URL
https://opencores.org/ocsvn/or1k_old/or1k_old/trunk
Subversion Repositories or1k_old
[/] [or1k_old/] [trunk/] [uclinux/] [uClinux-2.0.x/] [drivers/] [cdrom/] [cm206.c] - Rev 199
Go to most recent revision | Compare with Previous | Blame | View Log
/* cm206.c. A linux-driver for the cm206 cdrom player with cm260 adapter card. Copyright (c) 1995, 1996 David van Leeuwen. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. History: Started 25 jan 1994. Waiting for documentation... 22 feb 1995: 0.1a first reasonably safe polling driver. Two major bugs, one in read_sector and one in do_cm206_request, happened to cancel! 25 feb 1995: 0.2a first reasonable interrupt driven version of above. uart writes are still done in polling mode. 25 feb 1995: 0.21a writes also in interrupt mode, still some small bugs to be found... Larger buffer. 2 mrt 1995: 0.22 Bug found (cd-> nowhere, interrupt was called in initialization), read_ahead of 16. Timeouts implemented. unclear if they do something... 7 mrt 1995: 0.23 Start of background read-ahead. 18 mrt 1995: 0.24 Working background read-ahead. (still problems) 26 mrt 1995: 0.25 Multi-session ioctl added (kernel v1.2). Statistics implemented, though separate stats206.h. Accessible trough ioctl 0x1000 (just a number). Hard to choose between v1.2 development and 1.1.75. Bottom-half doesn't work with 1.2... 0.25a: fixed... typo. Still problems... 1 apr 1995: 0.26 Module support added. Most bugs found. Use kernel 1.2.n. 5 apr 1995: 0.27 Auto-probe for the adapter card base address. Auto-probe for the adaptor card irq line. 7 apr 1995: 0.28 Added lilo setup support for base address and irq. Use major number 32 (not in this source), officially assigned to this driver. 9 apr 1995: 0.29 Added very limited audio support. Toc_header, stop, pause, resume, eject. Play_track ignores track info, because we can't read a table-of-contents entry. Toc_entry is implemented as a `placebo' function: always returns start of disc. 3 may 1995: 0.30 Audio support completed. The get_toc_entry function is implemented as a binary search. 15 may 1995: 0.31 More work on audio stuff. Workman is not easy to satisfy; changed binary search into linear search. Auto-probe for base address somewhat relaxed. 1 jun 1995: 0.32 Removed probe_irq_on/off for module version. 10 jun 1995: 0.33 Workman still behaves funny, but you should be able to eject and substitute another disc. An adaptation of 0.33 is included in linux-1.3.7 by Eberhard Moenkeberg 18 jul 1995: 0.34 Patch by Heiko Eissfeldt included, mainly considering verify_area's in the ioctls. Some bugs introduced by EM considering the base port and irq fixed. 18 dec 1995: 0.35 Add some code for error checking... no luck... We jump to reach our goal: version 1.0 in the next stable linux kernel. 19 mar 1996: 0.95 Different implementation of CDROM_GET_UPC, on request of Thomas Quinot. 25 mar 1996: 0.96 Interpretation of opening with O_WRONLY or O_RDWR: open only for ioctl operation, e.g., for operation of tray etc. 4 apr 1996: 0.97 First implementation of layer between VFS and cdrom driver, a generic interface. Much of the functionality of cm206_open() and cm206_ioctl() is transferred to a new file cdrom.c and its header ucdrom.h. Upgrade to Linux kernel 1.3.78. 11 apr 1996 0.98 Upgrade to Linux kernel 1.3.85 Made it more uniform. * * Parts of the code are based upon lmscd.c written by Kai Petzke, * sbpcd.c written by Eberhard Moenkeberg, and mcd.c by Martin * Harriss, but any off-the-shelf dynamic programming algorithm won't * be able to find them. * * The cm206 drive interface and the cm260 adapter card seem to be * sufficiently different from their cm205/cm250 counterparts * in order to write a complete new driver. * * I call all routines connected to the Linux kernel something * with `cm206' in it, as this stuff is too series-dependent. * * Currently, my limited knowledge is based on: * - The Linux Kernel Hacker's guide, v. 0.5, by Michael K. Johnson * - Linux Kernel Programmierung, by Michael Beck and others * - Philips/LMS cm206 and cm226 product specification * - Philips/LMS cm260 product specification * * David van Leeuwen, david@tm.tno.nl. */ #define VERSION "$Id: cm206.c,v 1.1.1.1 2001-09-10 07:44:13 simons Exp $" #include <linux/module.h> #include <linux/errno.h> /* These include what we really need */ #include <linux/delay.h> #include <linux/string.h> #include <linux/sched.h> #include <linux/interrupt.h> #include <linux/timer.h> #include <linux/cdrom.h> #include <linux/ioport.h> #include <linux/mm.h> #include <linux/malloc.h> #include <linux/ucdrom.h> #include <asm/io.h> #define MAJOR_NR CM206_CDROM_MAJOR #include <linux/blk.h> #undef DEBUG #define STATISTICS /* record times and frequencies of events */ #undef AUTO_PROBE_MODULE #define USE_INSW #include <linux/cm206.h> /* This variable defines whether or not to probe for adapter base port address and interrupt request. It can be overridden by the boot parameter `auto'. */ static int auto_probe=1; /* Yes, why not? */ static int cm206_base = CM206_BASE; static int cm206_irq = CM206_IRQ; #define POLLOOP 10000 #define READ_AHEAD 1 /* defines private buffer, waste! */ #define BACK_AHEAD 1 /* defines adapter-read ahead */ #define DATA_TIMEOUT (3*HZ) /* measured in jiffies (10 ms) */ #define UART_TIMEOUT (5*HZ/100) #define DSB_TIMEOUT (7*HZ) /* time for the slowest command to finish */ #define LINUX_BLOCK_SIZE 512 /* WHERE is this defined? */ #define RAW_SECTOR_SIZE 2352 /* ok, is also defined in cdrom.h */ #define ISO_SECTOR_SIZE 2048 #define BLOCKS_ISO (ISO_SECTOR_SIZE/LINUX_BLOCK_SIZE) /* 4 */ #define CD_SYNC_HEAD 16 /* CD_SYNC + CD_HEAD */ #ifdef STATISTICS /* keep track of errors in counters */ #define stats(i) { ++cd->stats[st_ ## i]; \ cd->last_stat[st_ ## i] = cd->stat_counter++; \ } #else #define stats(i) (void) 0 #endif #ifdef DEBUG /* from lmscd.c */ #define debug(a) printk a #else #define debug(a) (void) 0 #endif typedef unsigned char uch; /* 8-bits */ typedef unsigned short ush; /* 16-bits */ struct toc_struct{ /* private copy of Table of Contents */ uch track, fsm[3], q0; }; struct cm206_struct { ush intr_ds; /* data status read on last interrupt */ ush intr_ls; /* uart line status read on last interrupt*/ uch intr_ur; /* uart receive buffer */ uch dsb, cc; /* drive status byte and condition (error) code */ uch fool; int command; /* command to be written to the uart */ int openfiles; ush sector[READ_AHEAD*RAW_SECTOR_SIZE/2]; /* buffered cd-sector */ int sector_first, sector_last; /* range of these sector */ struct wait_queue * uart; /* wait for interrupt */ struct wait_queue * data; struct timer_list timer; /* time-out */ char timed_out; signed char max_sectors; char wait_back; /* we're waiting for a background-read */ char background; /* is a read going on in the background? */ int adapter_first; /* if so, that's the starting sector */ int adapter_last; char fifo_overflowed; uch disc_status[7]; /* result of get_disc_status command */ #ifdef STATISTICS int stats[NR_STATS]; int last_stat[NR_STATS]; /* `time' at which stat was stat */ int stat_counter; #endif struct toc_struct toc[101]; /* The whole table of contents + lead-out */ uch q[10]; /* Last read q-channel info */ uch audio_status[5]; /* last read position on pause */ uch media_changed; /* record if media changed */ }; #define DISC_STATUS cd->disc_status[0] #define FIRST_TRACK cd->disc_status[1] #define LAST_TRACK cd->disc_status[2] #define PAUSED cd->audio_status[0] /* misuse this memory byte! */ #define PLAY_TO cd->toc[0] /* toc[0] records end-time in play */ static struct cm206_struct * cd; /* the main memory structure */ /* First, we define some polling functions. These are actually only being used in the initialization. */ void send_command_polled(int command) { int loop=POLLOOP; while (!(inw(r_line_status) & ls_transmitter_buffer_empty) && loop>0) --loop; outw(command, r_uart_transmit); } uch receive_echo_polled(void) { int loop=POLLOOP; while (!(inw(r_line_status) & ls_receive_buffer_full) && loop>0) --loop; return ((uch) inw(r_uart_receive)); } uch send_receive_polled(int command) { send_command_polled(command); return receive_echo_polled(); } /* The interrupt handler. When the cm260 generates an interrupt, very much care has to be taken in reading out the registers in the right order; in case of a receive_buffer_full interrupt, first the uart_receive must be read, and then the line status again to de-assert the interrupt line. It took me a couple of hours to find this out:-( The function reset_cm206 appears to cause an interrupt, because pulling up the INIT line clears both the uart-write-buffer /and/ the uart-write-buffer-empty mask. We call this a `lost interrupt,' as there seems so reason for this to happen. */ static void cm206_interrupt(int sig, void *dev_id, struct pt_regs * regs) /* you rang? */ { volatile ush fool; cd->intr_ds = inw(r_data_status); /* resets data_ready, data_error, crc_error, sync_error, toc_ready interrupts */ cd->intr_ls = inw(r_line_status); /* resets overrun bit */ if (cd->intr_ls & ls_attention) stats(attention); /* receive