URL
https://opencores.org/ocsvn/or1k_old/or1k_old/trunk
Subversion Repositories or1k_old
[/] [or1k_old/] [trunk/] [uclinux/] [uClinux-2.0.x/] [fs/] [proc/] [array.c] - Rev 1765
Go to most recent revision | Compare with Previous | Blame | View Log
/* * linux/fs/proc/array.c * * Copyright (C) 1992 by Linus Torvalds * based on ideas by Darren Senn * * Fixes: * Michael. K. Johnson: stat,statm extensions. * <johnsonm@stolaf.edu> * * Pauline Middelink : Made cmdline,envline only break at '\0's, to * make sure SET_PROCTITLE works. Also removed * bad '!' which forced address recalculation for * EVERY character on the current page. * <middelin@polyware.iaf.nl> * * Danny ter Haar : added cpuinfo * <dth@cistron.nl> * * Alessandro Rubini : profile extension. * <rubini@ipvvis.unipv.it> * * Jeff Tranter : added BogoMips field to cpuinfo * <Jeff_Tranter@Mitel.COM> * * Bruno Haible : remove 4K limit for the maps file * <haible@ma2s2.mathematik.uni-karlsruhe.de> * * Yves Arrouye : remove removal of trailing spaces in get_array. * <Yves.Arrouye@marin.fdn.fr> * * Alan Cox : security fixes. <Alan.Cox@linux.org> */ /* * uClinux revisions for NO_MM * Copyright (C) 1998 Kenneth Albanowski <kjahds@kjahds.com>, * The Silver Hammer Group, Ltd. */ #include <linux/types.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/tty.h> #include <linux/user.h> #include <linux/a.out.h> #include <linux/string.h> #include <linux/mman.h> #include <linux/proc_fs.h> #include <linux/ioport.h> #include <linux/config.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/swap.h> #include <asm/segment.h> #include <asm/pgtable.h> #include <asm/io.h> #define LOAD_INT(x) ((x) >> FSHIFT) #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) #ifdef CONFIG_DEBUG_MALLOC int get_malloc(char * buffer); #endif extern unsigned long get_wchan(struct task_struct *); static int read_core(struct inode * inode, struct file * file,char * buf, int count) { unsigned long p = file->f_pos, memsize; int read; int count1; char * pnt; struct user dump; #ifdef __i386__ # define FIRST_MAPPED PAGE_SIZE /* we don't have page 0 mapped on x86.. */ #else # define FIRST_MAPPED 0 #endif memset(&dump, 0, sizeof(struct user)); dump.magic = CMAGIC; dump.u_dsize = MAP_NR(high_memory); #ifdef __alpha__ dump.start_data = PAGE_OFFSET; #endif if (count < 0) return -EINVAL; memsize = MAP_NR(high_memory + PAGE_SIZE) << PAGE_SHIFT; if (p >= memsize) return 0; if (count > memsize - p) count = memsize - p; read = 0; if (p < sizeof(struct user) && count > 0) { count1 = count; if (p + count1 > sizeof(struct user)) count1 = sizeof(struct user)-p; pnt = (char *) &dump + p; memcpy_tofs(buf,(void *) pnt, count1); buf += count1; p += count1; count -= count1; read += count1; } while (count > 0 && p < PAGE_SIZE + FIRST_MAPPED) { put_user(0,buf); buf++; p++; count--; read++; } memcpy_tofs(buf, (void *) (PAGE_OFFSET + p - PAGE_SIZE), count); read += count; file->f_pos += read; return read; } static struct file_operations proc_kcore_operations = { NULL, /* lseek */ read_core, }; struct inode_operations proc_kcore_inode_operations = { &proc_kcore_operations, }; /* * This function accesses profiling information. The