URL
https://opencores.org/ocsvn/or1k_old/or1k_old/trunk
Subversion Repositories or1k_old
[/] [or1k_old/] [trunk/] [uclinux/] [uClinux-2.0.x/] [drivers/] [sbus/] [char/] [sunserial.c] - Rev 1765
Go to most recent revision | Compare with Previous | Blame | View Log
/* serial.c: Serial port driver for the Sparc. * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) */ #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/interrupt.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/config.h> #include <linux/major.h> #include <linux/string.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/kernel.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/oplib.h> #include <asm/system.h> #include <asm/segment.h> #include <asm/bitops.h> #include <asm/delay.h> #include <asm/kdebug.h> #include "sunserial.h" #define NUM_SERIAL 2 /* Two chips on board. */ #define NUM_CHANNELS (NUM_SERIAL * 2) #define KEYBOARD_LINE 0x2 #define MOUSE_LINE 0x3 struct sun_zslayout *zs_chips[NUM_SERIAL] = { 0, 0, }; struct sun_zschannel *zs_channels[NUM_CHANNELS] = { 0, 0, 0, 0, }; struct sun_zschannel *zs_conschan; struct sun_zschannel *zs_mousechan; struct sun_zschannel *zs_kbdchan; struct sun_zschannel *zs_kgdbchan; int zs_nodes[NUM_SERIAL] = { 0, 0, }; struct sun_serial zs_soft[NUM_CHANNELS]; struct sun_serial *zs_chain; /* IRQ servicing chain */ int zilog_irq; struct tty_struct zs_ttys[NUM_CHANNELS]; /** struct tty_struct *zs_constty; **/ /* Console hooks... */ static int zs_cons_chanout = 0; static int zs_cons_chanin = 0; static struct l1a_kbd_state l1a_state = { 0, 0 }; struct sun_serial *zs_consinfo = 0; /* Keyboard defines for L1-A processing... */ #define SUNKBD_RESET 0xff #define SUNKBD_L1 0x01 #define SUNKBD_UP 0x80 #define SUNKBD_A 0x4d extern void sunkbd_inchar(unsigned char ch, unsigned char status, struct pt_regs *regs); extern void sun_mouse_inbyte(unsigned char byte, unsigned char status); static unsigned char kgdb_regs[16] = { 0, 0, 0, /* write 0, 1, 2 */ (Rx8 | RxENABLE), /* write 3 */ (X16CLK | SB1 | PAR_EVEN), /* write 4 */ (Tx8 | TxENAB), /* write 5 */ 0, 0, 0, /* write 6, 7, 8 */ (NV), /* write 9 */ (NRZ), /* write 10 */ (TCBR | RCBR), /* write 11 */ 0, 0, /* BRG time constant, write 12 + 13 */ (BRSRC | BRENABL), /* write 14 */ (DCDIE) /* write 15 */ }; #define ZS_CLOCK 4915200 /* Zilog input clock rate */ DECLARE_TASK_QUEUE(tq_serial); struct tty_driver serial_driver, callout_driver; static int serial_refcount; /* serial subtype definitions */ #define SERIAL_TYPE_NORMAL 1 #define SERIAL_TYPE_CALLOUT 2 /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 /* Debugging... DEBUG_INTR is bad to use when one of the zs * lines is your console ;( */ #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #define RS_STROBE_TIME 10 #define RS_ISR_PASS_LIMIT 256 #define _INLINE_ inline static void change_speed(struct sun_serial *info); static struct tty_struct *serial_table[NUM_CHANNELS]; static struct termios *serial_termios[NUM_CHANNELS]; static struct termios *serial_termios_locked[NUM_CHANNELS]; #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif /* * tmp_buf is used as a temporary buffer by serial_write. We need to * lock it in case the memcpy_fromfs blocks while swapping in a page, * and some other program tries to do a serial write at the same time. * Since the lock will only come under contention when the system is * swapping and available memory is low, it makes sense to share one * buffer across all the serial ports, since it significantly saves * memory if large numbers of serial ports are open. */ static unsigned char tmp_buf[4096]; /* This is cheating */ static struct semaphore tmp_buf_sem = MUTEX; static inline int serial_paranoia_check(struct sun_serial *info, dev_t device, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%d, %d) in %s\n"; static const char *badinfo = "Warning: null sun_serial for (%d, %d) in %s\n"; if (!info) { printk(badinfo, MAJOR(device), MINOR(device), routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, MAJOR(device), MINOR(device), routine); return 1; } #endif return 0; } /* * This is used to figure out the divisor speeds and the timeouts */ static int baud_table[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 0 }; /* * Reading and writing Zilog8530 registers. The delays are to make this * driver work on the Sun4 which needs a settling delay after each chip * register access, other machines handle this in hardware via auxiliary * flip-flops which implement the settle time we do in software. */ static inline unsigned char read_zsreg(struct sun_zschannel *channel, unsigned char reg) { unsigned char retval; channel->control = reg; udelay(5); retval = channel->control; udelay(5); return retval; } static inline void write_zsreg(struct sun_zschannel *channel, unsigned char reg, unsigned char value) { channel->control = reg; udelay(5); channel->control = value; udelay(5); return; } static inline void load_zsregs(struct sun_zschannel *channel, unsigned char *regs) { ZS_CLEARERR(channel); ZS_CLEARFIFO(channel); /* Load 'em up */ write_zsreg(channel, R4, regs[R4]); write_zsreg(channel, R10, regs[R10]); write_zsreg(channel, R3, regs[R3] & ~RxENABLE); write_zsreg(channel, R5, regs[R5] & ~TxENAB); write_zsreg(channel, R1, regs[R1]); write_zsreg(channel, R9, regs[R9]); write_zsreg(channel, R11, regs[R11]); write_zsreg(channel, R12, regs[R12]); write_zsreg(channel, R13, regs[R13]); write_zsreg(channel, R14, regs[R14]); write_zsreg(channel, R15, regs[R15]); write_zsreg(channel, R3, regs[R3]); write_zsreg(channel, R5, regs[R5]); return; } /* Sets or clears DTR/RTS on the requested line */ static inline void zs_rtsdtr(struct sun_serial *ss, int set) { if(set) { ss->curregs[5] |= (RTS | DTR); ss->pendregs[5] = ss->curregs[5]; write_zsreg(ss->zs_channel, 5, ss->curregs[5]); } else { ss->curregs[5] &= ~(RTS | DTR); ss->pendregs[5] = ss->curregs[5]; write_zsreg(ss->zs_channel, 5, ss->curregs[5]); } return; } static inline void kgdb_chaninit(struct sun_serial *ss, int intson, int bps) { int brg; if(intson) { kgdb_regs[R1] = INT_ALL_Rx; kgdb_regs[R9] |= MIE; } else { kgdb_regs[R1] = 0; kgdb_regs[R9] &= ~MIE; } brg = BPS_TO_BRG(bps, ZS_CLOCK/16); kgdb_regs[R12] = (brg & 255); kgdb_regs[R13] = ((brg >> 8) & 