buffer full? */ if (cd->intr_ls & ls_receive_buffer_full) { cd->intr_ur = inb(r_uart_receive); /* get order right! */ cd->intr_ls = inw(r_line_status); /* resets rbf interrupt */ if (!cd->background && cd->uart) wake_up_interruptible(&cd->uart); } /* data ready in fifo? */ else if (cd->intr_ds & ds_data_ready) { if (cd->background) ++cd->adapter_last; if ((cd->wait_back || !cd->background) && cd->data) wake_up_interruptible(&cd->data); stats(data_ready); } /* ready to issue a write command? */ else if (cd->command && cd->intr_ls & ls_transmitter_buffer_empty) { outw(dc_normal | (inw(r_data_status) & 0x7f), r_data_control); outw(cd->command, r_uart_transmit); cd->command=0; if (!cd->background) wake_up_interruptible(&cd->uart); } /* now treat errors (at least, identify them for debugging) */ else if (cd->intr_ds & ds_fifo_overflow) { debug(("Fifo overflow at sectors 0x%x\n", cd->sector_first)); fool = inw(r_fifo_output_buffer); /* de-assert the interrupt */ cd->fifo_overflowed=1; /* signal one word less should be read */ stats(fifo_overflow); } else if (cd->intr_ds & ds_data_error) { debug(("Data error at sector 0x%x\n", cd->sector_first)); stats(data_error); } else if (cd->intr_ds & ds_crc_error) { debug(("CRC error at sector 0x%x\n", cd->sector_first)); stats(crc_error); } else if (cd->intr_ds & ds_sync_error) { debug(("Sync at sector 0x%x\n", cd->sector_first)); stats(sync_error); } else if (cd->intr_ds & ds_toc_ready) { /* do something appropriate */ } /* couldn't see why this interrupt, maybe due to init */ else { outw(dc_normal | READ_AHEAD, r_data_control); stats(lost_intr); } if (cd->background && (cd->adapter_last-cd->adapter_first == cd->max_sectors || cd->fifo_overflowed)) mark_bh(CM206_BH); /* issue a stop read command */ stats(interrupt); } /* we have put the address of the wait queue in who */ void cm206_timeout(unsigned long who) { cd->timed_out = 1; wake_up_interruptible((struct wait_queue **) who); } /* This function returns 1 if a timeout occurred, 0 if an interrupt happened */ int sleep_or_timeout(struct wait_queue ** wait, int timeout) { cd->timer.data=(unsigned long) wait; cd->timer.expires = jiffies + timeout; add_timer(&cd->timer); interruptible_sleep_on(wait); del_timer(&cd->timer); if (cd->timed_out) { cd->timed_out = 0; return 1; } else return 0; } void cm206_delay(int jiffies) { struct wait_queue * wait = NULL; sleep_or_timeout(&wait, jiffies); } void send_command(int command) { if (!(inw(r_line_status) & ls_transmitter_buffer_empty)) { cd->command = command; cli(); /* don't interrupt before sleep */ outw(dc_mask_sync_error | dc_no_stop_on_error | (inw(r_data_status) & 0x7f), r_data_control); /* interrupt routine sends command */ if (sleep_or_timeout(&cd->uart, UART_TIMEOUT)) { debug(("Time out on write-buffer\n")); stats(write_timeout); outw(command, r_uart_transmit); } } else outw(command, r_uart_transmit); } uch receive_echo(void) { if (!(inw(r_line_status) & ls_receive_buffer_full) && sleep_or_timeout(&cd->uart, UART_TIMEOUT)) { debug(("Time out on receive-buffer\n")); stats(receive_timeout); return ((uch) inw(r_uart_receive)); } return cd->intr_ur; } inline uch send_receive(int command) { send_command(command); return receive_echo(); } uch wait_dsb(void) { if (!(inw(r_line_status) & ls_receive_buffer_full) && sleep_or_timeout(&cd->uart, DSB_TIMEOUT)) { debug(("Time out on Drive Status Byte\n")); stats(dsb_timeout); return ((uch) inw(r_uart_receive)); } return cd->intr_ur; } int type_0_command(int command, int expect_dsb) { int e; if (command != (e=send_receive(command))) { debug(("command 0x%x echoed as 0x%x\n", command, e)); stats(echo); return -1; } if (expect_dsb) { cd->dsb = wait_dsb(); /* wait for command to finish */ } return 0; } int type_1_command(int command, int bytes, uch * status) /* returns info */ { int i; if (type_0_command(command,0)) return -1; for(i=0; i<bytes; i++) status[i] = send_receive(c_gimme); return 0; } /* This function resets the adapter card. We'd better not do this too */ /* often, because it tends to generate `lost interrupts.' */ void reset_cm260(void) { outw(dc_normal | dc_initialize | READ_AHEAD, r_data_control); udelay(10); /* 3.3 mu sec minimum */ outw(dc_normal | READ_AHEAD, r_data_control); } /* fsm: frame-sec-min from linear address */ void fsm(int lba, uch * fsm) { fsm[0] = lba % 75; lba /= 75; lba += 2; fsm[1] = lba % 60; fsm[2] = lba / 60; } inline int fsm2lba(uch * fsm) { return fsm[0] + 75*(fsm[1]-2 + 60*fsm[2]); } inline int f_s_m2lba(uch f, uch s, uch m) { return f + 75*(s-2 + 60*m); } int