returned data is * binary: the sampling step and the actual contents of the profile * buffer. Use of the program readprofile is recommended in order to * get meaningful info out of these data. */ static int read_profile(struct inode *inode, struct file *file, char *buf, int count) { unsigned long p = file->f_pos; int read; char * pnt; unsigned int sample_step = 1 << prof_shift; if (count < 0) return -EINVAL; if (p >= (prof_len+1)*sizeof(unsigned int)) return 0; if (count > (prof_len+1)*sizeof(unsigned int) - p) count = (prof_len+1)*sizeof(unsigned int) - p; read = 0; while (p < sizeof(unsigned int) && count > 0) { put_user(*((char *)(&sample_step)+p),buf); buf++; p++; count--; read++; } pnt = (char *)prof_buffer + p - sizeof(unsigned int); memcpy_tofs(buf,(void *)pnt,count); read += count; file->f_pos += read; return read; } /* Writing to /proc/profile resets the counters */ static int write_profile(struct inode * inode, struct file * file, const char * buf, int count) { int i=prof_len; while (i--) prof_buffer[i]=0UL; return count; } static struct file_operations proc_profile_operations = { NULL, /* lseek */ read_profile, write_profile, }; struct inode_operations proc_profile_inode_operations = { &proc_profile_operations, }; static int get_loadavg(char * buffer) { int a, b, c; a = avenrun[0] + (FIXED_1/200); b = avenrun[1] + (FIXED_1/200); c = avenrun[2] + (FIXED_1/200); return sprintf(buffer,"%d.%02d %d.%02d %d.%02d %d/%d %d\n", LOAD_INT(a), LOAD_FRAC(a), LOAD_INT(b), LOAD_FRAC(b), LOAD_INT(c), LOAD_FRAC(c), nr_running, nr_tasks, last_pid); } static int get_kstat(char * buffer) { int i, len; unsigned sum = 0; extern unsigned long total_forks; for (i = 0 ; i < NR_IRQS ; i++) sum += kstat.interrupts[i]; len = sprintf(buffer, "cpu %u %u %u %lu\n" "disk %u %u %u %u\n" "disk_rio %u %u %u %u\n" "disk_wio %u %u %u %u\n" "disk_rblk %u %u %u %u\n" "disk_wblk %u %u %u %u\n" "page %u %u\n" "swap %u %u\n" "intr %u", kstat.cpu_user, kstat.cpu_nice, kstat.cpu_system, jiffies - (kstat.cpu_user + kstat.cpu_nice + kstat.cpu_system), kstat.dk_drive[0], kstat.dk_drive[1], kstat.dk_drive[2], kstat.dk_drive[3], kstat.dk_drive_rio[0], kstat.dk_drive_rio[1], kstat.dk_drive_rio[2], kstat.dk_drive_rio[3], kstat.dk_drive_wio[0], kstat.dk_drive_wio[1], kstat.dk_drive_wio[2], kstat.dk_drive_wio[3], kstat.dk_drive_rblk[0], kstat.dk_drive_rblk[1], kstat.dk_drive_rblk[2], kstat.dk_drive_rblk[3], kstat.dk_drive_wblk[0], kstat.dk_drive_wblk[1], kstat.dk_drive_wblk[2], kstat.dk_drive_wblk[3], kstat.pgpgin, kstat.pgpgout, kstat.pswpin, kstat.pswpout, sum); for (i = 0 ; i < NR_IRQS ; i++) len += sprintf(buffer + len, " %u", kstat.interrupts[i]); len += sprintf(buffer + len, "\nctxt %u\n" "btime %lu\n" "processes %lu\n", kstat.context_swtch, xtime.tv_sec - jiffies / HZ, total_forks); return len; } static int get_uptime(char * buffer) { unsigned long uptime; unsigned long idle; uptime = jiffies; idle = task[0]->utime + task[0]->stime; /* The formula for the fraction parts really is ((t * 100) / HZ) % 100, but that would overflow about every five days at HZ == 100. Therefore the identity a = (a / b) * b + a % b is used so that it is calculated as (((t / HZ) * 100) + ((t % HZ) * 100) / HZ) % 100. The part in front of the '+' always evaluates as 0 (mod 100). All divisions in the above formulas are truncating. For HZ being a power of 10, the calculations simplify to the version in the #else part (if the printf format is adapted to the same number of digits as zeroes in HZ. */ #if HZ!