URL
https://opencores.org/ocsvn/or1k_old/or1k_old/trunk
Subversion Repositories or1k_old
[/] [or1k_old/] [trunk/] [uclinux/] [uClinux-2.0.x/] [drivers/] [char/] [vt.c] - Rev 1765
Go to most recent revision | Compare with Previous | Blame | View Log
/* * linux/drivers/char/vt.c * * Copyright (C) 1992 obz under the linux copyright * * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993 * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994 * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995 */ #include <linux/types.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/tty.h> #include <linux/timer.h> #include <linux/kernel.h> #include <linux/kd.h> #include <linux/vt.h> #include <linux/string.h> #include <linux/malloc.h> #include <linux/major.h> #include <linux/fs.h> #include <asm/io.h> #include <asm/segment.h> #include <asm/bitops.h> #include "kbd_kern.h" #include "vt_kern.h" #include "diacr.h" #include "selection.h" extern char vt_dont_switch; extern struct tty_driver console_driver; #define VT_IS_IN_USE(i) (console_driver.table[i] && console_driver.table[i]->count) #define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || i == sel_cons) /* * Console (vt and kd) routines, as defined by USL SVR4 manual, and by * experimentation and study of X386 SYSV handling. * * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console, * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing * to the current console is done by the main ioctl code. */ struct vt_struct *vt_cons[MAX_NR_CONSOLES]; #ifndef __alpha__ asmlinkage int sys_ioperm(unsigned long from, unsigned long num, int on); #endif extern int getkeycode(unsigned int scancode); extern int setkeycode(unsigned int scancode, unsigned int keycode); extern void compute_shiftstate(void); extern void complete_change_console(unsigned int new_console); extern int vt_waitactive(void); extern void do_blank_screen(int nopowersave); extern unsigned int keymap_count; /* * routines to load custom translation table, EGA/VGA font and * VGA colour palette from console.c */ extern int con_set_trans_old(unsigned char * table); extern int con_get_trans_old(unsigned char * table); extern int con_set_trans_new(unsigned short * table); extern int con_get_trans_new(unsigned short * table); extern void con_clear_unimap(struct unimapinit *ui); extern int con_set_unimap(ushort ct, struct unipair *list); extern int con_get_unimap(ushort ct, ushort *uct, struct unipair *list); extern void con_set_default_unimap(void); extern int con_set_font(char * fontmap, int ch512); extern int con_get_font(char * fontmap); extern int con_set_cmap(unsigned char *cmap); extern int con_get_cmap(unsigned char *cmap); extern void reset_palette(int currcons); extern int con_adjust_height(unsigned long fontheight); extern int video_mode_512ch; extern unsigned long video_font_height; extern unsigned long default_font_height; extern unsigned long video_scan_lines; /* * these are the valid i/o ports we're allowed to change. they map all the * video ports */ #define GPFIRST 0x3b4 #define GPLAST 0x3df #define GPNUM (GPLAST - GPFIRST + 1) /* * This function is called when the size of the physical screen has been * changed. If either the row or col argument is nonzero, set the appropriate * entry in each winsize structure for all the virtual consoles, then * send SIGWINCH to all processes with a virtual console as controlling * tty. */ static int kd_size_changed(int row, int col) { struct task_struct *p; int i; if ( !row && !col ) return 0; for ( i = 0 ; i < MAX_NR_CONSOLES ; i++ ) { if ( console_driver.table[i] ) { if ( row ) console_driver.table[i]->winsize.ws_row = row; if ( col ) console_driver.table[i]->winsize.ws_col = col; } } for_each_task(p) { if ( p->tty && MAJOR(p->tty->device) == TTY_MAJOR && MINOR(p->tty->device) <= MAX_NR_CONSOLES && MINOR(p->tty->device) ) { send_sig(SIGWINCH, p, 1); } } return 0; } /* * Generates sound of some count for some number of clock ticks * [count = 1193180 / frequency] * * If freq is 0, will turn off sound, else will turn it on for that time. * If msec is 0, will return immediately, else will sleep for msec time, then * turn sound off. * * We use the BEEP_TIMER vector since we're using the same method to * generate sound, and we'll overwrite any beep in progress. That may * be something to fix later, if we like. * * We also return immediately, which is what was implied within the X * comments - KDMKTONE doesn't put the process to sleep. */ static unsigned int mksound_lock = 0; static void kd_nosound(unsigned long ignored) { /* if sound is being set up, don't turn it off */ if (!mksound_lock) /* disable counter 2 */ outb(inb_p(0x61)&0xFC, 0x61); return; } void _kd_mksound(unsigned int hz, unsigned int ticks) { static struct timer_list sound_timer = { NULL, NULL, 0, 0, kd_nosound }; unsigned int count = 0; if (hz > 20 && hz < 32767) count = 1193180 / hz; if (!count) kd_nosound(0); /* ignore multiple simultaneous requests for sound */ else if (!set_bit(0, &mksound_lock)) { /* set_bit in 2.0.x is same as test-and-set in 2.1.x */ del_timer(&sound_timer); if (count) { /* enable counter 2 */ outb_p(inb_p(0x61)|3, 0x61); /* set command for counter 2, 2 byte write */ outb_p(0xB6, 0x43); /* select desired HZ */ outb_p(count & 0xff, 0x42); outb((count >> 8) & 0xff, 0x42); if (ticks) { sound_timer.expires = jiffies+ticks; add_timer(&sound_timer); } } mksound_lock = 0; } return; } void (*kd_mksound)(unsigned int hz, unsigned int ticks) = _kd_mksound; /* * We handle the console-specific ioctl's here. We allow the * capability to modify any console, not just the fg_console. */ int vt_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int i, perm; unsigned int console; unsigned char ucval; struct kbd_struct * kbd; struct vt_struct *vt = (struct vt_struct *)tty->driver_data; console = vt->vc_num; if (!vc_cons_allocated(console)) /* impossible? */ return -ENOIOCTLCMD; /* * To have permissions to do most of the vt ioctls, we either have * to be the owner of the tty, or super-user. */ perm = 0; if (current->tty == tty || suser()) perm = 1; kbd = kbd_table + console; switch (cmd) { case KIOCSOUND: if (!perm) return -EPERM; if (arg) arg = 1193180 / arg; kd_mksound(arg, 0); return 0; case KDMKTONE: if (!perm) return -EPERM; { unsigned int ticks, count; /* * Generate the tone for the appropriate number of ticks. * If the time is zero, turn off sound ourselves. */ ticks = HZ * ((arg >> 16) & 0xffff) / 1000; if ((arg & 0xffff) == 0 ) arg |= 1; /* jp: huh? */ count = ticks ? (1193180 / (arg & 0xffff)) : 0; kd_mksound(count, ticks); return 0; } case KDGKBTYPE: /* * this is naive. */ i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned char)); if (!i) put_user(KB_101, (char *) arg); return i; #ifndef __alpha__ /* * These cannot be implemented on any machine that implements * ioperm() in user level (such as Alpha PCs). */ case KDADDIO: case KDDELIO: /* * KDADDIO and KDDELIO may be able to add ports beyond what * we reject here, but to be safe... */ if (arg < GPFIRST || arg > GPLAST) return -EINVAL; return sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0; case KDENABIO: case KDDISABIO: return sys_ioperm(GPFIRST, GPNUM, (cmd == KDENABIO)) ? -ENXIO : 0; #endif case KDSETMODE: /* * currently, setting the mode from KD_TEXT to KD_GRAPHICS * doesn't do a whole lot. i'm not sure if it should do any * restoration of modes or what... */ if (!perm) return -EPERM; switch (arg) { case KD_GRAPHICS: break; case KD_TEXT0: case KD_TEXT1: arg = KD_TEXT; case KD_TEXT: break; default: return -EINVAL; } if (vt_cons[console]->vc_mode == (unsigned char) arg) return 0; vt_cons[console]->vc_mode = (unsigned char) arg; if (console != fg_console) return 0; /* * explicitly blank/unblank the screen if switching modes */ if (arg == KD_TEXT) do_unblank_screen(); else do_blank_screen(1); return 0; case KDGETMODE: i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(int)); if (!i) put_user(vt_cons[console]->vc_mode, (int *) arg); return i; case KDMAPDISP: case KDUNMAPDISP: /* * these work like a combination of mmap and KDENABIO. * this could be easily finished. */ return -EINVAL; case KDSKBMODE: if (!perm) return -EPERM; switch(arg) { case K_RAW: kbd->kbdmode = VC_RAW; break; case K_MEDIUMRAW: kbd->kbdmode = VC_MEDIUMRAW; break; case K_XLATE: kbd->kbdmode = VC_XLATE; compute_shiftstate(); break; case K_UNICODE: kbd->kbdmode = VC_UNICODE; compute_shiftstate(); break; default: return -EINVAL; } if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); return 0; case KDGKBMODE: i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(int)); if (!i) { ucval = ((kbd->kbdmode == VC_RAW) ? K_RAW : (kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW : (kbd->kbdmode == VC_UNICODE) ? K_UNICODE : K_XLATE); put_user(ucval, (int *) arg); } return i; /* this could be folded into KDSKBMODE, but for compatibility reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */ case KDSKBMETA: switch(arg) { case K_METABIT: clr_vc_kbd_mode(kbd, VC_META); break; case K_ESCPREFIX: set_vc_kbd_mode(kbd, VC_META); break; default: return -EINVAL; } return 0; case KDGKBMETA: i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(int)); if (!i) { ucval = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT); put_user(ucval, (int *) arg); } return i; case KDGETKEYCODE: { struct kbkeycode * const a = (struct kbkeycode *)arg; unsigned int sc; int kc; i = verify_area(VERIFY_WRITE, (void *)a, sizeof(struct kbkeycode)); if (i) return i; sc = get_user(&a->scancode); kc = getkeycode(sc); if (kc < 0) return kc; put_user(kc, &a->keycode); return 0; } case KDSETKEYCODE: { struct kbkeycode * const a = (struct kbkeycode *)arg; unsigned int sc, kc; if (!perm) return -EPERM; i = verify_area(VERIFY_READ, (void *)a, sizeof(struct kbkeycode)); if (i) return i; sc = get_user(&a->scancode); kc = get_user(&a->keycode); return setkeycode(sc, kc); } case KDGKBENT: { struct kbentry * const a = (struct kbentry *)arg; ushort *key_map, val; u_char s; i = verify_area(VERIFY_WRITE, (void *)a, sizeof(struct kbentry)); if (i) return i; if ((i = get_user(&a->kb_index)) >= NR_KEYS) return -EINVAL; if ((s = get_user(&a->kb_table)) >= MAX_NR_KEYMAPS) return -EINVAL; key_map = key_maps[s]; if (key_map) { val = U(key_map[i]); if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) val = K_HOLE; } else val = (i ? K_HOLE : K_NOSUCHMAP); put_user(val, &a->kb_value); return 0; } case KDSKBENT: { const struct kbentry * a = (struct kbentry *)arg; ushort *key_map; u_char s; u_short v, ov; if (!perm) return -EPERM; i = verify_area(VERIFY_READ, (const void *)a, sizeof(struct kbentry)); if (i) return i; if ((i = get_user(&a->kb_index)) >= NR_KEYS) return -EINVAL; if ((s = get_user(&a->kb_table)) >= MAX_NR_KEYMAPS) return -EINVAL; v = get_user(&a->kb_value); if (!i && v == K_NOSUCHMAP) { /* disallocate map */ key_map = key_maps[s]; if (s && key_map) { key_maps[s] = 0; if (key_map[0] == U(K_ALLOCATED)) { kfree_s(key_map, sizeof(plain_map)); keymap_count--; } } return 0; } if (KTYP(v) < NR_TYPES) { if (KVAL(v) > max_vals[KTYP(v)]) return -EINVAL; } else if (kbd->kbdmode != VC_UNICODE) return -EINVAL; /* assignment to entry 0 only tests validity of args */ if (!i) return 0; if (!