start_read(int start) { uch read_sector[4] = {c_read_data, }; int i, e; fsm(start, &read_sector[1]); for (i=0; i<4; i++) if (read_sector[i] != (e=send_receive(read_sector[i]))) { debug(("read_sector: %x echoes %x\n", read_sector[i], e)); stats(echo); return -1; } return 0; } int stop_read(void) { type_0_command(c_stop,0); if(receive_echo() != 0xff) { debug(("c_stop didn't send 0xff\n")); stats(stop_0xff); return -1; } return 0; } /* This function starts to read sectors in adapter memory, the interrupt routine should stop the read. In fact, the bottom_half routine takes care of this. Set a flag `background' in the cd struct to indicate the process. */ int read_background(int start, int reading) { if (cd->background) return -1; /* can't do twice */ outw(dc_normal | BACK_AHEAD, r_data_control); if (!reading && start_read(start)) return -2; cd->adapter_first = cd->adapter_last = start; cd->background = 1; /* flag a read is going on */ return 0; } #ifdef USE_INSW #define transport_data insw #else /* this routine implements insw(,,). There was a time i had the impression that there would be any difference in error-behaviour. */ void transport_data(int port, ush * dest, int count) { int i; ush * d; for (i=0, d=dest; i<count; i++, d++) *d = inw(port); } #endif int read_sector(int start) { if (cd->background) { cd->background=0; cd->adapter_last = -1; /* invalidate adapter memory */ stop_read(); } cd->fifo_overflowed=0; reset_cm260(); /* empty fifo etc. */ if (start_read(start)) return -1; if (sleep_or_timeout(&cd->data, DATA_TIMEOUT)) { debug(("Read timed out sector 0x%x\n", start)); stats(read_timeout); stop_read(); return -3; } transport_data(r_fifo_output_buffer, cd->sector, READ_AHEAD*RAW_SECTOR_SIZE/2); if (read_background(start+READ_AHEAD,1)) stats(read_background); cd->sector_first = start; cd->sector_last = start+READ_AHEAD; stats(read_restarted); return 0; } /* The function of bottom-half is to send a stop command to the drive This isn't easy because the routine is not `owned' by any process; we can't go to sleep! The variable cd->background gives the status: 0 no read pending 1 a read is pending 2 c_stop waits for write_buffer_empty 3 c_stop waits for receive_buffer_full: echo 4 c_stop waits for receive_buffer_full: 0xff */ void cm206_bh(void) { debug(("bh: %d\n", cd->background)); switch (cd->background) { case 1: stats(bh); if (!(cd->intr_ls & ls_transmitter_buffer_empty)) { cd->command = c_stop; outw(dc_mask_sync_error | dc_no_stop_on_error | (inw(r_data_status) & 0x7f), r_data_control); cd->background=2; break; /* we'd better not time-out here! */ } else outw(c_stop, r_uart_transmit); /* fall into case 2: */ case 2: /* the write has been satisfied by interrupt routine */ cd->background=3; break; case 3: if (cd->intr_ur != c_stop) { debug(("cm206_bh: c_stop echoed 0x%x\n", cd->intr_ur)); stats(echo); } cd->background++; break; case 4: if (cd->intr_ur != 0xff) { debug(("cm206_bh: c_stop reacted with 0x%x\n", cd->intr_ur)); stats(stop_0xff); } cd->background=0; } } /* This command clears the dsb_possible_media_change flag, so we must * retain it. */ void get_drive_status(void) { uch status[2]; type_1_command(c_drive_status, 2, status); /* this might be done faster */ cd->dsb=status[0]; cd->cc=status[1]; cd->media_changed |= !!(cd->dsb & (dsb_possible_media_change | dsb_drive_not_ready | dsb_tray_not_closed)); } void get_disc_status(void) { if (type_1_command(c_disc_status, 7, cd->disc_status)) { debug(("get_disc_status: error\n")); } } /* The new open. The real opening strategy is defined in cdrom.c. */ static int cm206_open(kdev_t dev, int purpose) { if (!cd->openfiles) { /* reset only first time */ cd->background=0; reset_cm260(); cd->adapter_last = -1; /* invalidate adapter memory */ cd->sector_last = -1; } ++cd->openfiles; MOD_INC_USE_COUNT; stats(open); return 0; } static void cm206_release(kdev_t dev) { if (cd->openfiles==1) { if (cd->background) { cd->background=0; stop_read(); } cd->sector_last = -1; /* Make our internal buffer invalid */ FIRST_TRACK = 0; /* No valid disc status */ } --cd->openfiles; MOD_DEC_USE_COUNT; } /* Empty buffer empties $sectors$ sectors of the adapter card buffer, * and then reads a sector in kernel memory. */ void empty_buffer(int sectors) { while (sectors>=0) { transport_data(r_fifo_output_buffer, cd->sector + cd->fifo_overflowed, RAW_SECTOR_SIZE/2 - cd->fifo_overflowed); --sectors; ++cd->adapter_first; /* update the current adapter sector */ cd->fifo_overflowed=0; /* reset overflow bit */ stats(sector_transferred); } cd->sector_first=cd->adapter_first-1; cd->sector_last=cd->adapter_first; /* update the buffer sector */ } /* try_adapter. This function determines if the requested sector is in adapter memory, or will appear there soon. Returns 0 upon success */ int try_adapter(int sector) { if (cd->adapter_first <= sector && sector < cd->adapter_last) { /* sector is in adapter memory */ empty_buffer(sector - cd->adapter_first); return 0; } else if (cd->background==1 && cd->adapter_first <= sector && sector < cd->adapter_first+cd->max_sectors) { /* a read is going on, we can wait for it */ cd->wait_back=1; while (sector >= cd->adapter_last) { if (sleep_or_timeout(&cd->data, DATA_TIMEOUT)) { debug(("Timed out during background wait: %d %d %d %d\n", sector, cd->adapter_last, cd->adapter_first, cd->background)); stats(back_read_timeout); cd->wait_back=0; return -1; } } cd->wait_back=0; empty_buffer(sector - cd->adapter_first); return 0; } else return -2; } /* This is not a very smart implementation. We could optimize for consecutive block numbers. I'm not convinced this would really bring down the processor load. */ static void do_cm206_request(void) { long int i, cd_sec_no; int quarter, error; uch * source, * dest; while(1) { /* repeat until all requests have been satisfied */ INIT_REQUEST; if (CURRENT == NULL || CURRENT->rq_status == RQ_INACTIVE) return; if (CURRENT->cmd != READ) { debug(("Non-read command %d on cdrom\n", CURRENT->cmd)); end_request(0); continue; } error=0; for (i=0; i<CURRENT->nr_sectors; i++) { cd_sec_no = (CURRENT->sector+i)/BLOCKS_ISO; /* 4 times 512 bytes */ quarter = (CURRENT->sector+i) % BLOCKS_ISO; dest = CURRENT->buffer + i*LINUX_BLOCK_SIZE; /* is already in buffer memory? */ if (cd->sector_first <= cd_sec_no && cd_sec_no < cd->sector_last) { source = ((uch *) cd->sector) + 16 + quarter*LINUX_BLOCK_SIZE + (cd_sec_no-cd->sector_first)*RAW_SECTOR_SIZE; memcpy(dest, source, LINUX_BLOCK_SIZE); } else if (!try_adapter(cd_sec_no) || !read_sector(cd_sec_no)) { source = ((uch *) cd->sector)+16+quarter*LINUX_BLOCK_SIZE; memcpy(dest, source, LINUX_BLOCK_SIZE); } else { error=1; } } end_request(!error); } } /* Audio support. I've tried very hard, but the cm206 drive doesn't seem to have a get_toc (table-of-contents) function, while i'm pretty sure it must read the toc upon disc insertion. Therefore this function has been implemented through a binary search strategy. All track starts that happen to be found are stored in cd->toc[], for future use. I've spent a whole day on a bug that only shows under Workman--- I don't get it. Tried everything, nothing works. If workman asks for track# 0xaa, it'll get the wrong time back. Any other program receives the correct value. I'm stymied. */ /* seek seeks to address lba. It does wait to arrive there. */ void seek(int lba) { int i; uch seek_command[4]={c_seek, }; fsm(lba, &seek_command[1]); for (i=0; i<4; i++) type_0_command(seek_command[i], 0); cd->dsb = wait_dsb(); } uch bcdbin(unsigned char bcd) /* stolen from mcd.c! */ { return (bcd >> 4)*10 + (bcd & 0xf); } inline uch normalize_track(uch track) { if (track<1) return 1; if (track>LAST_TRACK) return LAST_TRACK+1; return track; } /* This function does a binary search for track start. It records all * tracks seen in the process. Input $track$ must be between 1 and * #-of-tracks+1 */ int get_toc_lba(uch track) { int max=74*60*75-150, min=0; int i, lba, l, old_lba=0; uch * q = cd->q; uch ct; /* current track */ int binary=0; const int skip = 3*60*75; for (i=track; i>0; i--) if (cd->toc[i].track) { min = fsm2lba(cd->toc[i].fsm); break; } lba = min + skip; /* 3 minutes */ do { seek(lba); type_1_command(c_read_current_q, 10, q); ct = normalize_track(q[1]); if (!cd->toc[ct].track) { l = q[9]-bcdbin(q[5]) + 75*(q[8]-bcdbin(q[4])-2 + 60*(q[7]-bcdbin(q[3]))); cd->toc[ct].track=q[1]; /* lead out still 0xaa */ fsm(l, cd->toc[ct].fsm); cd->toc[ct].q0 = q[0]; /* contains adr and ctrl info */ if (ct==track) return l; } old_lba=lba; if (binary) { if (ct < track) min = lba; else max = lba; lba = (min+max)/2; } else { if(ct < track) lba += skip; else { binary=1; max = lba; min = lba - skip; lba = (min+max)/2; } } } while (lba!