return 0;
	}
 
	return -EOPNOTSUPP;
}
 
static void def_callback1(struct sock *sk)
{
	if (!sk->dead)
		wake_up_interruptible(sk->sleep);
}
 
static void def_callback2(struct sock *sk, int len)
{
	if (!sk->dead)
		wake_up_interruptible(sk->sleep);
}
 
static int rose_create(struct socket *sock, int protocol)
{
	struct sock *sk;
	rose_cb *rose;
 
	if (sock->type != SOCK_SEQPACKET || protocol != 0)
		return -ESOCKTNOSUPPORT;
 
	if ((sk = rose_alloc_sock()) == NULL)
		return -ENOMEM;
 
	rose = sk->protinfo.rose;
 
	skb_queue_head_init(&sk->receive_queue);
	skb_queue_head_init(&sk->write_queue);
	skb_queue_head_init(&sk->back_log);
	skb_queue_head_init(&rose->ack_queue);
#ifdef M_BIT
	skb_queue_head_init(&rose->frag_queue);
	rose->fraglen    = 0;
#endif
	init_timer(&sk->timer);
 
	sk->socket        = sock;
	sk->type          = sock->type;
	sk->protocol      = protocol;
	sk->allocation	  = GFP_KERNEL;
	sk->rcvbuf        = SK_RMEM_MAX;
	sk->sndbuf        = SK_WMEM_MAX;
	sk->state         = TCP_CLOSE;
	sk->priority      = SOPRI_NORMAL;
	sk->mtu           = ROSE_MTU;	/* 128 */
	sk->zapped        = 1;
 
	sk->state_change = def_callback1;
	sk->data_ready   = def_callback2;
	sk->write_space  = def_callback1;
	sk->error_report = def_callback1;
 
	if (sock != NULL) {
		sock->data = (void *)sk;
		sk->sleep  = sock->wait;
	}
 
	rose->t1    = sysctl_rose_call_request_timeout;
	rose->t2    = sysctl_rose_reset_request_timeout;
	rose->t3    = sysctl_rose_clear_request_timeout;
	rose->hb    = sysctl_rose_ack_hold_back_timeout;
 
	rose->state = ROSE_STATE_0;
 
	return 0;
}
 
static struct sock *rose_make_new(struct sock *osk)
{
	struct sock *sk;
	rose_cb *rose;
 
	if (osk->type != SOCK_SEQPACKET)
		return NULL;
 
	if ((sk = rose_alloc_sock()) == NULL)
		return NULL;
 
	rose = sk->protinfo.rose;
 
	skb_queue_head_init(&sk->receive_queue);
	skb_queue_head_init(&sk->write_queue);
	skb_queue_head_init(&sk->back_log);
	skb_queue_head_init(&rose->ack_queue);
#ifdef M_BIT
	skb_queue_head_init(&rose->frag_queue);
	rose->fraglen  = 0;
#endif
 
	init_timer(&sk->timer);
 
	sk->type        = osk->type;
	sk->socket      = osk->socket;
	sk->priority    = osk->priority;
	sk->protocol    = osk->protocol;
	sk->rcvbuf      = osk->rcvbuf;
	sk->sndbuf      = osk->sndbuf;
	sk->debug       = osk->debug;
	sk->state       = TCP_ESTABLISHED;
	sk->mtu         = osk->mtu;
	sk->sleep       = osk->sleep;
	sk->zapped      = osk->zapped;
 
	sk->state_change = def_callback1;
	sk->data_ready   = def_callback2;
	sk->write_space  = def_callback1;
	sk->error_report = def_callback1;
 
	rose->t1      = osk->protinfo.rose->t1;
	rose->t2      = osk->protinfo.rose->t2;
	rose->t3      = osk->protinfo.rose->t3;
	rose->hb      = osk->protinfo.rose->hb;
 
	rose->defer    = osk->protinfo.rose->defer;
	rose->device   = osk->protinfo.rose->device;
	rose->qbitincl = osk->protinfo.rose->qbitincl;
 
	return sk;
}
 
static int rose_dup(struct socket *newsock, struct socket *oldsock)
{
	struct sock *sk = (struct sock *)oldsock->data;
 
	if (sk == NULL || newsock == NULL)
		return -EINVAL;
 
	return rose_create(newsock, sk->protocol);
}
 
static int rose_release(struct socket *sock, struct socket *peer)
{
	struct sock *sk = (struct sock *)sock->data;
 
	if (sk == NULL) return 0;
 
	switch (sk->protinfo.rose->state) {
 
		case ROSE_STATE_0:
			sk->state     = TCP_CLOSE;
			sk->shutdown |= SEND_SHUTDOWN;
			sk->state_change(sk);
			sk->dead      = 1;
			rose_destroy_socket(sk);
			break;
 