(key_map = key_maps[s])) { int j; if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && !suser()) return -EPERM; key_map = (ushort *) kmalloc(sizeof(plain_map), GFP_KERNEL); if (!key_map) return -ENOMEM; key_maps[s] = key_map; key_map[0] = U(K_ALLOCATED); for (j = 1; j < NR_KEYS; j++) key_map[j] = U(K_HOLE); keymap_count++; } ov = U(key_map[i]); if (v == ov) return 0; /* nothing to do */ /* * Only the Superuser can set or unset the Secure * Attention Key. */ if (((ov == K_SAK) || (v == K_SAK)) && !suser()) return -EPERM; key_map[i] = U(v); if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) compute_shiftstate(); return 0; } case KDGKBSENT: { struct kbsentry *a = (struct kbsentry *)arg; char *p; u_char *q; int sz; i = verify_area(VERIFY_WRITE, (void *)a, sizeof(struct kbsentry)); if (i) return i; if ((i = get_user(&a->kb_func)) >= MAX_NR_FUNC || i < 0) return -EINVAL; sz = sizeof(a->kb_string) - 1; /* sz should have been a struct member */ q = a->kb_string; p = func_table[i]; if(p) for ( ; *p && sz; p++, sz--) put_user(*p, q++); put_user('\0', q); return ((p && *p) ? -EOVERFLOW : 0); } case KDSKBSENT: { struct kbsentry * const a = (struct kbsentry *)arg; int delta; char *first_free, *fj, *fnw; int j, k, sz; u_char *p; char *q; if (!perm) return -EPERM; i = verify_area(VERIFY_READ, (void *)a, sizeof(struct kbsentry)); if (i) return i; if ((i = get_user(&a->kb_func)) >= MAX_NR_FUNC) return -EINVAL; q = func_table[i]; first_free = funcbufptr + (funcbufsize - funcbufleft); for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) ; if (j < MAX_NR_FUNC) fj = func_table[j]; else fj = first_free; delta = (q ? -strlen(q) : 1); sz = sizeof(a->kb_string); /* sz should have been a struct member */ for (p = a->kb_string; get_user(p) && sz; p++,sz--) delta++; if (!sz) return -EOVERFLOW; if (delta <= funcbufleft) { /* it fits in current buf */ if (j < MAX_NR_FUNC) { memmove(fj + delta, fj, first_free - fj); for (k = j; k < MAX_NR_FUNC; k++) if (func_table[k]) func_table[k] += delta; } if (!q) func_table[i] = fj; funcbufleft -= delta; } else { /* allocate a larger buffer */ sz = 256; while (sz < funcbufsize - funcbufleft + delta) sz <<= 1; fnw = (char *) kmalloc(sz, GFP_KERNEL); if(!fnw) return -ENOMEM; if (!q) func_table[i] = fj; if (fj > funcbufptr) memmove(fnw, funcbufptr, fj - funcbufptr); for (k = 0; k < j; k++) if (func_table[k]) func_table[k] = fnw + (func_table[k] - funcbufptr); if (first_free > fj) { memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); for (k = j; k < MAX_NR_FUNC; k++) if (func_table[k]) func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; } if (funcbufptr != func_buf) kfree_s(funcbufptr, funcbufsize); funcbufptr = fnw; funcbufleft = funcbufleft - delta + sz - funcbufsize; funcbufsize = sz; } for (p = a->kb_string, q = func_table[i]; ; p++, q++) if (!