=old_lba); return lba; } void update_toc_entry(uch track) { track = normalize_track(track); if (!cd->toc[track].track) get_toc_lba(track); } /* return 0 upon success */ int read_toc_header(struct cdrom_tochdr * hp) { if (!FIRST_TRACK) get_disc_status(); if (hp && DISC_STATUS & cds_all_audio) { /* all audio */ int i; hp->cdth_trk0 = FIRST_TRACK; hp->cdth_trk1 = LAST_TRACK; cd->toc[1].track=1; /* fill in first track position */ for (i=0; i<3; i++) cd->toc[1].fsm[i] = cd->disc_status[3+i]; update_toc_entry(LAST_TRACK+1); /* find most entries */ return 0; } return -1; } void play_from_to_msf(struct cdrom_msf* msfp) { uch play_command[] = {c_play, msfp->cdmsf_frame0, msfp->cdmsf_sec0, msfp->cdmsf_min0, msfp->cdmsf_frame1, msfp->cdmsf_sec1, msfp->cdmsf_min1, 2, 2}; int i; for (i=0; i<9; i++) type_0_command(play_command[i], 0); for (i=0; i<3; i++) PLAY_TO.fsm[i] = play_command[i+4]; PLAY_TO.track = 0; /* say no track end */ cd->dsb = wait_dsb(); } void play_from_to_track(int from, int to) { uch play_command[8] = {c_play, }; int i; if (from==0) { /* continue paused play */ for (i=0; i<3; i++) { play_command[i+1] = cd->audio_status[i+2]; play_command[i+4] = PLAY_TO.fsm[i]; } } else { update_toc_entry(from); update_toc_entry(to+1); for (i=0; i<3; i++) { play_command[i+1] = cd->toc[from].fsm[i]; PLAY_TO.fsm[i] = play_command[i+4] = cd->toc[to+1].fsm[i]; } PLAY_TO.track = to; } for (i=0; i<7; i++) type_0_command(play_command[i],0); for (i=0; i<2; i++) type_0_command(0x2, 0); /* volume */ cd->dsb = wait_dsb(); } int get_current_q(struct cdrom_subchnl * qp) { int i; uch * q = cd->q; if (type_1_command(c_read_current_q, 10, q)) return 0; /* q[0] = bcdbin(q[0]); Don't think so! */ for (i=2; i<6; i++) q[i]=bcdbin(q[i]); qp->cdsc_adr = q[0] & 0xf; qp->cdsc_ctrl = q[0] >> 4; /* from mcd.c */ qp->cdsc_trk = q[1]; qp->cdsc_ind = q[2]; if (qp->cdsc_format == CDROM_MSF) { qp->cdsc_reladdr.msf.minute = q[3]; qp->cdsc_reladdr.msf.second = q[4]; qp->cdsc_reladdr.msf.frame = q[5]; qp->cdsc_absaddr.msf.minute = q[7]; qp->cdsc_absaddr.msf.second = q[8]; qp->cdsc_absaddr.msf.frame = q[9]; } else { qp->cdsc_reladdr.lba = f_s_m2lba(q[5], q[4], q[3]); qp->cdsc_absaddr.lba = f_s_m2lba(q[9], q[8], q[7]); } get_drive_status(); if (cd->dsb & dsb_play_in_progress) qp->cdsc_audiostatus = CDROM_AUDIO_PLAY ; else if (PAUSED) qp->cdsc_audiostatus = CDROM_AUDIO_PAUSED; else qp->cdsc_audiostatus = CDROM_AUDIO_NO_STATUS; return 0; } void invalidate_toc(void) { memset(cd->toc, 0, sizeof(cd->toc)); memset(cd->disc_status, 0, sizeof(cd->disc_status)); } /* cdrom.c guarantees that cdte_format == CDROM_MSF */ void get_toc_entry(struct cdrom_tocentry * ep) { uch track = normalize_track(ep->cdte_track); update_toc_entry(track); ep->cdte_addr.msf.frame = cd->toc[track].fsm[0]; ep->cdte_addr.msf.second = cd->toc[track].fsm[1]; ep->cdte_addr.msf.minute = cd->toc[track].fsm[2]; ep->cdte_adr = cd->toc[track].q0 & 0xf; ep->cdte_ctrl = cd->toc[track].q0 >> 4; ep->cdte_datamode=0; } /* Audio ioctl. Ioctl commands connected to audio are in such an * idiosyncratic i/o format, that we leave these untouched. Return 0 * upon success. Memory checking has been done by cdrom_ioctl(), the * calling function, as well as LBA/MSF sanitization. */ int cm206_audio_ioctl(kdev_t dev, unsigned int cmd, void * arg) { switch (cmd) { case CDROMREADTOCHDR: return read_toc_header((struct cdrom_tochdr *) arg); case CDROMREADTOCENTRY: get_toc_entry((struct cdrom_tocentry *) arg); return 0; case CDROMPLAYMSF: play_from_to_msf((struct cdrom_msf *) arg); return 0; case CDROMPLAYTRKIND: /* admittedly, not particularly beautiful */ play_from_to_track(((struct cdrom_ti *)arg)->cdti_trk0, ((struct cdrom_ti *)arg)->cdti_trk1); return 0; case CDROMSTOP: PAUSED=0; if (cd->dsb & dsb_play_in_progress) return type_0_command(c_stop, 1); else return 0; case CDROMPAUSE: get_drive_status(); if (cd->dsb & dsb_play_in_progress) { type_0_command(c_stop, 1); type_1_command(c_audio_status, 5, cd->audio_status); PAUSED=1; /* say we're paused */ } return 0; case CDROMRESUME: if (PAUSED) play_from_to_track(0,0); PAUSED=0; return 0; case CDROMSTART: case CDROMVOLCTRL: return 0; case CDROMSUBCHNL: return get_current_q((struct cdrom_subchnl *)arg); default: return -EINVAL; } } /* Ioctl. These ioctls are specific to the cm206 driver. I have made some driver statistics accessible through ioctl calls. */ static int cm206_ioctl(kdev_t dev, unsigned int cmd, unsigned long arg) { switch (cmd) { #ifdef STATISTICS case CM206CTL_GET_STAT: if (arg >= NR_STATS) return -EINVAL; else return cd->stats[arg]; case CM206CTL_GET_LAST_STAT: if (arg >= NR_STATS) return -EINVAL; else return cd->last_stat[arg]; #endif default: debug(("Unknown ioctl call 0x%x\n", cmd)); return -EINVAL; } } int cm206_media_changed(kdev_t dev) { if (cd != NULL) { int r; get_drive_status(); /* ensure cd->media_changed OK */ r = cd->media_changed; cd->media_changed = 0; /* clear bit */ return r; } else return -EIO; } /* The new generic cdrom support. Routines should be concise, most of the logic should be in cdrom.c */ /* returns number of times device is in use */ int cm206_open_files(kdev_t dev) { if (cd) return cd->openfiles; return -1; } /* controls tray movement */ int cm206_tray_move(kdev_t dev, int position) { if (position) { /* 1: eject */ type_0_command(c_open_tray,1); invalidate_toc(); } else type_0_command(c_close_tray, 1); /* 0: close */ return 0; } /* gives current state of the drive */ int cm206_drive_status(kdev_t dev) { get_drive_status(); if (cd->dsb & dsb_tray_not_closed) return CDS_TRAY_OPEN; if (!