		case ROSE_STATE_2:
			sk->protinfo.rose->neighbour->use--;
			sk->protinfo.rose->state = ROSE_STATE_0;
			sk->state                = TCP_CLOSE;
			sk->shutdown            |= SEND_SHUTDOWN;
			sk->state_change(sk);
			sk->dead                 = 1;
			rose_destroy_socket(sk);
			break;			
 
		case ROSE_STATE_1:
		case ROSE_STATE_3:
		case ROSE_STATE_4:
		case ROSE_STATE_5:
			rose_clear_queues(sk);
			rose_write_internal(sk, ROSE_CLEAR_REQUEST);
			sk->protinfo.rose->timer = sk->protinfo.rose->t3;
			sk->protinfo.rose->state = ROSE_STATE_2;
			sk->state                = TCP_CLOSE;
			sk->shutdown            |= SEND_SHUTDOWN;
			sk->state_change(sk);
			sk->dead                 = 1;
			sk->destroy              = 1;
			break;
 
		default:
			break;
	}
 
	sock->data = NULL;	
	sk->socket = NULL;	/* Not used, but we should do this. **/
 
	return 0;
}
 
static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
	struct sock *sk = (struct sock *)sock->data;
	struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
	struct device *dev;
	ax25_address *user, *source;
	int n;
 
	if (sk->zapped == 0)
		return -EINVAL;
 
	if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
		return -EINVAL;
 
	if (addr->srose_family != AF_ROSE)
		return -EINVAL;
 
	if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
		return -EINVAL;
 
	if (addr->srose_ndigis > ROSE_MAX_DIGIS)
		return -EINVAL;
 
	if ((dev = rose_dev_get(&addr->srose_addr)) == NULL) {
		if (sk->debug)
			printk("ROSE: bind failed: invalid address\n");
		return -EADDRNOTAVAIL;
	}
 
	source = &addr->srose_call;
 
	if ((user = ax25_findbyuid(current->euid)) == NULL) {
		if (ax25_uid_policy && !suser())
			return -EACCES;
		user = source;
	}
 
	sk->protinfo.rose->source_addr   = addr->srose_addr;
	sk->protinfo.rose->source_call   = *user;
	sk->protinfo.rose->device        = dev;
	sk->protinfo.rose->source_ndigis = addr->srose_ndigis;
 
	if (addr_len == sizeof(struct full_sockaddr_rose)) {
		struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
		for (n = 0 ; n < addr->srose_ndigis ; n++)
			sk->protinfo.rose->source_digis[n] = full_addr->srose_digis[n];
	} else {
		if (sk->protinfo.rose->source_ndigis == 1) {
			sk->protinfo.rose->source_digis[0] = addr->srose_digi;
		}
	}
 
	rose_insert_socket(sk);
 
	sk->zapped = 0;
 
	if (sk->debug)
		printk("ROSE: socket is bound\n");
 
	return 0;
}
 
static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
{
	struct sock *sk = (struct sock *)sock->data;
	struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
	unsigned char cause, diagnostic;
	ax25_address *user;
	struct device *dev;
	int n;
 
	if (sk->state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
		sock->state = SS_CONNECTED;
		return 0;	/* Connect completed during a ERESTARTSYS event */
	}
 
	if (sk->state == TCP_CLOSE && sock->state == SS_CONNECTING) {
		sock->state = SS_UNCONNECTED;
		return -ECONNREFUSED;
	}
 
	if (sk->state == TCP_ESTABLISHED)
		return -EISCONN;	/* No reconnect on a seqpacket socket */
 
	sk->state   = TCP_CLOSE;
	sock->state = SS_UNCONNECTED;
 
	if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
		return -EINVAL;
 
	if (addr->srose_family != AF_ROSE)
		return -EINVAL;
 
	if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
		return -EINVAL;
 
	if (addr->srose_ndigis > ROSE_MAX_DIGIS)
		return -EINVAL;
 
	/* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
	if ((sk->protinfo.rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
		return -EINVAL;
 
	if ((sk->protinfo.rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause, &diagnostic)) == NULL) {
		sk->protinfo.rose->cause = cause;
		sk->protinfo.rose->diagnostic = diagnostic;
		return -ENETUNREACH;
	}
 
	if ((sk->protinfo.rose->lci = rose_new_lci(sk->protinfo.rose->neighbour)) == 0)
		return -ENETUNREACH;
 
	if (sk->zapped) {	/* Must bind first - autobinding in this may or may not work */
		sk->zapped = 0;
 
		if ((dev = rose_dev_first()) == NULL)
			return -ENETUNREACH;
 
		if ((user = ax25_findbyuid(current->euid)) == NULL)
			return -EINVAL;
 
		memcpy(&sk->protinfo.rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
		sk->protinfo.rose->source_call = *user;
		sk->protinfo.rose->device      = dev;
 