(*q = get_user(p))) break; return 0; } case KDGKBDIACR: { struct kbdiacrs *a = (struct kbdiacrs *)arg; i = verify_area(VERIFY_WRITE, (void *) a, sizeof(struct kbdiacrs)); if (i) return i; put_user(accent_table_size, &a->kb_cnt); memcpy_tofs(a->kbdiacr, accent_table, accent_table_size*sizeof(struct kbdiacr)); return 0; } case KDSKBDIACR: { struct kbdiacrs *a = (struct kbdiacrs *)arg; unsigned int ct; if (!perm) return -EPERM; i = verify_area(VERIFY_READ, (void *) a, sizeof(struct kbdiacrs)); if (i) return i; ct = get_user(&a->kb_cnt); if (ct >= MAX_DIACR) return -EINVAL; accent_table_size = ct; memcpy_fromfs(accent_table, a->kbdiacr, ct*sizeof(struct kbdiacr)); return 0; } /* the ioctls below read/set the flags usually shown in the leds */ /* don't use them - they will go away without warning */ case KDGKBLED: i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned char)); if (i) return i; put_user(kbd->ledflagstate | (kbd->default_ledflagstate << 4), (char *) arg); return 0; case KDSKBLED: if (!perm) return -EPERM; if (arg & ~0x77) return -EINVAL; kbd->ledflagstate = (arg & 7); kbd->default_ledflagstate = ((arg >> 4) & 7); set_leds(); return 0; /* the ioctls below only set the lights, not the functions */ /* for those, see KDGKBLED and KDSKBLED above */ case KDGETLED: i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned char)); if (i) return i; put_user(getledstate(), (char *) arg); return 0; case KDSETLED: if (!perm) return -EPERM; setledstate(kbd, arg); return 0; /* * A process can indicate its willingness to accept signals * generated by pressing an appropriate key combination. * Thus, one can have a daemon that e.g. spawns a new console * upon a keypress and then changes to it. * Probably init should be changed to do this (and have a * field ks (`keyboard signal') in inittab describing the * desired action), so that the number of background daemons * does not increase. */ case KDSIGACCEPT: { extern int spawnpid, spawnsig; if (!perm) return -EPERM; if (arg < 1 || arg > NSIG || arg == SIGKILL) return -EINVAL; spawnpid = current->pid; spawnsig = arg; return 0; } case VT_SETMODE: { struct vt_mode *vtmode = (struct vt_mode *)arg; char mode; if (!perm) return -EPERM; i = verify_area(VERIFY_READ, (void *)vtmode, sizeof(struct vt_mode)); if (i) return i; mode = get_user(&vtmode->mode); if (mode != VT_AUTO && mode != VT_PROCESS) return -EINVAL; vt_cons[console]->vt_mode.mode = mode; vt_cons[console]->vt_mode.waitv = get_user(&vtmode->waitv); vt_cons[console]->vt_mode.relsig = get_user(&vtmode->relsig); vt_cons[console]->vt_mode.acqsig = get_user(&vtmode->acqsig); /* the frsig is ignored, so we set it to 0 */ vt_cons[console]->vt_mode.frsig = 0; vt_cons[console]->vt_pid = current->pid; /* no switch is required -- saw@shade.msu.ru */ vt_cons[console]->vt_newvt = -1; return 0; } case VT_GETMODE: { struct vt_mode *vtmode = (struct vt_mode *)arg; i = verify_area(VERIFY_WRITE, (void *)arg, sizeof(struct vt_mode)); if (i) return i; put_user(vt_cons[console]->vt_mode.mode, &vtmode->mode); put_user(vt_cons[console]->vt_mode.waitv, &vtmode->waitv); put_user(vt_cons[console]->vt_mode.relsig, &vtmode->relsig); put_user(vt_cons[console]->vt_mode.acqsig, &vtmode->acqsig); put_user(vt_cons[console]->vt_mode.frsig, &vtmode->frsig); return 0; } /* * Returns global vt state. Note that VT 0 is always open, since * it's an alias for the current VT, and people can't use it here. * We cannot return state for more than 16 VTs, since v_state is short. */ case VT_GETSTATE: { struct vt_stat *vtstat = (struct vt_stat *)arg; unsigned short state, mask; i = verify_area(VERIFY_WRITE,(void *)vtstat, sizeof(struct vt_stat)); if (i) return i; put_user(fg_console + 1, &vtstat->v_active); state = 1; /* /dev/tty0 is always open */ for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask; ++i, mask <<= 1) if (VT_IS_IN_USE(i)) state |= mask; put_user(state, &vtstat->v_state); return 0; } /* * Returns the first available (non-opened) console. */ case VT_OPENQRY: i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(int)); if (i) return i; for (i = 0; i < MAX_NR_CONSOLES; ++i) if (! VT_IS_IN_USE(i)) break; put_user(i < MAX_NR_CONSOLES ? (i+1) : -1, (int *) arg); return 0; /* * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num, * with num >= 1 (switches to vt 0, our console, are not allowed, just * to preserve sanity). */ case VT_ACTIVATE: if (!perm) return -EPERM; if (arg == 0 || arg > MAX_NR_CONSOLES) return -ENXIO; arg--; i = vc_allocate(arg); if (i) return i; set_console(arg); return 0; /* * wait until the specified VT has been activated */ case VT_WAITACTIVE: if (!perm) return -EPERM; if (arg == 0 || arg > MAX_NR_CONSOLES) return -ENXIO; arg--; while (fg_console != arg) { if (vt_waitactive() < 0) return -EINTR; } return 0; /* * If a vt is under process control, the kernel will not switch to it * immediately, but postpone the operation until the process calls this * ioctl, allowing the switch to complete. * * According to the X sources this is the behavior: * 0: pending switch-from not OK * 1: pending switch-from OK * 2: completed switch-to OK */ case VT_RELDISP: if (!perm) return -EPERM; if (vt_cons[console]->vt_mode.mode != VT_PROCESS) return -EINVAL; /* * Switching-from response */ if (vt_cons[console]->vt_newvt >= 0) { if (arg == 0) /* * Switch disallowed, so forget we were trying * to do it. */ vt_cons[console]->vt_newvt = -1; else { /* * The current vt has been released, so * complete the switch. */ int newvt = vt_cons[console]->vt_newvt; vt_cons[console]->vt_newvt = -1; i = vc_allocate(newvt); if (i) return i; /* * When we actually do the console switch, * make sure we are atomic with respect to * other console switches.. */ start_bh_atomic(); complete_change_console(newvt); end_bh_atomic(); } } /* * Switched-to response */ else { /* * If it's just an ACK, ignore it */ if (arg != VT_ACKACQ) return -EINVAL; } return 0; /* * Disallocate memory associated to VT (but leave VT1) */ case VT_DISALLOCATE: if (arg > MAX_NR_CONSOLES) return -ENXIO; if (arg == 0) { /* disallocate all unused consoles, but leave 0 */ for (i=1; i<MAX_NR_CONSOLES; i++) if (! VT_BUSY(i)) vc_disallocate(i); } else { /* disallocate a single console, if possible */ arg--; if (VT_BUSY(arg)) return -EBUSY; if (arg) /* leave 0 */ vc_disallocate(arg); } return 0; case VT_RESIZE: { struct vt_sizes *vtsizes = (struct vt_sizes *) arg; ushort ll,cc; if (!perm) return -EPERM; i = verify_area(VERIFY_READ, (void *)vtsizes, sizeof(struct vt_sizes)); if (i) return i; ll = get_user(&vtsizes->v_rows); cc = get_user(&vtsizes->v_cols); i = vc_resize(ll, cc); return i ? i : kd_size_changed(ll, cc); } case VT_RESIZEX: { struct vt_consize *vtconsize = (struct vt_consize *) arg; ushort ll,cc,vlin,clin,vcol,ccol; if (!perm) return -EPERM; i = verify_area(VERIFY_READ, (void *)vtconsize, sizeof(struct vt_consize)); if (i) return i; ll = get_user(&vtconsize->v_rows); cc = get_user(&vtconsize->v_cols); vlin = get_user(&vtconsize->v_vlin); clin = get_user(&vtconsize->v_clin); vcol = get_user(&vtconsize->v_vcol); ccol = get_user(&vtconsize->v_ccol); vlin = vlin ? vlin : video_scan_lines; if ( clin ) { if ( ll ) { if ( ll != vlin/clin ) return EINVAL; /* Parameters don't add up */ } else ll = vlin/clin; } if ( vcol && ccol ) { if ( cc ) { if ( cc != vcol/ccol ) return EINVAL; } else cc = vcol/ccol; } if ( clin > 32 ) return EINVAL; if ( vlin ) video_scan_lines = vlin; if ( clin ) video_font_height = clin; i = vc_resize(ll, cc); if (i) return i; kd_size_changed(ll, cc); return 0; } case PIO_FONT: if (!perm) return -EPERM; if (vt_cons[fg_console]->vc_mode != KD_TEXT) return -EINVAL; return con_set_font((char *)arg, 0); /* con_set_font() defined