OpenCores
URL https://opencores.org/ocsvn/or1k_old/or1k_old/trunk

Subversion Repositories or1k_old

[/] [or1k_old/] [trunk/] [rc203soc/] [sw/] [uClinux/] [include/] [linux/] [mm.h] - Rev 1765

Go to most recent revision | Compare with Previous | Blame | View Log

#ifndef _LINUX_MM_H
#define _LINUX_MM_H
 
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/kernel.h>
 
#ifdef __KERNEL__
 
#include <linux/string.h>
 
extern unsigned long high_memory;
 
#include <asm/page.h>
#include <asm/atomic.h>
 
#define VERIFY_READ 0
#define VERIFY_WRITE 1
 
#ifdef DEBUG_VERIFY_AREA
#undef verify_area
extern int verify_area(int, const void *, unsigned long);
extern int verify_area_flf(int, const void *, unsigned long, char*file, int line, char*function);
#define verify_area(a,b,c) verify_area_flf(a,b,c,__FILE__,__LINE__,__FUNCTION__)
 
#else /* !DEBUG_VERIFY_AREA */
extern int verify_area(int, const void *, unsigned long);
#endif /* !DEBUG_VERIFY_AREA */
 
#ifdef MAGIC_ROM_PTR
extern int is_in_rom(unsigned long);
#endif /* !MAGIC_ROM_PTR */
 
/*
 * Linux kernel virtual memory manager primitives.
 * The idea being to have a "virtual" mm in the same way
 * we have a virtual fs - giving a cleaner interface to the
 * mm details, and allowing different kinds of memory mappings
 * (from shared memory to executable loading to arbitrary
 * mmap() functions).
 */
 
#ifndef NO_MM
 
/*
 * This struct defines a memory VMM memory area. There is one of these
 * per VM-area/task.  A VM area is any part of the process virtual memory
 * space that has a special rule for the page-fault handlers (ie a shared
 * library, the executable area etc).
 */
struct vm_area_struct {
	struct mm_struct * vm_mm;	/* VM area parameters */
	unsigned long vm_start;
	unsigned long vm_end;
	pgprot_t vm_page_prot;
	unsigned short vm_flags;
/* AVL tree of VM areas per task, sorted by address */
	short vm_avl_height;
	struct vm_area_struct * vm_avl_left;
	struct vm_area_struct * vm_avl_right;
/* linked list of VM areas per task, sorted by address */
	struct vm_area_struct * vm_next;
/* for areas with inode, the circular list inode->i_mmap */
/* for shm areas, the circular list of attaches */
/* otherwise unused */
	struct vm_area_struct * vm_next_share;
	struct vm_area_struct * vm_prev_share;
/* more */
	struct vm_operations_struct * vm_ops;
	unsigned long vm_offset;
	struct inode * vm_inode;
	unsigned long vm_pte;			/* shared mem */
};
 
#else /* NO_MM */
 
 
/* This dummy vm_area_struct does not define a VM area, it is only
   used to convey data between do_mmap and a f_op's mmap function. */
 
struct vm_area_struct {
	unsigned long vm_start;
	unsigned long vm_end;
	unsigned short vm_flags;
	unsigned long vm_offset;
};
 
#endif /* NO_MM */
 
/*
 * vm_flags..
 */
#define VM_READ		0x0001	/* currently active flags */
#define VM_WRITE	0x0002
#define VM_EXEC		0x0004
#define VM_SHARED	0x0008
 
#define VM_MAYREAD	0x0010	/* limits for mprotect() etc */
#define VM_MAYWRITE	0x0020
#define VM_MAYEXEC	0x0040
#define VM_MAYSHARE	0x0080
 
#define VM_GROWSDOWN	0x0100	/* general info on the segment */
#define VM_GROWSUP	0x0200
#define VM_SHM		0x0400	/* shared memory area, don't swap out */
#define VM_DENYWRITE	0x0800	/* ETXTBSY on write attempts.. */
 
#define VM_EXECUTABLE	0x1000
#define VM_LOCKED	0x2000
 
#define VM_STACK_FLAGS	0x0177
 
#ifndef NO_MM
 
/*
 * mapping from the currently active vm_flags protection bits (the
 * low four bits) to a page protection mask..
 */
extern pgprot_t protection_map[16];
 