		rose_insert_socket(sk);		/* Finish the bind */
	}
 
	sk->protinfo.rose->dest_addr   = addr->srose_addr;
	sk->protinfo.rose->dest_call   = addr->srose_call;
	sk->protinfo.rose->rand        = ((int)sk->protinfo.rose & 0xFFFF) + sk->protinfo.rose->lci;
	sk->protinfo.rose->dest_ndigis = addr->srose_ndigis;
 
	if (addr_len == sizeof(struct full_sockaddr_rose)) {
		struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
		for (n = 0 ; n < addr->srose_ndigis ; n++)
			sk->protinfo.rose->dest_digis[n] = full_addr->srose_digis[n];
	} else {
		if (sk->protinfo.rose->dest_ndigis == 1) {
			sk->protinfo.rose->dest_digis[0] = addr->srose_digi;
		}
	}
 
	/* Move to connecting socket, start sending Connect Requests */
	sock->state   = SS_CONNECTING;
	sk->state     = TCP_SYN_SENT;
 
	sk->protinfo.rose->state = ROSE_STATE_1;
 
	sk->protinfo.rose->neighbour->use++;
 
	sk->protinfo.rose->timer = sk->protinfo.rose->t1;
	rose_write_internal(sk, ROSE_CALL_REQUEST);
 
	rose_set_timer(sk);
 
	/* Now the loop */
	if (sk->state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
		return -EINPROGRESS;
 
	cli();	/* To avoid races on the sleep */
 
	/*
	 * A Connect Ack with Choke or timeout or failed routing will go to closed.
	 */
	while (sk->state == TCP_SYN_SENT) {
		interruptible_sleep_on(sk->sleep);
		if (current->signal & ~current->blocked) {
			sti();
			return -ERESTARTSYS;
		}
	}
 
	if (sk->state != TCP_ESTABLISHED) {
		sti();
		sock->state = SS_UNCONNECTED;
		return sock_error(sk);	/* Always set at this point */
	}
 
	sock->state = SS_CONNECTED;
 
	sti();
 
	return 0;
}
 
static int rose_socketpair(struct socket *sock1, struct socket *sock2)
{
	return -EOPNOTSUPP;
}
 
static int rose_accept(struct socket *sock, struct socket *newsock, int flags)
{
	struct sock *sk;
	struct sock *newsk;
	struct sk_buff *skb;
 
	if (newsock->data != NULL)
		rose_destroy_socket((struct sock *)newsock->data);
 
	newsock->data = NULL;
 
	if ((sk = (struct sock *)sock->data) == NULL)
		return -EINVAL;
 
	if (sk->type != SOCK_SEQPACKET)
		return -EOPNOTSUPP;
 
	if (sk->state != TCP_LISTEN)
		return -EINVAL;
 
	/*
	 *	The write queue this time is holding sockets ready to use
	 *	hooked into the SABM we saved
	 */
	do {
		cli();
		if ((skb = skb_dequeue(&sk->receive_queue)) == NULL) {
			if (flags & O_NONBLOCK) {
				sti();
				return -EWOULDBLOCK;
			}
			interruptible_sleep_on(sk->sleep);
			if (current->signal & ~current->blocked) {
				sti();
				return -ERESTARTSYS;
			}
		}
	} while (skb == NULL);
 
	newsk = skb->sk;
	newsk->pair = NULL;
	sti();
 
	/* Now attach up the new socket */
	skb->sk = NULL;
	kfree_skb(skb, FREE_READ);
	sk->ack_backlog--;
	newsock->data = newsk;
 
	return 0;
}
 
static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
	int *uaddr_len, int peer)
{
	struct sockaddr_rose *srose = (struct sockaddr_rose *)uaddr;
	struct sock *sk = (struct sock *)sock->data;
	int n;
 
	if (peer != 0) {
		if (sk->state != TCP_ESTABLISHED)
			return -ENOTCONN;
		srose->srose_family = AF_ROSE;
		srose->srose_addr   = sk->protinfo.rose->dest_addr;
		srose->srose_call   = sk->protinfo.rose->dest_call;
		srose->srose_ndigis = sk->protinfo.rose->dest_ndigis;
		if (*uaddr_len >= sizeof(struct full_sockaddr_rose)) {
			struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)uaddr;
			for (n = 0 ; n < sk->protinfo.rose->dest_ndigis ; n++)
				full_srose->srose_digis[n] = sk->protinfo.rose->dest_digis[n];
			*uaddr_len = sizeof(struct full_sockaddr_rose);
		} else {
			if (sk->protinfo.rose->dest_ndigis >= 1) {
				srose->srose_ndigis = 1;
				srose->srose_digi = sk->protinfo.rose->dest_digis[0];
			}
			*uaddr_len = sizeof(struct sockaddr_rose);
		}
	} else {
		srose->srose_family = AF_ROSE;
		srose->srose_addr   = sk->protinfo.rose->source_addr;
		srose->srose_call   = sk->protinfo.rose->source_call;
		srose->srose_ndigis = sk->protinfo.rose->source_ndigis;
		if (*uaddr_len >= sizeof(struct full_sockaddr_rose)) {
			struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)uaddr;
			for (n = 0 ; n < sk->protinfo.rose->source_ndigis ; n++)
				full_srose->srose_digis[n] = sk->protinfo.rose->source_digis[n];
			*uaddr_len = sizeof(struct full_sockaddr_rose);
		} else {
			if (sk->protinfo.rose->source_ndigis >= 1) {
				srose->srose_ndigis = 1;
				srose->srose_digi = sk->protinfo.rose->source_digis[sk->protinfo.rose->source_ndigis-1];
			}
			*uaddr_len = sizeof(struct sockaddr_rose);
		}
	}
 