255); load_zsregs(ss->zs_channel, kgdb_regs); } /* Utility routines for the Zilog */ static inline int get_zsbaud(struct sun_serial *ss) { struct sun_zschannel *channel = ss->zs_channel; int brg; /* The baud rate is split up between two 8-bit registers in * what is termed 'BRG time constant' format in my docs for * the chip, it is a function of the clk rate the chip is * receiving which happens to be constant. */ brg = ((read_zsreg(channel, 13)&0xff) << 8); brg |= (read_zsreg(channel, 12)&0xff); return BRG_TO_BPS(brg, (ZS_CLOCK/(ss->clk_divisor))); } /* * ------------------------------------------------------------ * rs_stop() and rs_start() * * This routines are called before setting or resetting tty->stopped. * They enable or disable transmitter interrupts, as necessary. * ------------------------------------------------------------ */ static void rs_stop(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_stop")) return; save_flags(flags); cli(); if (info->curregs[5] & TxENAB) { info->curregs[5] &= ~TxENAB; info->pendregs[5] &= ~TxENAB; write_zsreg(info->zs_channel, 5, info->curregs[5]); } restore_flags(flags); } static void rs_start(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_start")) return; save_flags(flags); cli(); if (info->xmit_cnt && info->xmit_buf && !(info->curregs[5] & TxENAB)) { info->curregs[5] |= TxENAB; info->pendregs[5] = info->curregs[5]; write_zsreg(info->zs_channel, 5, info->curregs[5]); } restore_flags(flags); } /* Drop into either the boot monitor or kadb upon receiving a break * from keyboard/console input. */ static void batten_down_hatches(void) { /* If we are doing kadb, we call the debugger * else we just drop into the boot monitor. * Note that we must flush the user windows * first before giving up control. */ printk("\n"); flush_user_windows(); if((((unsigned long)linux_dbvec)>=DEBUG_FIRSTVADDR) && (((unsigned long)linux_dbvec)<=DEBUG_LASTVADDR)) sp_enter_debugger(); else prom_halt(); /* XXX We want to notify the keyboard driver that all * XXX keys are in the up state or else weird things * XXX happen... */ return; } /* On receive, this clears errors and the receiver interrupts */ static inline void rs_recv_clear(struct sun_zschannel *zsc) { zsc->control = ERR_RES; udelay(5); zsc->control = RES_H_IUS; udelay(5); } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * rs_interrupt(). They were separated out for readability's sake. * * Note: rs_interrupt() is a "fast" interrupt, which means that it * runs with interrupts turned off. People who may want to modify * rs_interrupt() should try to keep the interrupt handler as fast as * possible. After you are done making modifications, it is not a bad * idea to do: * * gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c * * and look at the resulting assemble code in serial.s. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static _INLINE_ void rs_sched_event(struct sun_serial *info, int event) { info->event |= 1 << event; queue_task_irq_off(&info->tqueue, &tq_serial); mark_bh(SERIAL_BH); } extern void breakpoint(void); /* For the KGDB frame character */ static _INLINE_ void receive_chars(struct sun_serial *info, struct pt_regs *regs) { struct tty_struct *tty = info->tty; unsigned char ch, stat; ch = info->zs_channel->data; udelay(5); stat = read_zsreg(info->zs_channel, R1); udelay(5); /* If this is the console keyboard, we need to handle * L1-A's here. */ if(info->cons_keyb) { if(ch == SUNKBD_RESET) { l1a_state.kbd_id = 1; l1a_state.l1_down = 0; } else if(l1a_state.kbd_id) { l1a_state.kbd_id = 0; } else if(ch == SUNKBD_L1) { l1a_state.l1_down = 1; } else if(ch == (SUNKBD_L1|SUNKBD_UP)) { l1a_state.l1_down = 0; } else if(ch == SUNKBD_A && l1a_state.l1_down) { /* whee... */ batten_down_hatches(); /* Clear the line and continue execution... */ rs_recv_clear(info->zs_channel); l1a_state.l1_down = 0; l1a_state.kbd_id = 0; return; } rs_recv_clear(info->zs_channel); sunkbd_inchar(ch, stat, regs); return; } if(info->cons_mouse) { rs_recv_clear(info->zs_channel); sun_mouse_inbyte(ch, stat); return; } if(info->is_cons) { if(ch==0) { /* whee, break received */ batten_down_hatches(); rs_recv_clear(info->zs_channel); return; } else if (ch == 1) { show_state(); return; } else if (ch == 2) { show_buffers(); return; } /* It is a 'keyboard interrupt' ;-) */ wake_up(&keypress_wait); } /* Look for kgdb 'stop' character, consult the gdb documentation * for remote target debugging and arch/sparc/kernel/sparc-stub.c * to see how all this works. */ if((info->kgdb_channel) && (ch =='\003')) { breakpoint(); goto clear_and_exit; } if(!tty) goto clear_and_exit; if (tty->flip.count >= TTY_FLIPBUF_SIZE) queue_task_irq_off(&tty->flip.tqueue, &tq_timer); tty->flip.count++; if(stat & PAR_ERR) *tty->flip.flag_buf_ptr++ = TTY_PARITY; else if(stat & Rx_OVR) *tty->flip.flag_buf_ptr++ = TTY_OVERRUN; else if(stat & CRC_ERR) *tty->flip.flag_buf_ptr++ = TTY_FRAME; else *tty->flip.flag_buf_ptr++ = 0; /* XXX */ *tty->flip.char_buf_ptr++ = ch; queue_task_irq_off(&tty->flip.tqueue, &tq_timer); clear_and_exit: rs_recv_clear(info->zs_channel); return; } static _INLINE_ void transmit_chars(struct sun_serial *info) { /* P3: In theory we have to test readiness here because a * serial console can clog the chip through rs_put_char(). * David did not do this. I think he relies on 3-chars FIFO in 8530. * Let's watch for lost _output_ characters. XXX */ if (info->x_char) { /* Send next char */ info->zs_channel->data = info->x_char; udelay(5); info->x_char = 0; goto clear_and_return; } if((info->xmit_cnt <= 0) || info->tty->stopped) { /* That's peculiar... */ info->zs_channel->control = RES_Tx_P; udelay(5); goto clear_and_return; } /* Send char */ info->zs_channel->data = info->xmit_buf[info->xmit_tail++]; udelay(5); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; if (info->xmit_cnt < WAKEUP_CHARS) rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); if(info->xmit_cnt <= 0) { info->zs_channel->control = RES_Tx_P; udelay(5); goto clear_and_return; } clear_and_return: /* Clear interrupt */ info->zs_channel->control = RES_H_IUS; udelay(5); return; } static _INLINE_ void status_handle(struct sun_serial *info) { unsigned char status; /* Get status from Read Register 0 */ status = info->zs_channel->control; udelay(5); /* Clear status condition... */ info->zs_channel->control = RES_EXT_INT; udelay(5); /* Clear the interrupt */ info->zs_channel->control = RES_H_IUS; udelay(5); #if 0 if(status & DCD) { if((info->tty->termios->c_cflag & CRTSCTS) && ((info->curregs[3] & AUTO_ENAB)==0)) { info->curregs[3] |= AUTO_ENAB; info->pendregs[3] |= AUTO_ENAB; write_zsreg(info->zs_channel, 3, info->curregs[3]); } } else { if((info->curregs[3] & AUTO_ENAB)) { info->curregs[3] &= ~AUTO_ENAB; info->pendregs[3] &= ~AUTO_ENAB; write_zsreg(info->zs_channel, 3, info->curregs[3]); } } #endif /* Whee, if this is console input and this is a * 'break asserted' status change interrupt, call * the boot prom. */ if((status & BRK_ABRT) && info->break_abort) batten_down_hatches(); /* XXX Whee, put in a buffer somewhere, the status information * XXX whee whee whee... Where does the information go... */ return; } /* * This is the serial driver's generic interrupt routine */ void rs_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct sun_serial * info; unsigned char zs_intreg; info = zs_chain; if (!info) return; zs_intreg = read_zsreg(info->zs_channel, 3); /* NOTE: The read register 3, which holds the irq status, * does so for both channels on each chip. Although * the status value itself must be read from the A * channel and is only valid when read from channel A. * Yes... broken hardware... */ #define CHAN_A_IRQMASK (CHARxIP | CHATxIP | CHAEXT) #define CHAN_B_IRQMASK (CHBRxIP | CHBTxIP | CHBEXT) /* *** Chip 1 *** */ /* Channel A -- /dev/ttya, could be the console */ if(zs_intreg & CHAN_A_IRQMASK) { if (zs_intreg & CHARxIP) receive_chars(info, regs); if (zs_intreg & CHATxIP) transmit_chars(info); if (zs_intreg & CHAEXT) status_handle(info); } info=info->zs_next; /* Channel B -- /dev/ttyb, could be the console */ if(zs_intreg & CHAN_B_IRQMASK) { if (zs_intreg & CHBRxIP) receive_chars(info, regs); if (zs_intreg & CHBTxIP) transmit_chars(info); if (zs_intreg & CHBEXT) status_handle(info); } info = info->zs_next; zs_intreg = read_zsreg(info->zs_channel, 3); /* *** Chip 2 *** */ /* Channel A -- /dev/kbd, pass communication to keyboard driver */ if(zs_intreg & CHAN_A_IRQMASK) { if (zs_intreg & CHARxIP) receive_chars(info, regs); if (zs_intreg & CHATxIP) transmit_chars(info); if (zs_intreg & CHAEXT) status_handle(info); } info=info->zs_next; /* Channel B -- /dev/mouse, pass communication to mouse driver */ if(zs_intreg & CHAN_B_IRQMASK) { if (zs_intreg & CHBRxIP) receive_chars(info, regs); if (zs_intreg & CHBTxIP) transmit_chars(info); if (zs_intreg & CHBEXT) status_handle(info); } return; } /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using rs_sched_event(), and they get done here. */ static void do_serial_bh(void) { run_task_queue(&tq_serial); } static void do_softint(void *private_) { struct sun_serial *info = (struct sun_serial *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); wake_up_interruptible(&tty->write_wait); } } /* * This routine is called from the scheduler tqueue when the interrupt * routine has signalled that a hangup has occurred. The path of * hangup processing is: * * serial interrupt routine -> (scheduler tqueue) -> * do_serial_hangup() -> tty->hangup() -> rs_hangup() * */ static void do_serial_hangup(void *private_) { struct sun_serial *info = (struct sun_serial *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; tty_hangup(tty); } /* * This subroutine is called when the RS_TIMER goes off. It is used * by the serial driver to handle ports that do not have an interrupt * (irq=0). This doesn't work at all for 16450's, as a sun has a Z8530. */ static void rs_timer(void) { printk("rs_timer called\n"); prom_halt(); return; } static int startup(struct sun_serial * info) { unsigned long flags; if (info->flags & ZILOG_INITIALIZED) return 0; if (!info->xmit_buf) { info->xmit_buf = (unsigned char *) get_free_page(GFP_KERNEL); if (!info->xmit_buf) return -ENOMEM; } save_flags(flags); cli(); #ifdef SERIAL_DEBUG_OPEN printk("starting up ttys%d (irq %d)...", info->line, info->irq); #endif /* * Clear the FIFO buffers and disable them * (they will be reenabled in change_speed()) */ ZS_CLEARFIFO(info->zs_channel); info->xmit_fifo_size = 1; /* * Clear the interrupt registers. */ info->zs_channel->control = ERR_RES; udelay(5); info->zs_channel->control = RES_H_IUS; udelay(5); /* * Now, initialize the Zilog */ zs_rtsdtr(info, 1); /* * Finally, enable sequencing and interrupts */ info->curregs[1] |= (info->curregs[1] & ~0x18) | (EXT_INT_ENAB|INT_ALL_Rx); info->pendregs[1] = info->curregs[1]; info->curregs[3] |= (RxENABLE | Rx8); info->pendregs[3] = info->curregs[3]; /* We enable Tx interrupts as needed. */ info->curregs[5] |= (TxENAB | Tx8); info->pendregs[5] = info->curregs[5]; info->curregs[9] |= (NV | MIE); info->pendregs[9] = info->curregs[9]; write_zsreg(info->zs_channel, 3, info->curregs[3]); write_zsreg(info->zs_channel, 5, info->curregs[5]); write_zsreg(info->zs_channel, 9, info->curregs[9]); /* * And clear the interrupt registers again for luck. */ info->zs_channel->control = ERR_RES; udelay(5); info->zs_channel->control = RES_H_IUS; udelay(5); if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; /* * Set up serial timers... */ #if 0 /* Works well and stops the machine. */ timer_table[RS_TIMER].expires = jiffies + 2; timer_active |= 1 << RS_TIMER; #endif /* * and set the speed of the serial port */ change_speed(info); info->flags |= ZILOG_INITIALIZED; restore_flags(flags); return 0; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(struct sun_serial * info) { unsigned long flags; if (!(info->flags & ZILOG_INITIALIZED)) return; #ifdef SERIAL_DEBUG_OPEN printk("Shutting down serial port %d (irq %d)....", info->line, info->irq); #endif save_flags(flags); cli(); /* Disable interrupts */ if (info->xmit_buf) { free_page((unsigned long) info->xmit_buf); info->xmit_buf = 0; } if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); info->flags &= ~ZILOG_INITIALIZED; restore_flags(flags); } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(struct sun_serial *info) { unsigned short port; unsigned cflag; int i; int brg; if (!info->tty || !info->tty->termios) return; cflag = info->tty->termios->c_cflag; if (!