=100 return sprintf(buffer,"%lu.%02lu %lu.%02lu\n", uptime / HZ, (((uptime % HZ) * 100) / HZ) % 100, idle / HZ, (((idle % HZ) * 100) / HZ) % 100); #else return sprintf(buffer,"%lu.%02lu %lu.%02lu\n", uptime / HZ, uptime % HZ, idle / HZ, idle % HZ); #endif } static int get_meminfo(char * buffer) { struct sysinfo i; int len; si_meminfo(&i); si_swapinfo(&i); len = sprintf(buffer, " total: used: free: shared: buffers: cached:\n" "Mem: %8lu %8lu %8lu %8lu %8lu %8lu\n" "Swap: %8lu %8lu %8lu\n", i.totalram, i.totalram-i.freeram, i.freeram, i.sharedram, i.bufferram, page_cache_size*PAGE_SIZE, i.totalswap, i.totalswap-i.freeswap, i.freeswap); /* * Tagged format, for easy grepping and expansion. The above will go away * eventually, once the tools have been updated. */ return len + sprintf(buffer+len, "MemTotal: %8lu kB\n" "MemFree: %8lu kB\n" "MemShared: %8lu kB\n" "Buffers: %8lu kB\n" "Cached: %8lu kB\n" "SwapTotal: %8lu kB\n" "SwapFree: %8lu kB\n", i.totalram >> 10, i.freeram >> 10, i.sharedram >> 10, i.bufferram >> 10, page_cache_size << (PAGE_SHIFT - 10), i.totalswap >> 10, i.freeswap >> 10); } static int get_version(char * buffer) { extern const char *linux_banner; strcpy(buffer, linux_banner); return strlen(buffer); } static int get_cmdline(char * buffer) { extern char saved_command_line[]; return sprintf(buffer, "%s\n", saved_command_line); } static struct task_struct ** get_task(pid_t pid) { struct task_struct ** p; p = task; while (++p < task+NR_TASKS) { if (*p && (*p)->pid == pid) return p; } return NULL; } static unsigned long get_phys_addr(struct task_struct * p, unsigned long ptr) { #ifndef NO_MM pgd_t *page_dir; pmd_t *page_middle; pte_t pte; if (!p || !p->mm || ptr >= TASK_SIZE) return 0; page_dir = pgd_offset(p->mm,ptr); if (pgd_none(*page_dir)) return 0; if (pgd_bad(*page_dir)) { printk("bad page directory entry %08lx\n", pgd_val(*page_dir)); pgd_clear(page_dir); return 0; } page_middle = pmd_offset(page_dir,ptr); if (pmd_none(*page_middle)) return 0; if (pmd_bad(*page_middle)) { printk("bad page middle entry %08lx\n", pmd_val(*page_middle)); pmd_clear(page_middle); return 0; } pte = *pte_offset(page_middle,ptr); if (!pte_present(pte)) return 0; return pte_page(pte) + (ptr & ~PAGE_MASK); #else /* NO_MM */ return ptr; #endif /* NO_MM */ } static int get_array(struct task_struct ** p, unsigned long start, unsigned long end, char * buffer) { unsigned long addr; int size = 0, result = 0; char c; if (start >= end) return result; for (;;) { addr = get_phys_addr(*p, start); if (!addr) return result; do { c = *(char *) addr; if (!c) result = size; if (size < PAGE_SIZE) buffer[size++] = c; else return result; addr++; start++; if (!c && start >= end) return result; } while (addr & ~PAGE_MASK); } return result; } static int get_env(int pid, char * buffer) { struct task_struct ** p = get_task(pid); if (!p || !