	return 0;
}
 
int rose_rx_call_request(struct sk_buff *skb, struct device *dev, struct rose_neigh *neigh, unsigned int lci)
{
	struct sock *sk;
	struct sock *make;
	struct rose_facilities_struct facilities;
	int n, len;
 
	skb->sk = NULL;		/* Initially we don't know who it's for */
 
	/*
	 *	skb->data points to the rose frame start
	 */
 
	len  = (((skb->data[3] >> 4) & 0x0F) + 1) / 2;
	len += (((skb->data[3] >> 0) & 0x0F) + 1) / 2;
 
	memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
 
	if (!rose_parse_facilities(skb->data + len + 4, &facilities)) {
		rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
		return 0;
	}
 
	sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
 
	/*
	 * We can't accept the Call Request.
	 */
	if (sk == NULL || sk->ack_backlog == sk->max_ack_backlog || (make = rose_make_new(sk)) == NULL) {
		rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
		return 0;
	}
 
	skb->sk     = make;
	make->state = TCP_ESTABLISHED;
 
	make->protinfo.rose->lci           = lci;
	make->protinfo.rose->dest_addr     = facilities.dest_addr;
	make->protinfo.rose->dest_call     = facilities.dest_call;
	make->protinfo.rose->dest_ndigis   = facilities.dest_ndigis;
	for (n = 0 ; n < facilities.dest_ndigis ; n++)
		make->protinfo.rose->dest_digis[n] = facilities.dest_digis[n];
	make->protinfo.rose->source_addr   = facilities.source_addr;
	make->protinfo.rose->source_call   = facilities.source_call;
	make->protinfo.rose->source_ndigis = facilities.source_ndigis;
	for (n = 0 ; n < facilities.source_ndigis ; n++)
		make->protinfo.rose->source_digis[n]= facilities.source_digis[n];
	make->protinfo.rose->neighbour     = neigh;
	make->protinfo.rose->device        = dev;
	make->protinfo.rose->facilities    = facilities;
 
	make->protinfo.rose->neighbour->use++;
 
	if (sk->protinfo.rose->defer) {
		make->protinfo.rose->state = ROSE_STATE_5;
	} else {
		rose_write_internal(make, ROSE_CALL_ACCEPTED);
		make->protinfo.rose->state = ROSE_STATE_3;
	}
 
	make->protinfo.rose->condition = 0x00;
	make->protinfo.rose->vs        = 0;
	make->protinfo.rose->va        = 0;
	make->protinfo.rose->vr        = 0;
	make->protinfo.rose->vl        = 0;
	sk->ack_backlog++;
	make->pair = sk;
 
	rose_insert_socket(make);
 
	skb_queue_head(&sk->receive_queue, skb);
 
	rose_set_timer(make);
 
	if (!sk->dead)
		sk->data_ready(sk, skb->len);
 
	return 1;
}
 
static int rose_sendmsg(struct socket *sock, struct msghdr *msg, int len, int noblock, int flags)
{
	struct sock *sk = (struct sock *)sock->data;
	struct sockaddr_rose *usrose = (struct sockaddr_rose *)msg->msg_name;
	int err;
	struct full_sockaddr_rose srose;
	struct sk_buff *skb;
	unsigned char *asmptr;
	int n, size, qbit = 0;
 
	if (sk->err)
		return sock_error(sk);
 
	if (flags)
		return -EINVAL;
 
	if (sk->zapped)
		return -EADDRNOTAVAIL;
 
	if (sk->shutdown & SEND_SHUTDOWN) {
		send_sig(SIGPIPE, current, 0);
		return -EPIPE;
	}
 
	if (sk->protinfo.rose->neighbour == NULL || sk->protinfo.rose->device == NULL)
		return -ENETUNREACH;
 