(cd->dsb & dsb_disc_present)) return CDS_NO_DISC; if (cd->dsb & dsb_drive_not_ready) return CDS_DRIVE_NOT_READY; return CDS_DISC_OK; } /* gives current state of disc in drive */ int cm206_disc_status(kdev_t dev) { uch xa; get_drive_status(); if ((cd->dsb & dsb_not_useful) | !(cd->dsb & dsb_disc_present)) return CDS_NO_DISC; get_disc_status(); if (DISC_STATUS & cds_all_audio) return CDS_AUDIO; xa = DISC_STATUS >> 4; switch (xa) { case 0: return CDS_DATA_1; /* can we detect CDS_DATA_2? */ case 1: return CDS_XA_2_1; /* untested */ case 2: return CDS_XA_2_2; } return 0; } /* locks or unlocks door lock==1: lock; return 0 upon success */ int cm206_lock_door(kdev_t dev, int lock) { uch command = (lock) ? c_lock_tray : c_unlock_tray; type_0_command(command, 1); /* wait and get dsb */ /* the logic calculates the success, 0 means successful */ return lock ^ ((cd->dsb & dsb_tray_locked) != 0); } /* Although a session start should be in LBA format, we return it in MSF format because it is slightly easier, and the new generic ioctl will take care of the necessary conversion. */ int cm206_get_last_session(kdev_t dev, struct cdrom_multisession * mssp) { if (!FIRST_TRACK) get_disc_status(); if (mssp != NULL) { if (DISC_STATUS & cds_multi_session) { /* multi-session */ mssp->addr.msf.frame = cd->disc_status[3]; mssp->addr.msf.second = cd->disc_status[4]; mssp->addr.msf.minute = cd->disc_status[5]; mssp->addr_format = CDROM_MSF; mssp->xa_flag = 1; } else { mssp->xa_flag = 0; } return 1; } return 0; } int cm206_get_upc(kdev_t dev, struct cdrom_mcn * mcn) { uch upc[10]; char * ret = mcn->medium_catalog_number; int i; if (type_1_command(c_read_upc, 10, upc)) return -EIO; for (i=0; i<13; i++) { int w=i/2+1, r=i%2; if (r) ret[i] = 0x30 | (upc[w] & 0x0f); else ret[i] = 0x30 | ((upc[w] >> 4) & 0x0f); } ret[13] = '\0'; return 0; } int cm206_reset(kdev_t dev) { stop_read(); reset_cm260(); outw(dc_normal | dc_break | READ_AHEAD, r_data_control); udelay(1000); /* 750 musec minimum */ outw(dc_normal | READ_AHEAD, r_data_control); cd->sector_last = -1; /* flag no data buffered */ cd->adapter_last = -1; invalidate_toc(); return 0; } static struct cdrom_device_ops cm206_dops = { cm206_open, /* open */ cm206_release, /* release */ cm206_open_files, /* number of open_files */ cm206_drive_status, /* drive status */ cm206_disc_status, /* disc status */ cm206_media_changed, /* media changed */ cm206_tray_move, /* tray move */ cm206_lock_door, /* lock door */ NULL, /* select speed */ NULL, /* select disc */ cm206_get_last_session, /* get last session */ cm206_get_upc, /* get universal product code */ cm206_reset, /* hard reset */ cm206_audio_ioctl, /* audio ioctl */ cm206_ioctl, /* device-specific ioctl */ CDC_CLOSE_TRAY | CDC_OPEN_TRAY | CDC_LOCK | CDC_MULTI_SESSION | CDC_MEDIA_CHANGED | CDC_MCN | CDC_PLAY_AUDIO, /* capability */ 0, /* mask flags */ 2, /* maximum speed */ 1, /* number of minor devices */ 1, /* number of discs */ 0, /* options, ignored */ 0 /* mc_flags, ignored */ }; /* This routine gets called during init if thing go wrong, can be used * in cleanup_module as well. */ void cleanup(int level) { switch (level) { case 4: if (unregister_cdrom(MAJOR_NR, "cm206")) { printk("Can't unregister cdrom cm206\n"); return; } if (unregister_blkdev(MAJOR_NR, "cm206")) { printk("Can't unregister major cm206\n"); return; } case 3: free_irq(cm206_irq, NULL); case 2: case 1: kfree(cd); release_region(cm206_base, 16); default: } } /* This function probes for the adapter card. It returns the base address if it has found the adapter card. One can specify a base port to probe specifically, or 0 which means span all possible bases. Linus says it is too dangerous to use writes for probing, so we stick with pure reads for a while. Hope that 8 possible ranges, check_region, 15 bits of one port and 6 of another make things likely enough to accept the region on the first hit... */ int probe_base_port(int base) { int