(port = info->port)) return; i = cflag & CBAUD; if (i & CBAUDEX) { /* XXX CBAUDEX is not obeyed. * It is impossible at a 32bits SPARC. * But we have to report this to user ... someday. */ i = B9600; } info->zs_baud = baud_table[i]; info->clk_divisor = 16; info->curregs[4] = X16CLK; info->curregs[11] = TCBR | RCBR; brg = BPS_TO_BRG(info->zs_baud, ZS_CLOCK/info->clk_divisor); info->curregs[12] = (brg & 255); info->curregs[13] = ((brg >> 8) & 255); info->curregs[14] = BRSRC | BRENABL; /* byte size and parity */ switch (cflag & CSIZE) { case CS5: info->curregs[3] &= ~(0xc0); info->curregs[3] |= Rx5; info->pendregs[3] = info->curregs[3]; info->curregs[5] &= ~(0xe0); info->curregs[5] |= Tx5; info->pendregs[5] = info->curregs[5]; break; case CS6: info->curregs[3] &= ~(0xc0); info->curregs[3] |= Rx6; info->pendregs[3] = info->curregs[3]; info->curregs[5] &= ~(0xe0); info->curregs[5] |= Tx6; info->pendregs[5] = info->curregs[5]; break; case CS7: info->curregs[3] &= ~(0xc0); info->curregs[3] |= Rx7; info->pendregs[3] = info->curregs[3]; info->curregs[5] &= ~(0xe0); info->curregs[5] |= Tx7; info->pendregs[5] = info->curregs[5]; break; case CS8: default: /* defaults to 8 bits */ info->curregs[3] &= ~(0xc0); info->curregs[3] |= Rx8; info->pendregs[3] = info->curregs[3]; info->curregs[5] &= ~(0xe0); info->curregs[5] |= Tx8; info->pendregs[5] = info->curregs[5]; break; } info->curregs[4] &= ~(0x0c); if (cflag & CSTOPB) { info->curregs[4] |= SB2; } else { info->curregs[4] |= SB1; } info->pendregs[4] = info->curregs[4]; if (cflag & PARENB) { info->curregs[4] |= PAR_ENA; info->pendregs[4] |= PAR_ENA; } else { info->curregs[4] &= ~PAR_ENA; info->pendregs[4] &= ~PAR_ENA; } if (!(cflag & PARODD)) { info->curregs[4] |= PAR_EVEN; info->pendregs[4] |= PAR_EVEN; } else { info->curregs[4] &= ~PAR_EVEN; info->pendregs[4] &= ~PAR_EVEN; } /* Load up the new values */ load_zsregs(info->zs_channel, info->curregs); return; } /* This is for mouse/keyboard output. * XXX mouse output??? can we send it commands??? XXX */ void kbd_put_char(unsigned char ch) { struct sun_zschannel *chan = zs_kbdchan; int flags, loops = 0; if(!chan) return; save_flags(flags); cli(); while((chan->control & Tx_BUF_EMP)==0 && loops < 10000) { loops++; udelay(5); } chan->data = ch; udelay(5); restore_flags(flags); } void mouse_put_char(char ch) { struct sun_zschannel *chan = zs_mousechan; int flags, loops = 0; if(!chan) return; save_flags(flags); cli(); while((chan->control & Tx_BUF_EMP)==0 && loops < 10000) { loops++; udelay(5); } chan->data = ch; udelay(5); restore_flags(flags); } /* This is for console output over ttya/ttyb */ static void rs_put_char(char ch) { struct sun_zschannel *chan = zs_conschan; int flags, loops = 0; if(!chan) return; save_flags(flags); cli(); while((chan->control & Tx_BUF_EMP)==0 && loops < 10000) { loops++; udelay(5); } chan->data = ch; udelay(5); restore_flags(flags); } /* These are for receiving and sending characters under the kgdb * source level kernel debugger. */ void putDebugChar(char kgdb_char) { struct sun_zschannel *chan = zs_kgdbchan; while((chan->control & Tx_BUF_EMP)==0) udelay(5); chan->data = kgdb_char; } char getDebugChar(void) { struct sun_zschannel *chan = zs_kgdbchan; while((chan->control & Rx_CH_AV)==0) barrier(); return chan->data; } /* * Fair output driver allows a process to speak. */ static void rs_fair_output(void) { int left; /* Output no more than that */ unsigned long flags; struct sun_serial *info = zs_consinfo; char c; if (info == 0) return; if (info->xmit_buf == 0) return; save_flags(flags); cli(); left = info->xmit_cnt; while (left != 0) { c = info->xmit_buf[info->xmit_tail]; info->xmit_tail = (info->xmit_tail+1) & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; restore_flags(flags); rs_put_char(c); save_flags(flags); cli(); left = MIN(info->xmit_cnt, left-1); } /* Last character is being transmitted now (hopefully). */ zs_conschan->control = RES_Tx_P; udelay(5); restore_flags(flags); return; } /* * zs_console_print is registered for printk. */ static void zs_console_print(const char *p) { char c; while((c=*(p++)) != 0) { if(c == '\n') rs_put_char('\r'); rs_put_char(c); } /* Comment this if you want to have a strict interrupt-driven output */ rs_fair_output(); return; } static void rs_flush_chars(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_flush_chars")) return; if (info->xmit_cnt <= 0 || tty->stopped || tty->hw_stopped || !info->xmit_buf) return; /* Enable transmitter */ save_flags(flags); cli(); info->curregs[1] |= TxINT_ENAB|EXT_INT_ENAB; info->pendregs[1] |= TxINT_ENAB|EXT_INT_ENAB; write_zsreg(info->zs_channel, 1, info->curregs[1]); info->curregs[5] |= TxENAB; info->pendregs[5] |= TxENAB; write_zsreg(info->zs_channel, 5, info->curregs[5]); /* * Send a first (bootstrapping) character. A best solution is * to call transmit_chars() here which handles output in a * generic way. Current transmit_chars() not only transmits, * but resets interrupts also what we do not desire here. * XXX Discuss with David. */ if (info->zs_channel->control & Tx_BUF_EMP) { /* Send char */ info->zs_channel->data = info->xmit_buf[info->xmit_tail++]; udelay(5); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; } restore_flags(flags); } static int rs_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) { int c, total = 0; struct sun_serial *info = (struct sun_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_write")) return 0; if (!tty || !info->xmit_buf) return 0; save_flags(flags); while (1) { cli(); c = MIN(count, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) break; if (from_user) { down(&tmp_buf_sem); memcpy_fromfs(tmp_buf, buf, c); c = MIN(c, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); memcpy(info->xmit_buf + info->xmit_head, tmp_buf, c); up(&tmp_buf_sem); } else memcpy(info->xmit_buf + info->xmit_head, buf, c); info->xmit_head = (info->xmit_head + c) & (SERIAL_XMIT_SIZE-1); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; total += c; } if (info->xmit_cnt && !tty->stopped && !tty->hw_stopped && !