	if (usrose != NULL) {
		if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
			return -EINVAL;
		memset(&srose, 0, sizeof(struct full_sockaddr_rose));
		memcpy(&srose, usrose, msg->msg_namelen);
		if (rosecmp(&sk->protinfo.rose->dest_addr, &srose.srose_addr) != 0 ||
		    ax25cmp(&sk->protinfo.rose->dest_call, &srose.srose_call) != 0)
			return -EISCONN;
		if (srose.srose_ndigis != sk->protinfo.rose->dest_ndigis)
			return -EISCONN;
		if (srose.srose_ndigis == sk->protinfo.rose->dest_ndigis) {
			for (n = 0 ; n < srose.srose_ndigis ; n++)
				if (ax25cmp(&sk->protinfo.rose->dest_digis[n], &srose.srose_digis[n]) != 0)
					return -EISCONN;
		}
		if (srose.srose_family != AF_ROSE)
			return -EINVAL;
	} else {
		if (sk->state != TCP_ESTABLISHED)
			return -ENOTCONN;
 
		srose.srose_family = AF_ROSE;
		srose.srose_addr   = sk->protinfo.rose->dest_addr;
		srose.srose_call   = sk->protinfo.rose->dest_call;
		srose.srose_ndigis = sk->protinfo.rose->dest_ndigis;
		for (n = 0 ; n < sk->protinfo.rose->dest_ndigis ; n++)
			srose.srose_digis[n] = sk->protinfo.rose->dest_digis[n];
	}
 
	if (sk->debug)
		printk("ROSE: sendto: Addresses built.\n");
 
	/* Build a packet */
	if (sk->debug)
		printk("ROSE: sendto: building packet.\n");
 
	size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
 
	if ((skb = sock_alloc_send_skb(sk, size, 0, 0, &err)) == NULL)
		return err;
 
	skb->sk   = sk;
	skb->free = 1;
 
	skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
 
	/*
	 *	Put the data on the end
	 */
	asmptr = skb->h.raw = skb_put(skb, len);
 
	if (sk->debug)
		printk("ROSE: Appending user data\n");
 
	/* User data follows immediately after the ROSE transport header */
	memcpy_fromiovec(asmptr, msg->msg_iov, len);
 
	/*
	 *	If the Q BIT Include socket option is in force, the first
	 *	byte of the user data is the logical value of the Q Bit.
	 */
	if (sk->protinfo.rose->qbitincl) {
		qbit = skb->data[0];
		skb_pull(skb, 1);
	}
 
	/*
	 *	Push down the ROSE header
	 */
	asmptr = skb_push(skb, ROSE_MIN_LEN);
 
	if (sk->debug)
		printk("Building ROSE Header.\n");
 
	/* Build a ROSE Network header */
	asmptr[0] = ((sk->protinfo.rose->lci >> 8) & 0x0F) | ROSE_GFI;
	asmptr[1] = (sk->protinfo.rose->lci >> 0) & 0xFF;
	asmptr[2] = ROSE_DATA;
 
	if (qbit)
		asmptr[0] |= ROSE_Q_BIT;
 
	if (sk->debug)
		printk("Built header.\n");
 
	if (sk->debug)
		printk("ROSE: Transmitting buffer\n");
 
	if (sk->state != TCP_ESTABLISHED) {
		kfree_skb(skb, FREE_WRITE);
		return -ENOTCONN;
	}
 
#ifdef M_BIT
#define ROSE_PACLEN (256-ROSE_MIN_LEN)
	if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
		unsigned char header[ROSE_MIN_LEN];
		struct sk_buff *skbn;
		int frontlen;
		int lg;
 
		/* Save a copy of the Header */
		memcpy(header, skb->data, ROSE_MIN_LEN);
		skb_pull(skb, ROSE_MIN_LEN);
 
		frontlen = skb_headroom(skb);
 
		while (skb->len > 0) {
			if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, 0, &err)) == NULL)
				return err;
 
			skbn->sk   = sk;
			skbn->free = 1;
			skbn->arp  = 1;
 
			skb_reserve(skbn, frontlen);
 
			lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
 
			/* Copy the user data */
			memcpy(skb_put(skbn, lg), skb->data, lg);
			skb_pull(skb, lg);
 
			/* Duplicate the Header */
			skb_push(skbn, ROSE_MIN_LEN);
			memcpy(skbn->data, header, ROSE_MIN_LEN);
 
			if (skb->len > 0)
				skbn->data[2] |= M_BIT;
 
			skb_queue_tail(&sk->write_queue, skbn); /* Throw it on the queue */
		}
 
		skb->free = 1;
		kfree_skb(skb, FREE_WRITE);
	} else {
		skb_queue_tail(&sk->write_queue, skb);		/* Throw it on the queue */
	}
#else
	skb_queue_tail(&sk->write_queue, skb);	/* Shove it onto the queue */
#endif
	rose_kick(sk);
 
	return len;
}
 
 
static int rose_recvmsg(struct socket *sock, struct msghdr *msg, int size, int noblock,
		   int flags, int *addr_len)
{
	struct sock *sk = (struct sock *)sock->data;
	struct sockaddr_rose *srose = (struct sockaddr_rose *)msg->msg_name;
	int copied, qbit;
	unsigned char *asmptr;
	struct sk_buff *skb;
	int n, er;
 
	if (sk->err)
		return sock_error(sk);
 
	if (addr_len != NULL)
		*addr_len = sizeof(*srose);
 