 
/*
 * These are the virtual MM functions - opening of an area, closing and
 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 * to the functions called when a no-page or a wp-page exception occurs. 
 */
struct vm_operations_struct {
	void (*open)(struct vm_area_struct * area);
	void (*close)(struct vm_area_struct * area);
	void (*unmap)(struct vm_area_struct *area, unsigned long, size_t);
	void (*protect)(struct vm_area_struct *area, unsigned long, size_t, unsigned int newprot);
	int (*sync)(struct vm_area_struct *area, unsigned long, size_t, unsigned int flags);
	void (*advise)(struct vm_area_struct *area, unsigned long, size_t, unsigned int advise);
	unsigned long (*nopage)(struct vm_area_struct * area, unsigned long address, int write_access);
	unsigned long (*wppage)(struct vm_area_struct * area, unsigned long address,
		unsigned long page);
	int (*swapout)(struct vm_area_struct *,  unsigned long, pte_t *);
	pte_t (*swapin)(struct vm_area_struct *, unsigned long, unsigned long);
};
 
#endif /* !NO_MM */
 
/*
 * Try to keep the most commonly accessed fields in single cache lines
 * here (16 bytes or greater).  This ordering should be particularly
 * beneficial on 32-bit processors.
 *
 * The first line is data used in page cache lookup, the second line
 * is used for linear searches (eg. clock algorithm scans). 
 */
typedef struct page {
	/* these must be first (free area handling) */
	struct page *next;
	struct page *prev;
	struct inode *inode;
	unsigned long offset;
	struct page *next_hash;
	atomic_t count;
	unsigned flags;	/* atomic flags, some possibly updated asynchronously */
	unsigned dirty:16,
		 age:8;
	struct wait_queue *wait;
	struct page *prev_hash;
	struct buffer_head * buffers;
	unsigned long swap_unlock_entry;
	unsigned long map_nr;	/* page->map_nr == page - mem_map */
} mem_map_t;
 
/* Page flag bit values */
#define PG_locked		 0
#define PG_error		 1
#define PG_referenced		 2
#define PG_uptodate		 3
#define PG_free_after		 4
#define PG_decr_after		 5
#define PG_swap_unlock_after	 6
#define PG_DMA			 7
#define PG_reserved		31
 
/* Make it prettier to test the above... */
#define PageLocked(page)	(test_bit(PG_locked, &(page)->flags))
#define PageError(page)		(test_bit(PG_error, &(page)->flags))
#define PageReferenced(page)	(test_bit(PG_referenced, &(page)->flags))
#define PageDirty(page)		(test_bit(PG_dirty, &(page)->flags))
#define PageUptodate(page)	(test_bit(PG_uptodate, &(page)->flags))
#define PageFreeAfter(page)	(test_bit(PG_free_after, &(page)->flags))
#define PageDecrAfter(page)	(test_bit(PG_decr_after, &(page)->flags))
#define PageSwapUnlockAfter(page) (test_bit(PG_swap_unlock_after, &(page)->flags))
#define PageDMA(page)		(test_bit(PG_DMA, &(page)->flags))
#define PageReserved(page)	(test_bit(PG_reserved, &(page)->flags))
 
/*
 * page->reserved denotes a page which must never be accessed (which
 * may not even be present).
 *
 * page->dma is set for those pages which lie in the range of
 * physical addresses capable of carrying DMA transfers.
 *
 * Multiple processes may "see" the same page. E.g. for untouched
 * mappings of /dev/null, all processes see the same page full of
 * zeroes, and text pages of executables and shared libraries have
 * only one copy in memory, at most, normally.
 *
 * For the non-reserved pages, page->count denotes a reference count.
 *   page->count == 0 means the page is free.
 *   page->count == 1 means the page is used for exactly one purpose
 *   (e.g. a private data page of one process).
 *
 * A page may be used for kmalloc() or anyone else who does a
 * get_free_page(). In this case the page->count is at least 1, and
 * all other fields are unused but should be 0 or NULL. The
 * management of this page is the responsibility of the one who uses
 * it.
 *
 * The other pages (we may call them "process pages") are completely
 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 * The following discussion applies only to them.
 *
 * A page may belong to an inode's memory mapping. In this case,
 * page->inode is the inode, and page->offset is the file offset
 * of the page (not necessarily a multiple of PAGE_SIZE).
 *
 * A page may have buffers allocated to it. In this case,
 * page->buffers is a circular list of these buffer heads. Else,
 * page->buffers == NULL.
 *
 * For pages belonging to inodes, the page->count is the number of
 * attaches, plus 1 if buffers are allocated to the page.
 *
 * All pages belonging to an inode make up a doubly linked list
 * inode->i_pages, using the fields page->next and page->prev. (These
 * fields are also used for freelist management when page->count==0.)
 * There is also a hash table mapping (inode,offset) to the page
 * in memory if present. The lists for this hash table use the fields
 * page->next_hash and page->prev_hash.
 *
 * All process pages can do I/O:
 * - inode pages may need to be read from disk,
 * - inode pages which have been modified and are MAP_SHARED may need
 *   to be written to disk,
 * - private pages which have been modified may need to be swapped out
 *   to swap space and (later) to be read back into memory.
 * During disk I/O, page->locked is true. This bit is set before I/O
 * and reset when I/O completes. page->wait is a wait queue of all
 * tasks waiting for the I/O on this page to complete.
 * page->uptodate tells whether the page's contents is valid.
 * When a read completes, the page becomes uptodate, unless a disk I/O
 * error happened.
 * When a write completes, and page->free_after is true, the page is
 * freed without any further delay.
 *
 * For choosing which pages to swap out, inode pages carry a
 * page->referenced bit, which is set any time the system accesses
 * that page through the (inode,offset) hash table.
 * There is also the page->age counter, which implements a linear
 * decay (why not an exponential decay?), see swapctl.h.
 */
 