(info->curregs[5] & TxENAB)) { /* Enable transmitter */ info->curregs[1] |= TxINT_ENAB|EXT_INT_ENAB; info->pendregs[1] |= TxINT_ENAB|EXT_INT_ENAB; write_zsreg(info->zs_channel, 1, info->curregs[1]); info->curregs[5] |= TxENAB; info->pendregs[5] |= TxENAB; write_zsreg(info->zs_channel, 5, info->curregs[5]); } restore_flags(flags); return total; } static int rs_write_room(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->device, "rs_write_room")) return 0; ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1; if (ret < 0) ret = 0; return ret; } static int rs_chars_in_buffer(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_chars_in_buffer")) return 0; return info->xmit_cnt; } static void rs_flush_buffer(struct tty_struct *tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_flush_buffer")) return; cli(); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; sti(); wake_up_interruptible(&tty->write_wait); if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); } /* * ------------------------------------------------------------ * rs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void rs_throttle(struct tty_struct * tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_throttle")) return; if (I_IXOFF(tty)) info->x_char = STOP_CHAR(tty); /* Turn off RTS line */ cli(); info->curregs[5] &= ~RTS; info->pendregs[5] &= ~RTS; write_zsreg(info->zs_channel, 5, info->curregs[5]); sti(); } static void rs_unthrottle(struct tty_struct * tty) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_unthrottle")) return; if (I_IXOFF(tty)) { if (info->x_char) info->x_char = 0; else info->x_char = START_CHAR(tty); } /* Assert RTS line */ cli(); info->curregs[5] |= RTS; info->pendregs[5] |= RTS; write_zsreg(info->zs_channel, 5, info->curregs[5]); sti(); } /* * ------------------------------------------------------------ * rs_ioctl() and friends * ------------------------------------------------------------ */ static int get_serial_info(struct sun_serial * info, struct serial_struct * retinfo) { struct serial_struct tmp; if (!retinfo) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.type = info->type; tmp.line = info->line; tmp.port = info->port; tmp.irq = info->irq; tmp.flags = info->flags; tmp.baud_base = info->baud_base; tmp.close_delay = info->close_delay; tmp.closing_wait = info->closing_wait; tmp.custom_divisor = info->custom_divisor; memcpy_tofs(retinfo,&tmp,sizeof(*retinfo)); return 0; } static int set_serial_info(struct sun_serial * info, struct serial_struct * new_info) { struct serial_struct new_serial; struct sun_serial old_info; int retval = 0; if (!new_info) return -EFAULT; memcpy_fromfs(&new_serial,new_info,sizeof(new_serial)); old_info = *info; if (!suser()) { if ((new_serial.baud_base != info->baud_base) || (new_serial.type != info->type) || (new_serial.close_delay != info->close_delay) || ((new_serial.flags & ~ZILOG_USR_MASK) != (info->flags & ~ZILOG_USR_MASK))) return -EPERM; info->flags = ((info->flags & ~ZILOG_USR_MASK) | (new_serial.flags & ZILOG_USR_MASK)); info->custom_divisor = new_serial.custom_divisor; goto check_and_exit; } if (info->count > 1) return -EBUSY; /* * OK, past this point, all the error checking has been done. * At this point, we start making changes..... */ info->baud_base = new_serial.baud_base; info->flags = ((info->flags & ~ZILOG_FLAGS) | (new_serial.flags & ZILOG_FLAGS)); info->type = new_serial.type; info->close_delay = new_serial.close_delay; info->closing_wait = new_serial.closing_wait; check_and_exit: retval = startup(info); return retval; } /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct sun_serial * info, unsigned int *value) { unsigned char status; cli(); status = info->zs_channel->control; sti(); put_user(status,value); return 0; } /* * This routine sends a break character out the serial port. */ static void send_break( struct sun_serial * info, int duration) { if (!info->port) return; current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + duration; cli(); write_zsreg(info->zs_channel, 5, (info->curregs[5] | SND_BRK)); schedule(); write_zsreg(info->zs_channel, 5, info->curregs[5]); sti(); } static int rs_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int error; struct sun_serial * info = (struct sun_serial *)tty->driver_data; int retval; if (serial_paranoia_check(info, tty->device, "rs_ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGWILD) && (cmd != TIOCSERSWILD) && (cmd != TIOCSERGSTRUCT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TCSBRK: /* SVID version: non-zero arg --> no break */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); if (!arg) send_break(info, HZ/4); /* 1/4 second */ return 0; case TCSBRKP: /* support for POSIX tcsendbreak() */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); send_break(info, arg ? arg*(HZ/10) : HZ/4); return 0; case TIOCGSOFTCAR: error = verify_area(VERIFY_WRITE, (void *) arg,sizeof(long)); if (error) return error; put_fs_long(C_CLOCAL(tty) ? 1 : 0, (unsigned long *) arg); return 0; case TIOCSSOFTCAR: arg = get_fs_long((unsigned long *) arg); tty->termios->c_cflag = ((tty->termios->c_cflag & ~CLOCAL) | (arg ? CLOCAL : 0)); return 0; case TIOCGSERIAL: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct serial_struct)); if (error) return error; return get_serial_info(info, (struct serial_struct *) arg); case TIOCSSERIAL: return set_serial_info(info, (struct serial_struct *) arg); case TIOCSERGETLSR: /* Get line status register */ error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned int)); if (error) return error; else return get_lsr_info(info, (unsigned int *) arg); case TIOCSERGSTRUCT: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct sun_serial)); if (error) return error; memcpy_tofs((struct sun_serial *) arg, info, sizeof(struct sun_serial)); return 0; default: return -ENOIOCTLCMD; } return 0; } static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios) { struct sun_serial *info = (struct sun_serial *)tty->driver_data; if (tty->termios->c_cflag == old_termios->c_cflag) return; change_speed(info); if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) { tty->hw_stopped = 0; rs_start(tty); } } /* * ------------------------------------------------------------ * rs_close() * * This routine is called when the serial port gets closed. First, we * wait for the last remaining data to be sent. Then, we unlink its * ZILOG structure from the interrupt chain if necessary, and we free * that IRQ if nothing is left in the