	/*
	 * This works for seqpacket too. The receiver has ordered the queue for
	 * us! We do one quick check first though
	 */
	if (sk->state != TCP_ESTABLISHED)
		return -ENOTCONN;
 
	/* Now we can treat all alike */
	if ((skb = skb_recv_datagram(sk, flags, noblock, &er)) == NULL)
		return er;
 
	qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
 
	skb_pull(skb, ROSE_MIN_LEN);
 
	if (sk->protinfo.rose->qbitincl) {
		asmptr  = skb_push(skb, 1);
		*asmptr = qbit;
	}
 
	skb->h.raw = skb->data;
 
	copied = (size < skb->len) ? size : skb->len;
	skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
 
	if (srose != NULL) {
		srose->srose_family = AF_ROSE;
		srose->srose_addr   = sk->protinfo.rose->dest_addr;
		srose->srose_call   = sk->protinfo.rose->dest_call;
		srose->srose_ndigis = sk->protinfo.rose->dest_ndigis;
		if (*addr_len >= sizeof(struct full_sockaddr_rose)) {
			struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)msg->msg_name;
			for (n = 0 ; n < sk->protinfo.rose->dest_ndigis ; n++)
				full_srose->srose_digis[n] = sk->protinfo.rose->dest_digis[n];
			*addr_len = sizeof(struct full_sockaddr_rose);
		} else {
			if (sk->protinfo.rose->dest_ndigis >= 1) {
				srose->srose_ndigis = 1;
				srose->srose_digi = sk->protinfo.rose->dest_digis[0];
			}
			*addr_len = sizeof(struct sockaddr_rose);
		}
	}
 
	skb_free_datagram(sk, skb);
 
	return copied;
}
 
static int rose_shutdown(struct socket *sk, int how)
{
	return -EOPNOTSUPP;
}
 
static int rose_select(struct socket *sock , int sel_type, select_table *wait)
{
	struct sock *sk = (struct sock *)sock->data;
 
	return datagram_select(sk, sel_type, wait);
}
 
static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
	struct sock *sk = (struct sock *)sock->data;
	int err;
 
	switch (cmd) {
		case TIOCOUTQ: {
			long amount;
			if ((err = verify_area(VERIFY_WRITE, (void *)arg, sizeof(unsigned int))) != 0)
				return err;
			amount = sk->sndbuf - sk->wmem_alloc;
			if (amount < 0)
				amount = 0;
			put_fs_long(amount, (unsigned int *)arg);
			return 0;
		}
 
		case TIOCINQ: {
			struct sk_buff *skb;
			long amount = 0L;
			/* These two are safe on a single CPU system as only user tasks fiddle here */
			if ((skb = skb_peek(&sk->receive_queue)) != NULL)
				amount = skb->len;
			if ((err = verify_area(VERIFY_WRITE, (void *)arg, sizeof(unsigned int))) != 0)
				return err;
			put_fs_long(amount, (unsigned int *)arg);
			return 0;
		}
 
		case SIOCGSTAMP:
			if (sk != NULL) {
				if (sk->stamp.tv_sec == 0)
					return -ENOENT;
				if ((err = verify_area(VERIFY_WRITE, (void *)arg, sizeof(struct timeval))) != 0)
					return err;
				memcpy_tofs((void *)arg, &sk->stamp, sizeof(struct timeval));
				return 0;
			}
			return -EINVAL;
 
		case SIOCGIFADDR:
		case SIOCSIFADDR:
		case SIOCGIFDSTADDR:
		case SIOCSIFDSTADDR:
		case SIOCGIFBRDADDR:
		case SIOCSIFBRDADDR:
		case SIOCGIFNETMASK:
		case SIOCSIFNETMASK:
		case SIOCGIFMETRIC:
		case SIOCSIFMETRIC:
			return -EINVAL;
 
		case SIOCADDRT:
		case SIOCDELRT:
		case SIOCRSCLRRT:
			if (!suser()) return -EPERM;
			return rose_rt_ioctl(cmd, (void *)arg);
 