in console.c */ case GIO_FONT: if (vt_cons[fg_console]->vc_mode != KD_TEXT || video_mode_512ch) return -EINVAL; return con_get_font((char *)arg); /* con_get_font() defined in console.c */ case PIO_CMAP: if (!perm) return -EPERM; return con_set_cmap((char *)arg); /* con_set_cmap() defined in console.c */ case GIO_CMAP: return con_get_cmap((char *)arg); /* con_get_cmap() defined in console.c */ case PIO_FONTX: { struct consolefontdesc cfdarg; if (!perm) return -EPERM; if (vt_cons[fg_console]->vc_mode != KD_TEXT) return -EINVAL; i = verify_area(VERIFY_READ, (void *)arg, sizeof(struct consolefontdesc)); if (i) return i; memcpy_fromfs(&cfdarg, (void *)arg, sizeof(struct consolefontdesc)); if ( cfdarg.charcount == 256 || cfdarg.charcount == 512 ) { i = con_set_font(cfdarg.chardata, cfdarg.charcount == 512); if (i) return i; i = con_adjust_height(cfdarg.charheight); return (i <= 0) ? i : kd_size_changed(i, 0); } else return -EINVAL; } case PIO_FONTRESET: { if (!perm) return -EPERM; if (vt_cons[fg_console]->vc_mode != KD_TEXT) return -EINVAL; #ifdef BROKEN_GRAPHICS_PROGRAMS /* With BROKEN_GRAPHICS_PROGRAMS defined, the default font is not saved. */ return -ENOSYS; #else i = con_set_font(NULL, 0); /* Set font to default */ if (i) return i; i = con_adjust_height(default_font_height); if ( i > 0 ) kd_size_changed(i, 0); con_set_default_unimap(); return 0; #endif } case GIO_FONTX: { struct consolefontdesc cfdarg; int nchar; if (vt_cons[fg_console]->vc_mode != KD_TEXT) return -EINVAL; i = verify_area(VERIFY_WRITE, (void *)arg, sizeof(struct consolefontdesc)); if (i) return i; memcpy_fromfs(&cfdarg, (void *) arg, sizeof(struct consolefontdesc)); i = cfdarg.charcount; cfdarg.charcount = nchar = video_mode_512ch ? 512 : 256; cfdarg.charheight = video_font_height; memcpy_tofs((void *) arg, &cfdarg, sizeof(struct consolefontdesc)); if ( cfdarg.chardata ) { if ( i < nchar ) return -ENOMEM; return con_get_font(cfdarg.chardata); } else return 0; } case PIO_SCRNMAP: if (!perm) return -EPERM; return con_set_trans_old((unsigned char *)arg); case GIO_SCRNMAP: return con_get_trans_old((unsigned char *)arg); case PIO_UNISCRNMAP: if (!perm) return -EPERM; return con_set_trans_new((unsigned short *)arg); case GIO_UNISCRNMAP: return con_get_trans_new((unsigned short *)arg); case PIO_UNIMAPCLR: { struct unimapinit ui; if (!perm) return -EPERM; i = verify_area(VERIFY_READ, (void *)arg, sizeof(struct unimapinit)); if (i) return i; memcpy_fromfs(&ui, (void *)arg, sizeof(struct unimapinit)); con_clear_unimap(&ui); return 0; } case PIO_UNIMAP: { struct unimapdesc *ud; u_short ct; struct unipair *list; if (!perm) return -EPERM; i = verify_area(VERIFY_READ, (void *)arg, sizeof(struct unimapdesc)); if (i == 0) { ud = (struct unimapdesc *) arg; ct = get_user(&ud->entry_ct); list = get_user(&ud->entries); i = verify_area(VERIFY_READ, (void *) list, ct*sizeof(struct unipair)); } if (i) return i; return con_set_unimap(ct, list); } case GIO_UNIMAP: { struct unimapdesc *ud; u_short ct; struct unipair *list; i = verify_area(VERIFY_WRITE, (void *)arg, sizeof(struct unimapdesc)); if (i == 0) { ud = (struct unimapdesc *) arg; ct = get_user(&ud->entry_ct); list = get_user(&ud->entries); if (ct) i = verify_area(VERIFY_WRITE, (void *) list, ct*sizeof(struct unipair)); } if (i) return i; return con_get_unimap(ct, &(ud->entry_ct), list); } case VT_LOCKSWITCH: if (!suser()) return -EPERM; vt_dont_switch = 1; return 0; case VT_UNLOCKSWITCH: if (!suser()) return -EPERM; vt_dont_switch = 0; return 0; default: return -ENOIOCTLCMD; } }
Go to most recent revision | Compare with Previous | Blame | View Log