extern mem_map_t * mem_map;
 
#ifdef DEBUG_FREE_PAGES
 
#undef __get_free_pages
#undef get_free_page
#undef free_page
#undef __free_page
 
extern unsigned long __get_free_pages(int priority, unsigned long gfporder, int dma);
extern void free_pages(unsigned long addr, unsigned long order);
extern unsigned long get_free_page(int priority);
extern void __free_page(struct page * ptr);
 
/*
 * This is timing-critical - most of the time in getting a new page
 * goes to clearing the page. If you want a page without the clearing
 * overhead, just use __get_free_page() directly..
 */
#define __get_free_page(priority) __get_free_pages((priority),0,0)
#define __get_dma_pages(priority, order) __get_free_pages((priority),(order),1)
extern unsigned long __get_free_pages_flf(int priority, unsigned long gfporder, int dma, char *file, int line, char*function);
extern unsigned long get_free_page_flf(int priority, char * file, int line, char*function);
 
#define __get_free_pages(priority,order,dma) __get_free_pages_flf(priority,order,dma,__FILE__,__LINE__,__FUNCTION__)
#define get_free_page(priority) get_free_page_flf(priority,__FILE__,__LINE__,__FUNCTION__)
 
 
/* memory.c & swap.c*/
 
 
#define free_page(addr) free_pages((addr),0)
extern void free_pages_flf(unsigned long addr, unsigned long order, char*file, int line, char*function);
extern void __free_page_flf(struct page *, char*file, int line, char*function);
 
#define free_pages(addr, order) free_pages_flf(addr, order, __FILE__, __LINE__, __FUNCTION__)
#define __free_page(page) __free_page_flf(page, __FILE__, __LINE__, __FUNCTION__)
 
#else /* !DEBUG_FREE_PAGES */
 
/*
 * This is timing-critical - most of the time in getting a new page
 * goes to clearing the page. If you want a page without the clearing
 * overhead, just use __get_free_page() directly..
 */
#define __get_free_page(priority) __get_free_pages((priority),0,0)
#define __get_dma_pages(priority, order) __get_free_pages((priority),(order),1)
extern unsigned long __get_free_pages(int priority, unsigned long gfporder, int dma);
 
extern inline unsigned long get_free_page(int priority)
{
	unsigned long page;
 
	page = __get_free_page(priority);
	if (page)
		memset((void *) page, 0, PAGE_SIZE);
	return page;
}
 
/* memory.c & swap.c*/
 
#define free_page(addr) free_pages((addr),0)
extern void free_pages(unsigned long addr, unsigned long order);
extern void __free_page(struct page *);
 
#endif /* !DEBUG_FREE_PAGES */
 
extern void show_free_areas(void);
extern unsigned long put_dirty_page(struct task_struct * tsk,unsigned long page,
	unsigned long address);
 
 
extern void free_page_tables(struct mm_struct * mm);
extern void clear_page_tables(struct task_struct * tsk);
extern int new_page_tables(struct task_struct * tsk);
extern int copy_page_tables(struct task_struct * to);
 
#ifndef NO_MM
 
extern int zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size);
extern int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma);
extern int remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
extern int zeromap_page_range(unsigned long from, unsigned long size, pgprot_t prot);
 
extern void vmtruncate(struct inode * inode, unsigned long offset);
extern void handle_mm_fault(struct vm_area_struct *vma, unsigned long address, int write_access);
extern void do_wp_page(struct task_struct * tsk, struct vm_area_struct * vma, unsigned long address, int write_access);
extern void do_no_page(struct task_struct * tsk, struct vm_area_struct * vma, unsigned long address, int write_access);
 