		case SIOCRSGCAUSE: {
			struct rose_cause_struct rose_cause;
			if ((err = verify_area(VERIFY_WRITE, (void *)arg, sizeof(struct rose_cause_struct))) != 0)
				return err;
			rose_cause.cause      = sk->protinfo.rose->cause;
			rose_cause.diagnostic = sk->protinfo.rose->diagnostic;
			memcpy_tofs((void *)arg, &rose_cause, sizeof(struct rose_cause_struct));
			return 0;
		}
 
		case SIOCRSSCAUSE: {
			struct rose_cause_struct rose_cause;
			if ((err = verify_area(VERIFY_READ, (void *)arg, sizeof(struct rose_cause_struct))) != 0)
				return err;
			memcpy_fromfs(&rose_cause, (void *)arg, sizeof(struct rose_cause_struct));
			sk->protinfo.rose->cause      = rose_cause.cause;
			sk->protinfo.rose->diagnostic = rose_cause.diagnostic;
			return 0;
		}
 
		case SIOCRSSL2CALL:
			if (!suser()) return -EPERM;
			if ((err = verify_area(VERIFY_READ, (void *)arg, sizeof(ax25_address))) != 0)
				return err;
			if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
				ax25_listen_release(&rose_callsign, NULL);
			memcpy_fromfs(&rose_callsign, (void *)arg, sizeof(ax25_address));
			if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
				ax25_listen_register(&rose_callsign, NULL);
			return 0;
 
		case SIOCRSGL2CALL:
			if ((err = verify_area(VERIFY_WRITE, (void *)arg, sizeof(ax25_address))) != 0)
				return err;
			memcpy_tofs((void *)arg, &rose_callsign, sizeof(ax25_address));
			return 0;
 
		case SIOCRSACCEPT:
			if (sk->protinfo.rose->state == ROSE_STATE_5) {
				rose_write_internal(sk, ROSE_CALL_ACCEPTED);
				sk->protinfo.rose->condition = 0x00;
				sk->protinfo.rose->vs        = 0;
				sk->protinfo.rose->va        = 0;
				sk->protinfo.rose->vr        = 0;
				sk->protinfo.rose->vl        = 0;
				sk->protinfo.rose->state     = ROSE_STATE_3;
			}
			return 0;
 
		case SIOCRSGFACILITIES: {
			if ((err = verify_area(VERIFY_WRITE, (void *)arg, sizeof(struct rose_facilities_struct))) != 0)
				return err;
			memcpy_tofs((void *)arg, &sk->protinfo.rose->facilities, sizeof(struct rose_facilities_struct));
			return 0;
		}
 
		default:
			return dev_ioctl(cmd, (void *)arg);
	}
 
	/*NOTREACHED*/
	return 0;
}
 
static int rose_get_info(char *buffer, char **start, off_t offset, int length, int dummy)
{
	struct sock *s;
	struct device *dev;
	const char *devname, *callsign;
	int len = 0;
	off_t pos = 0;
	off_t begin = 0;
 
	cli();
 
	len += sprintf(buffer, "dest_addr  dest_call src_addr   src_call  dev   lci neigh st vs vr va   t  t1  t2  t3  hb    idle Snd-Q Rcv-Q Inode\n");
 
	for (s = rose_list; s != NULL; s = s->next) {
		if ((dev = s->protinfo.rose->device) == NULL)
			devname = "???";
		else
			devname = dev->name;
 
		len += sprintf(buffer + len, "%-10s %-9s ",
			rose2asc(&s->protinfo.rose->dest_addr),
			ax2asc(&s->protinfo.rose->dest_call));
 
		if (ax25cmp(&s->protinfo.rose->source_call, &null_ax25_address) == 0)
			callsign = "??????-?";
		else
			callsign = ax2asc(&s->protinfo.rose->source_call);
 
		len += sprintf(buffer + len, "%-10s %-9s %-5s %3.3X %05d  %d  %d  %d  %d %3d %3d %3d %3d %3d %3d/%03d %5d %5d %ld\n",
			rose2asc(&s->protinfo.rose->source_addr), callsign,
			devname,  s->protinfo.rose->lci & 0x0FFF,
			(s->protinfo.rose->neighbour) ? s->protinfo.rose->neighbour->number : 0,
			s->protinfo.rose->state,
			s->protinfo.rose->vs, s->protinfo.rose->vr, s->protinfo.rose->va,
			s->protinfo.rose->timer / ROSE_SLOWHZ,
			s->protinfo.rose->t1    / ROSE_SLOWHZ,
			s->protinfo.rose->t2    / ROSE_SLOWHZ,
			s->protinfo.rose->t3    / ROSE_SLOWHZ,
			s->protinfo.rose->hb    / ROSE_SLOWHZ,
			0, 0,
			s->wmem_alloc, s->rmem_alloc,
			s->socket && SOCK_INODE(s->socket) ? SOCK_INODE(s->socket)->i_ino : 0);
 
		pos = begin + len;
 
		if (pos < offset) {
			len   = 0;
			begin = pos;
		}
 
		if (pos > offset + length)
			break;
	}
 
	sti();
 