b=0x300, e=0x370; /* this is the range of start addresses */ volatile int fool, i; if (base) b=e=base; for (base=b; base<=e; base += 0x10) { if (check_region(base, 0x10)) continue; for (i=0; i<3; i++) fool = inw(base+2); /* empty possibly uart_receive_buffer */ if((inw(base+6) & 0xffef) != 0x0001 || /* line_status */ (inw(base) & 0xad00) != 0) /* data status */ continue; return(base); } return 0; } #if !defined(MODULE) || defined(AUTO_PROBE_MODULE) /* Probe for irq# nr. If nr==0, probe for all possible irq's. */ int probe_irq(int nr) { int irqs, irq; outw(dc_normal | READ_AHEAD, r_data_control); /* disable irq-generation */ sti(); irqs = probe_irq_on(); reset_cm260(); /* causes interrupt */ udelay(100); /* wait for it */ irq = probe_irq_off(irqs); outw(dc_normal | READ_AHEAD, r_data_control); /* services interrupt */ if (nr && irq!=nr && irq>0) return 0; /* wrong interrupt happened */ else return irq; } #endif int cm206_init(void) { uch e=0; long int size=sizeof(struct cm206_struct); printk(KERN_INFO VERSION); cm206_base = probe_base_port(auto_probe ? 0 : cm206_base); if (!cm206_base) { printk(" can't find adapter!\n"); return -EIO; } printk(" adapter at 0x%x", cm206_base); request_region(cm206_base, 16, "cm206"); cd = (struct cm206_struct *) kmalloc(size, GFP_KERNEL); if (!cd) return -EIO; /* Now we have found the adaptor card, try to reset it. As we have * found out earlier, this process generates an interrupt as well, * so we might just exploit that fact for irq probing! */ #if !defined(MODULE) || defined(AUTO_PROBE_MODULE) cm206_irq = probe_irq(auto_probe ? 0 : cm206_irq); if (cm206_irq<=0) { printk("can't find IRQ!\n"); cleanup(1); return -EIO; } else printk(" IRQ %d found\n", cm206_irq); #else cli(); reset_cm260(); /* Now, the problem here is that reset_cm260 can generate an interrupt. It seems that this can cause a kernel oops some time later. So we wait a while and `service' this interrupt. */ udelay(10); outw(dc_normal | READ_AHEAD, r_data_control); sti(); printk(" using IRQ %d\n", cm206_irq); #endif if (send_receive_polled(c_drive_configuration) != c_drive_configuration) { printk(" drive not there\n"); cleanup(1); return -EIO; } e = send_receive_polled(c_gimme); printk(KERN_INFO "Firmware revision %d", e & dcf_revision_code); if (e & dcf_transfer_rate) printk(" double"); else printk(" single"); printk(" speed drive"); if (e & dcf_motorized_tray) printk(", motorized tray"); if (request_irq(cm206_irq, cm206_interrupt, 0, "cm206", NULL)) { printk("\nUnable to reserve IRQ---aborted\n"); cleanup(2); return -EIO; } printk(".\n"); if (register_blkdev(MAJOR_NR, "cm206", &cdrom_fops) != 0) { printk("Cannot register for major %d!\n", MAJOR_NR); cleanup(3); return -EIO; } if (register_cdrom(MAJOR_NR, "cm206", &cm206_dops) != 0) { printk("Cannot register for cdrom %d!\n", MAJOR_NR); cleanup(3); return -EIO; } blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST; read_ahead[MAJOR_NR] = 16; /* reads ahead what? */ init_bh(CM206_BH, cm206_bh); memset(cd, 0, sizeof(*cd)); /* give'm some reasonable value */ cd->sector_last = -1; /* flag no data buffered */ cd->adapter_last = -1; cd->timer.function = cm206_timeout; cd->max_sectors = (inw(r_data_status) & ds_ram_size) ? 24 : 97; printk(KERN_INFO "%d kB adapter memory available, " " %ld bytes kernel memory used.\n", cd->max_sectors*2, size); return 0; } #ifdef MODULE static int cm206[2] = {0,0}; /* for compatible `insmod' parameter passing */ void parse_options(void) { int i; for (i=0; i<2; i++) { if (0x300 <= cm206[i] && i<= 0x370 && cm206[i] % 0x10 == 0) { cm206_base = cm206[i]; auto_probe=0; } else if (3 <= cm206[i] && cm206[i] <= 15) { cm206_irq = cm206[i]; auto_probe=0; } } } int init_module(void) { parse_options(); #if !defined(AUTO_PROBE_MODULE) auto_probe=0; #endif return cm206_init(); } void cleanup_module(void) { cleanup(4); printk(KERN_INFO "cm206 removed\n"); } #else /* !MODULE */ /* This setup function accepts either `auto' or numbers in the range * 3--11 (for irq) or 0x300--0x370 (for base port) or both. */ void cm206_setup(char *s, int *p) { int i; if (!strcmp(s, "auto")) auto_probe=1; for(i=1; i<=p[0]; i++) { if (0x300 <= p[i] && i<= 0x370 && p[i] % 0x10 == 0) { cm206_base = p[i]; auto_probe = 0; } else if (3 <= p[i] && p[i] <= 15) { cm206_irq = p[i]; auto_probe = 0; } } } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -DMODULE -D__KERNEL__ -I/usr/src/linux/include/linux -Wall -Wstrict-prototypes -O2 -m486 -c cm206.c -o cm206.o" * End: */
Go to most recent revision | Compare with Previous | Blame | View Log