#endif /* !NO_MM */
 
extern unsigned long paging_init(unsigned long start_mem, unsigned long end_mem);
extern void mem_init(unsigned long start_mem, unsigned long end_mem);
extern void show_mem(void);
extern void oom(struct task_struct * tsk);
extern void si_meminfo(struct sysinfo * val);
 
/* vmalloc.c */
 
extern void * vmalloc(unsigned long size);
extern void * vremap(unsigned long offset, unsigned long size);
extern void vfree(void * addr);
extern int vread(char *buf, char *addr, int count);
 
/* mmap.c */
#ifdef DEBUG_MMAP
 
#undef do_mmap
#undef do_munmap
extern unsigned long do_mmap(struct file * file, unsigned long addr, unsigned long len,
	unsigned long prot, unsigned long flags, unsigned long off);
extern int do_munmap(unsigned long, size_t);
 
extern unsigned long do_mmap_flf(struct file * file, unsigned long addr, unsigned long len,
	unsigned long prot, unsigned long flags, unsigned long off, char*filename, int line, char*function);
extern int do_munmap_flf(unsigned long, size_t, char*file, int line, char*function);
 
#define do_mmap(file,addr,len,prot,flags,off) do_mmap_flf(file,addr,len,prot,flags,off,__FILE__,__LINE__,__FUNCTION__)
#define do_munmap(addr, size) do_munmap_flf(addr, size,__FILE__,__LINE__,__FUNCTION__)
 
#else /* !DEBUG_MMAP */
extern unsigned long do_mmap(struct file * file, unsigned long addr, unsigned long len,
	unsigned long prot, unsigned long flags, unsigned long off);
extern int do_munmap(unsigned long, size_t);
#endif /* DEBUG_MMAP */
extern void exit_mmap(struct mm_struct *);
#ifndef NO_MM
extern void merge_segments(struct mm_struct *, unsigned long, unsigned long);
extern void insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void remove_shared_vm_struct(struct vm_area_struct *);
extern void build_mmap_avl(struct mm_struct *);
extern unsigned long get_unmapped_area(unsigned long, unsigned long);
#endif /* !NO_MM */
 
/* filemap.c */
extern unsigned long page_unuse(unsigned long);
extern int shrink_mmap(int, int, int);
extern void truncate_inode_pages(struct inode *, unsigned long);
 
#define GFP_BUFFER	0x00
#define GFP_ATOMIC	0x01
#define GFP_USER	0x02
#define GFP_KERNEL	0x03
#define GFP_NOBUFFER	0x04
#define GFP_NFS		0x05
#define GFP_IO		0x06
 
/* Flag - indicates that the buffer will be suitable for DMA.  Ignored on some
   platforms, used as appropriate on others */
 
#define GFP_DMA		0x80
 
#define GFP_LEVEL_MASK 0xf
 
#ifndef NO_MM
/* vma is the first one with  address < vma->vm_end,
 * and even  address < vma->vm_start. Have to extend vma. */
static inline int expand_stack(struct vm_area_struct * vma, unsigned long address)
{
	unsigned long grow;
 
	address &= PAGE_MASK;
	grow = vma->vm_start - address;
	if (vma->vm_end - address
	    > (unsigned long) current->rlim[RLIMIT_STACK].rlim_cur ||
	    (vma->vm_mm->total_vm << PAGE_SHIFT) + grow
	    > (unsigned long) current->rlim[RLIMIT_AS].rlim_cur)
		return -ENOMEM;
	vma->vm_start = address;
	vma->vm_offset -= grow;
	vma->vm_mm->total_vm += grow >> PAGE_SHIFT;
	if (vma->vm_flags & VM_LOCKED)
		vma->vm_mm->locked_vm += grow >> PAGE_SHIFT;
	return 0;
}
 
#define avl_empty	(struct vm_area_struct *) NULL
 
/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
static inline struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
{
	struct vm_area_struct * result = NULL;
 
	if (mm) {
		struct vm_area_struct * tree = mm->mmap_avl;
		for (;;) {
			if (tree == avl_empty)
				break;
			if (tree->vm_end > addr) {
				result = tree;
				if (tree->vm_start <= addr)
					break;
				tree = tree->vm_avl_left;
			} else
				tree = tree->vm_avl_right;
		}
	}
	return result;
}
 
/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
   NULL if none.  Assume start_addr < end_addr. */
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
{
	struct vm_area_struct * vma;
 
	vma = find_vma(mm,start_addr);
	if (vma && end_addr <= vma->vm_start)
		vma = NULL;
	return vma;
}
 
#endif /* !NO_MM */
 
#endif /* __KERNEL__ */
 
#endif
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.