	*start = buffer + (offset - begin);
	len   -= (offset - begin);
 
	if (len > length) len = length;
 
	return(len);
}
 
static struct proto_ops rose_proto_ops = {
	AF_ROSE,
 
	rose_create,
	rose_dup,
	rose_release,
	rose_bind,
	rose_connect,
	rose_socketpair,
	rose_accept,
	rose_getname,
	rose_select,
	rose_ioctl,
	rose_listen,
	rose_shutdown,
	rose_setsockopt,
	rose_getsockopt,
	rose_fcntl,
	rose_sendmsg,
	rose_recvmsg
};
 
static struct notifier_block rose_dev_notifier = {
	rose_device_event,
	0
};
 
#ifdef CONFIG_PROC_FS
static struct proc_dir_entry proc_net_rose = {
	PROC_NET_RS, 4, "rose",
	S_IFREG | S_IRUGO, 1, 0, 0,
	0, &proc_net_inode_operations, 
	rose_get_info
};
static struct proc_dir_entry proc_net_rose_neigh = {
	PROC_NET_RS_NEIGH, 10, "rose_neigh",
	S_IFREG | S_IRUGO, 1, 0, 0,
	0, &proc_net_inode_operations, 
	rose_neigh_get_info
};
static struct proc_dir_entry proc_net_rose_nodes = {
	PROC_NET_RS_NODES, 10, "rose_nodes",
	S_IFREG | S_IRUGO, 1, 0, 0,
	0, &proc_net_inode_operations, 
	rose_nodes_get_info
};
static struct proc_dir_entry proc_net_rose_routes = {
	PROC_NET_RS_ROUTES, 11, "rose_routes",
	S_IFREG | S_IRUGO, 1, 0, 0,
	0, &proc_net_inode_operations, 
	rose_routes_get_info
};
#endif	
 
static struct device dev_rose[] = {
	{"rose0", 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, rose_init},
	{"rose1", 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, rose_init},
	{"rose2", 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, rose_init},
	{"rose3", 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, rose_init},
	{"rose4", 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, rose_init},
	{"rose5", 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, rose_init},
	{"rose6", 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, rose_init},
	{"rose7", 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, rose_init},
	{"rose8", 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, rose_init},
	{"rose9", 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, rose_init}
};
 
void rose_proto_init(struct net_proto *pro)
{
	int i;
 
	rose_callsign = null_ax25_address;
 
	sock_register(rose_proto_ops.family, &rose_proto_ops);
	register_netdevice_notifier(&rose_dev_notifier);
	printk(KERN_INFO "F6FBB/G4KLX ROSE for Linux. Version 0.63 for AX25.035 Linux 2.0\n");
 
	if (!ax25_protocol_register(AX25_P_ROSE, rose_route_frame))
		printk(KERN_ERR "ROSE: unable to register protocol with AX.25\n");
	if (!ax25_linkfail_register(rose_link_failed))
		printk(KERN_ERR "ROSE: unable to register linkfail handler with AX.25\n");
 
	for (i = 0; i < 10; i++)
		register_netdev(&dev_rose[i]);
 
	rose_register_sysctl();
 
	rose_loopback_init();
 
#ifdef CONFIG_PROC_FS
	proc_net_register(&proc_net_rose);
	proc_net_register(&proc_net_rose_neigh);
	proc_net_register(&proc_net_rose_nodes);
	proc_net_register(&proc_net_rose_routes);
#endif
}
 
#ifdef MODULE
 
int init_module(void)
{
	rose_proto_init(NULL);
 
	register_symtab(NULL);
 
	return 0;
}
 
void cleanup_module(void)
{
	int i;
 
#ifdef CONFIG_PROC_FS
	proc_net_unregister(PROC_NET_RS);
	proc_net_unregister(PROC_NET_RS_NEIGH);
	proc_net_unregister(PROC_NET_RS_NODES);
	proc_net_unregister(PROC_NET_RS_ROUTES);
#endif
	rose_loopback_clear();
 
	rose_rt_free();
 
	ax25_protocol_release(AX25_P_ROSE);
	ax25_linkfail_release(rose_link_failed);
 
	if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
		ax25_listen_release(&rose_callsign, NULL);
 
	rose_unregister_sysctl();
 
	unregister_netdevice_notifier(&rose_dev_notifier);
 
	sock_unregister(AF_ROSE);
 
	for (i = 0; i < 10; i++) {
		if (dev_rose[i].priv != NULL) {
			kfree(dev_rose[i].priv);
			dev_rose[i].priv = NULL;
			unregister_netdev(&dev_rose[i]);
		}
	}
}
 
#endif
 
#endif
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.