chain. * ------------------------------------------------------------ */ static void rs_close(struct tty_struct *tty, struct file * filp) { struct sun_serial * info = (struct sun_serial *)tty->driver_data; unsigned long flags; if (!info || serial_paranoia_check(info, tty->device, "rs_close")) return; save_flags(flags); cli(); if (tty_hung_up_p(filp)) { restore_flags(flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("rs_close ttys%d, count = %d\n", info->line, info->count); #endif if ((tty->count == 1) && (info->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. Info->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("rs_close: bad serial port count; tty->count is 1, " "info->count is %d\n", info->count); info->count = 1; } if (--info->count < 0) { printk("rs_close: bad serial port count for ttys%d: %d\n", info->line, info->count); info->count = 0; } if (info->count) { restore_flags(flags); return; } info->flags |= ZILOG_CLOSING; /* * Save the termios structure, since this port may have * separate termios for callout and dialin. */ if (info->flags & ZILOG_NORMAL_ACTIVE) info->normal_termios = *tty->termios; if (info->flags & ZILOG_CALLOUT_ACTIVE) info->callout_termios = *tty->termios; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (info->closing_wait != ZILOG_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receive line status interrupts, and tell the * interrupt driver to stop checking the data ready bit in the * line status register. */ /** if (!info->iscons) ... **/ info->curregs[3] &= ~RxENABLE; info->pendregs[3] = info->curregs[3]; write_zsreg(info->zs_channel, 3, info->curregs[3]); info->curregs[1] &= ~(0x18); info->pendregs[1] = info->curregs[1]; write_zsreg(info->zs_channel, 1, info->curregs[1]); ZS_CLEARFIFO(info->zs_channel); shutdown(info); if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (tty->ldisc.num != ldiscs[N_TTY].num) { if (tty->ldisc.close) (tty->ldisc.close)(tty); tty->ldisc = ldiscs[N_TTY]; tty->termios->c_line = N_TTY; if (tty->ldisc.open) (tty->ldisc.open)(tty); } if (info->blocked_open) { if (info->close_delay) { current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + info->close_delay; schedule(); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CALLOUT_ACTIVE| ZILOG_CLOSING); wake_up_interruptible(&info->close_wait); restore_flags(flags); } /* * rs_hangup() --- called by tty_hangup() when a hangup is signaled. */ void rs_hangup(struct tty_struct *tty) { struct sun_serial * info = (struct sun_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_hangup")) return; rs_flush_buffer(tty); shutdown(info); info->event = 0; info->count = 0; info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CALLOUT_ACTIVE); info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * rs_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, struct sun_serial *info) { struct wait_queue wait = { current, NULL }; int retval; int do_clocal = 0; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (info->flags & ZILOG_CLOSING) { interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART if (info->flags & ZILOG_HUP_NOTIFY) return -EAGAIN; else return -ERESTARTSYS; #else return -EAGAIN; #endif } /* * If this is a callout device, then just make sure the normal * device isn't being used. */ if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) { if (info->flags & ZILOG_NORMAL_ACTIVE) return -EBUSY; if ((info->flags & ZILOG_CALLOUT_ACTIVE) && (info->flags & ZILOG_SESSION_LOCKOUT) && (info->session != current->session)) return -EBUSY; if ((info->flags & ZILOG_CALLOUT_ACTIVE) && (info->flags & ZILOG_PGRP_LOCKOUT) && (info->pgrp != current->pgrp)) return -EBUSY; info->flags |= ZILOG_CALLOUT_ACTIVE; return 0; } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { if (info->flags & ZILOG_CALLOUT_ACTIVE) return -EBUSY; info->flags |= ZILOG_NORMAL_ACTIVE; return 0; } if (info->flags & ZILOG_CALLOUT_ACTIVE) { if (info->normal_termios.c_cflag & CLOCAL) do_clocal = 1; } else { if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; } /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, info->count is dropped by one, so that * rs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttys%d, count = %d\n", info->line, info->count); #endif info->count--; info->blocked_open++; while (1) { cli(); if (!(info->flags & ZILOG_CALLOUT_ACTIVE)) zs_rtsdtr(info, 1); sti(); current->state = TASK_INTERRUPTIBLE; if (tty_hung_up_p(filp) || !(info->flags & ZILOG_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ZILOG_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } if (!(info->flags & ZILOG_CALLOUT_ACTIVE) && !(info->flags & ZILOG_CLOSING) && do_clocal) break; if (current->signal & ~current->blocked) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttys%d, count = %d\n", info->line, info->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (!tty_hung_up_p(filp)) info->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttys%d, count = %d\n", info->line, info->count); #endif if (retval) return retval; info->flags |= ZILOG_NORMAL_ACTIVE; return 0; } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its ZILOG structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ int rs_open(struct tty_struct *tty, struct file * filp) { struct sun_serial *info; int retval, line; line = MINOR(tty->device) - tty->driver.minor_start; /* The zilog lines for the mouse/keyboard must be * opened using their respective drivers. */ if ((line < 0) || (line >= NUM_CHANNELS)) return -ENODEV; if((line == KEYBOARD_LINE) || (line == MOUSE_LINE)) return -ENODEV; info = zs_soft + line; /* Is the kgdb running over this line? */ if (info->kgdb_channel) return -ENODEV; if (serial_paranoia_check(info, tty->device, "rs_open")) return -ENODEV; #ifdef SERIAL_DEBUG_OPEN printk("rs_open %s%d, count = %d\n", tty->driver.name, info->line, info->count); #endif info->count++; tty->driver_data = info; info->tty = tty; /* * Start up serial port */ retval = startup(info); if (retval) return retval; retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("rs_open returning after block_til_ready with %d\n", retval); #endif return retval; } if ((info->count == 1) && (info->flags & ZILOG_SPLIT_TERMIOS)) { if (tty->driver.subtype == SERIAL_TYPE_NORMAL) *tty->termios = info->normal_termios; else *tty->termios = info->callout_termios; change_speed(info); } info->session = current->session; info->pgrp = current->pgrp; #ifdef SERIAL_DEBUG_OPEN printk("rs_open ttys%d successful...", info->line); #endif return 0; } /* Finally, routines used to initialize the serial driver. */ static void show_serial_version(void) { printk("Sparc Zilog8530 serial driver version 1.00\n"); } /* Probe the PROM for the request zs chip number. */ static inline struct sun_zslayout *get_zs(int chip) { struct linux_prom_irqs tmp_irq; unsigned long paddr = 0; unsigned long vaddr = 0; int zsnode, tmpnode, iospace, slave; static int irq = 0; #if CONFIG_AP1000 printk("No zs chip\n"); return NULL; #endif iospace = 0; if(chip < 0 || chip >= NUM_SERIAL) panic("get_zs bogon zs chip number"); if(sparc_cpu_model == sun4) { /* Grrr, these have to be hardcoded aieee */ switch(chip) { case 0: paddr = 0xf1000000; break; case 1: paddr = 0xf0000000; break; }; iospace = 0; zs_nodes[chip] = 0; if(!irq) zilog_irq = irq = 12; vaddr = (unsigned long) sparc_alloc_io((char *) paddr, 0, 8, "Zilog Serial", iospace, 0); } else { /* Can use the prom for other machine types */ zsnode = prom_getchild(prom_root_node); tmpnode = prom_searchsiblings(zsnode, "obio"); if(tmpnode) zsnode = prom_getchild(tmpnode); if(!zsnode) panic("get_zs no zs serial prom node"); while(zsnode) { zsnode = prom_searchsiblings(zsnode, "zs"); slave = prom_getintdefault(zsnode, "slave", -1); if(slave==chip) { /* The one we want */ vaddr = (unsigned long) prom_getintdefault(zsnode, "address", 0xdeadbeef); if(vaddr == 0xdeadbeef) prom_halt(); zs_nodes[chip] = zsnode; prom_getproperty(zsnode, "intr", (char *) &tmp_irq, sizeof(tmp_irq)); #ifdef OLD_STYLE_IRQ tmp_irq.pri &= 0xf; #endif if(!irq) { irq = zilog_irq = tmp_irq.pri; } else { if(tmp_irq.pri != irq) panic("zilog: bogon irqs"); } break; } zsnode = prom_getsibling(zsnode); } if(!zsnode) panic("get_zs whee chip not found"); } if(!vaddr) panic("get_zs whee no serial chip mappable"); return (struct sun_zslayout *) vaddr; } extern void register_console(void (*proc)(const char *)); static inline void rs_cons_check(struct sun_serial *ss, int channel) { int i, o, io; static consout_registered = 0; static msg_printed = 0; i = o = io = 0; /* Is this one of the serial console lines? */ if((zs_cons_chanout != channel) && (zs_cons_chanin != channel)) return; zs_conschan = ss->zs_channel; zs_consinfo = ss; /* Register the console output putchar, if necessary */ if((zs_cons_chanout == channel)) { o = 1; /* double whee.. */ if(!consout_registered) { register_console(zs_console_print); consout_registered = 1; } } /* If this is console input, we handle the break received * status interrupt on this line to mean prom_halt(). */ if(zs_cons_chanin == channel) { ss->break_abort = 1; i = 1; } if(o && i) io = 1; if(ss->zs_baud != 9600) panic("Console baud rate weirdness"); /* Set flag variable for this port so that it cannot be * opened for other uses by accident. */ ss->is_cons = 1; if(io) { if(!msg_printed) { printk("zs%d: console I/O\n", ((channel>>1)&1)); msg_printed = 1; } } else { printk("zs%d: console %s\n", ((channel>>1)&1), (i==1 ? "input" : (o==1 ? "output" : "WEIRD"))); } } volatile int test_done; extern void keyboard_zsinit(void); extern void sun_mouse_zsinit(void); /* rs_init inits the driver */ int rs_init(void) { int chip, channel, i, flags; struct sun_serial *info; #if CONFIG_AP1000 printk("not doing rs_init()\n"); return 0; #endif /* Setup base handler, and timer table. */ init_bh(SERIAL_BH, do_serial_bh); timer_table[RS_TIMER].fn = rs_timer; timer_table[RS_TIMER].expires = 0; show_serial_version(); /* Initialize the tty_driver structure */ /* SPARC: Not all of this is exactly right for us. */ memset(&serial_driver, 0, sizeof(struct tty_driver)); serial_driver.magic = TTY_DRIVER_MAGIC; serial_driver.name = "ttyS"; serial_driver.major = TTY_MAJOR; serial_driver.minor_start = 64; serial_driver.num = NUM_CHANNELS; serial_driver.type = TTY_DRIVER_TYPE_SERIAL; serial_driver.subtype = SERIAL_TYPE_NORMAL; serial_driver.init_termios = tty_std_termios; serial_driver.init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver.flags = TTY_DRIVER_REAL_RAW; serial_driver.refcount = &serial_refcount; serial_driver.table = serial_table; serial_driver.termios = serial_termios; serial_driver.termios_locked = serial_termios_locked; serial_driver.open = rs_open; serial_driver.close = rs_close; serial_driver.write = rs_write; serial_driver.flush_chars = rs_flush_chars; serial_driver.write_room = rs_write_room; serial_driver.chars_in_buffer = rs_chars_in_buffer; serial_driver.flush_buffer = rs_flush_buffer; serial_driver.ioctl = rs_ioctl; serial_driver.throttle = rs_throttle; serial_driver.unthrottle = rs_unthrottle; serial_driver.set_termios = rs_set_termios; serial_driver.stop = rs_stop; serial_driver.start = rs_start; serial_driver.hangup = rs_hangup; /* * The callout device is just like normal device except for * major number and the subtype code. */ callout_driver = serial_driver; callout_driver.name = "cua"; callout_driver.major = TTYAUX_MAJOR; callout_driver.subtype = SERIAL_TYPE_CALLOUT; if (tty_register_driver(&serial_driver)) panic("Couldn't register serial driver\n"); if (tty_register_driver(&callout_driver)) panic("Couldn't register callout driver\n"); save_flags(flags); cli(); /* Set up our interrupt linked list */ zs_chain = &zs_soft[0]; zs_soft[0].zs_next = &zs_soft[1]; zs_soft[1].zs_next = &zs_soft[2]; zs_soft[2].zs_next = &zs_soft[3]; zs_soft[3].zs_next = 0; for(chip = 0; chip < NUM_SERIAL; chip++) { /* If we are doing kgdb over one of the channels on * chip zero, kgdb_channel will be set to 1 by the * rs_kgdb_hook() routine below. */ if(!zs_chips[chip]) { zs_chips[chip] = get_zs(chip); /* Two channels per chip */ zs_channels[(chip*2)] = &zs_chips[chip]->channelA; zs_channels[(chip*2)+1] = &zs_chips[chip]->channelB; zs_soft[(chip*2)].kgdb_channel = 0; zs_soft[(chip*2)+1].kgdb_channel = 0; } /* First, set up channel A on this chip. */ channel = chip * 2; zs_soft[channel].zs_channel = zs_channels[channel]; zs_soft[channel].change_needed = 0; zs_soft[channel].clk_divisor = 16; zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]); zs_soft[channel].cons_mouse = 0; /* If not keyboard/mouse and is console serial * line, then enable receiver interrupts. */ if((channel<KEYBOARD_LINE) && (zs_soft[channel].is_cons)) { write_zsreg(zs_soft[channel].zs_channel, R1, (EXT_INT_ENAB | INT_ALL_Rx)); write_zsreg(zs_soft[channel].zs_channel, R9, (NV | MIE)); write_zsreg(zs_soft[channel].zs_channel, R10, (NRZ)); write_zsreg(zs_soft[channel].zs_channel, R3, (Rx8|RxENABLE)); write_zsreg(zs_soft[channel].zs_channel, R5, (Tx8 | TxENAB)); } /* If this is the kgdb line, enable interrupts because we * now want to receive the 'control-c' character from the * client attached to us asynchronously. */ if(zs_soft[channel].kgdb_channel) kgdb_chaninit(&zs_soft[channel], 1, zs_soft[channel].zs_baud); if(channel == KEYBOARD_LINE) { /* Tell keyboard driver about our presence. */ if(zs_soft[channel].zs_baud != 1200) panic("Weird keyboard serial baud rate"); zs_soft[channel].cons_keyb = 1; zs_kbdchan = zs_soft[channel].zs_channel; /* Enable Rx/Tx, IRQs, and inform kbd driver */ write_zsreg(zs_soft[channel].zs_channel, R1, (EXT_INT_ENAB | INT_ALL_Rx)); write_zsreg(zs_soft[channel].zs_channel, R4, (PAR_EVEN | X16CLK | SB1)); write_zsreg(zs_soft[channel].zs_channel, R9, (NV|MIE)); write_zsreg(zs_soft[channel].zs_channel, R10, (NRZ)); write_zsreg(zs_soft[channel].zs_channel, R11, (TCBR | RCBR)); write_zsreg(zs_soft[channel].zs_channel, R14, (BRSRC | BRENABL)); write_zsreg(zs_soft[channel].zs_channel, R3, (Rx8|RxENABLE)); write_zsreg(zs_soft[channel].zs_channel, R5, (Tx8 | TxENAB | DTR | RTS)); #if 0 write_zsreg(zs_soft[channel].zs_channel, R15, (DCDIE | CTSIE | TxUIE | BRKIE)); #endif ZS_CLEARERR(zs_soft[channel].zs_channel); ZS_CLEARFIFO(zs_soft[channel].zs_channel); } /* Now, channel B */ channel++; zs_soft[channel].zs_channel = zs_channels[channel]; zs_soft[channel].change_needed = 0; zs_soft[channel].clk_divisor = 16; zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]); zs_soft[channel].cons_keyb = 0; /* If not keyboard/mouse and is console serial * line, then enable receiver interrupts. */ if(channel<KEYBOARD_LINE && zs_soft[channel].is_cons) { write_zsreg(zs_soft[channel].zs_channel, R1, (EXT_INT_ENAB | INT_ALL_Rx)); write_zsreg(zs_soft[channel].zs_channel, R9, (NV | MIE)); write_zsreg(zs_soft[channel].zs_channel, R10, (NRZ)); write_zsreg(zs_soft[channel].zs_channel, R3, (Rx8|RxENABLE)); write_zsreg(zs_soft[channel].zs_channel, R5, (Tx8 | TxENAB | RTS | DTR)); } if(channel == MOUSE_LINE) { /* Tell mouse driver about our presence. */ if(zs_soft[channel].zs_baud != 1200) panic("Weird mouse serial baud rate"); zs_soft[channel].cons_mouse = 1; zs_mousechan = zs_soft[channel].zs_channel; /* Enable Rx, IRQs, and inform mouse driver */ write_zsreg(zs_soft[channel].zs_channel, R1, (INT_ALL_Rx)); write_zsreg(zs_soft[channel].zs_channel, R9, (NV|MIE)); write_zsreg(zs_soft[channel].zs_channel, R3, (Rx8|RxENABLE)); #if 0 /* XXX hangs sun4c's sometimes */ write_zsreg(zs_soft[channel].zs_channel, R15, (DCDIE | CTSIE | TxUIE | BRKIE)); #endif sun_mouse_zsinit(); } else { zs_soft[channel].cons_mouse = 0; } } for(info=zs_chain, i=0; info; info = info->zs_next, i++) { info->magic = SERIAL_MAGIC; info->port = (int) info->zs_channel; info->line = i; info->tty = 0; info->irq = zilog_irq; info->custom_divisor = 16; info->close_delay = 50; info->closing_wait = 3000; info->x_char = 0; info->event = 0; info->count = 0; info->blocked_open = 0; info->tqueue.routine = do_softint; info->tqueue.data = info; info->tqueue_hangup.routine = do_serial_hangup; info->tqueue_hangup.data = info; info->callout_termios =callout_driver.init_termios; info->normal_termios = serial_driver.init_termios; info->open_wait = 0; info->close_wait = 0; printk("tty%02d at 0x%04x (irq = %d)", info->line, info->port, info->irq); printk(" is a Zilog8530\n"); } if (request_irq(zilog_irq, rs_interrupt, (SA_INTERRUPT | SA_STATIC_ALLOC), "Zilog8530", NULL)) panic("Unable to attach zs intr\n"); restore_flags(flags); keyboard_zsinit(); return 0; } /* * register_serial and unregister_serial allows for serial ports to be * configured at run-time, to support PCMCIA modems. */ /* SPARC: Unused at this time, just here to make things link. */ int register_serial(struct serial_struct *req) { return -1; } void unregister_serial(int line) { return; } /* Hooks for running a serial console. con_init() calls this if the * console is being run over one of the ttya/ttyb serial ports. * 'chip' should be zero, as chip 1 drives the mouse/keyboard. * 'channel' is decoded as 0=TTYA 1=TTYB, note that the channels * are addressed backwards, channel B is first, then channel A. */ void rs_cons_hook(int chip, int out, int channel) { if(chip) panic("rs_cons_hook called with chip not zero"); if(!zs_chips[chip]) { zs_chips[chip] = get_zs(chip); /* Two channels per chip */ zs_channels[(chip*2)] = &zs_chips[chip]->channelA; zs_channels[(chip*2)+1] = &zs_chips[chip]->channelB; } zs_soft[channel].zs_channel = zs_channels[channel]; zs_soft[channel].change_needed = 0; zs_soft[channel].clk_divisor = 16; zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]); rs_cons_check(&zs_soft[channel], channel); if(out) zs_cons_chanout = ((chip * 2) + channel); else zs_cons_chanin = ((chip * 2) + channel); } /* This is called at boot time to prime the kgdb serial debugging * serial line. The 'tty_num' argument is 0 for /dev/ttya and 1 * for /dev/ttyb which is determined in setup_arch() from the * boot command line flags. */ void rs_kgdb_hook(int tty_num) { int chip = 0; if(!zs_chips[chip]) { zs_chips[chip] = get_zs(chip); /* Two channels per chip */ zs_channels[(chip*2)] = &zs_chips[chip]->channelA; zs_channels[(chip*2)+1] = &zs_chips[chip]->channelB; } zs_soft[tty_num].zs_channel = zs_channels[tty_num]; zs_kgdbchan = zs_soft[tty_num].zs_channel; zs_soft[tty_num].change_needed = 0; zs_soft[tty_num].clk_divisor = 16; zs_soft[tty_num].zs_baud = get_zsbaud(&zs_soft[tty_num]); zs_soft[tty_num].kgdb_channel = 1; /* This runs kgdb */ zs_soft[tty_num ^ 1].kgdb_channel = 0; /* This does not */ /* Turn on transmitter/receiver at 8-bits/char */ kgdb_chaninit(&zs_soft[tty_num], 0, 9600); ZS_CLEARERR(zs_kgdbchan); udelay(5); ZS_CLEARFIFO(zs_kgdbchan); }
Go to most recent revision | Compare with Previous | Blame | View Log