*p || !(*p)->mm) return 0; return get_array(p, (*p)->mm->env_start, (*p)->mm->env_end, buffer); } static int get_arg(int pid, char * buffer) { struct task_struct ** p = get_task(pid); if (!p || !*p || !(*p)->mm) return 0; return get_array(p, (*p)->mm->arg_start, (*p)->mm->arg_end, buffer); } #if defined(__i386__) # define KSTK_EIP(tsk) (((unsigned long *)tsk->kernel_stack_page)[1019]) # define KSTK_ESP(tsk) (((unsigned long *)tsk->kernel_stack_page)[1022]) #elif defined(__alpha__) /* * See arch/alpha/kernel/ptrace.c for details. */ # define PT_REG(reg) (PAGE_SIZE - sizeof(struct pt_regs) \ + (long)&((struct pt_regs *)0)->reg) # define KSTK_EIP(tsk) (*(unsigned long *)(tsk->kernel_stack_page + PT_REG(pc))) # define KSTK_ESP(tsk) ((tsk) == current ? rdusp() : (tsk)->tss.usp) #elif defined(__sparc__) # define PT_REG(reg) (PAGE_SIZE - sizeof(struct pt_regs) \ + (long)&((struct pt_regs *)0)->reg) # define KSTK_EIP(tsk) (*(unsigned long *)(tsk->kernel_stack_page + PT_REG(pc))) # define KSTK_ESP(tsk) (*(unsigned long *)(tsk->kernel_stack_page + PT_REG(u_regs[UREG_FP]))) #endif /* Gcc optimizes away "strlen(x)" for constant x */ #define ADDBUF(buffer, string) \ do { memcpy(buffer, string, strlen(string)); \ buffer += strlen(string); } while (0) static inline char * task_name(struct task_struct *p, char * buf) { int i; char * name; ADDBUF(buf, "Name:\t"); name = p->comm; i = sizeof(p->comm); do { unsigned char c = *name; name++; i--; *buf = c; if (!c) break; if (c == '\\') { buf[1] = c; buf += 2; continue; } if (c == '\n') { buf[0] = '\\'; buf[1] = 'n'; buf += 2; continue; } buf++; } while (i); *buf = '\n'; return buf+1; } static inline char * task_state(struct task_struct *p, char *buffer) { #define NR_STATES (sizeof(states)/sizeof(const char *)) unsigned int n = p->state; static const char * states[] = { "R (running)", "S (sleeping)", "D (disk sleep)", "Z (zombie)", "T (stopped)", "W (paging)", ". Huh?" }; if (n >= NR_STATES) n = NR_STATES-1; buffer += sprintf(buffer, "State:\t%s\n" "Pid:\t%d\n" "PPid:\t%d\n" "Uid:\t%d\t%d\t%d\t%d\n" "Gid:\t%d\t%d\t%d\t%d\n", states[n], p->pid, p->p_pptr->pid, p->uid, p->euid, p->suid, p->fsuid, p->gid, p->egid, p->sgid, p->fsgid); return buffer; } static inline char * task_mem(struct task_struct *p, char *buffer) { #ifndef NO_MM struct mm_struct * mm = p->mm; if (mm && mm != &init_mm) { struct vm_area_struct * vma = mm->mmap; unsigned long data = 0, stack = 0; unsigned long exec = 0, lib = 0; for (vma = mm->mmap; vma; vma = vma->vm_next) { unsigned long len = (vma->vm_end - vma->vm_start) >> 10; if (!vma->vm_inode) { data += len; if (vma->vm_flags & VM_GROWSDOWN) stack += len; continue; } if (vma->vm_flags & VM_WRITE) continue; if (vma->vm_flags & VM_EXEC) { exec += len; if (vma->vm_flags & VM_EXECUTABLE) continue; lib += len; } } buffer += sprintf(buffer, "VmSize:\t%8lu kB\n" "VmLck:\t%8lu kB\n" "VmRSS:\t%8lu kB\n" "VmData:\t%8lu kB\n" "VmStk:\t%8lu kB\n" "VmExe:\t%8lu kB\n" "VmLib:\t%8lu kB\n", mm->total_vm << (PAGE_SHIFT-10), mm->locked_vm << (PAGE_SHIFT-10), mm->rss << (PAGE_SHIFT-10), data - stack, stack, exec - lib, lib); } #else /* NO_MM */ unsigned long bytes = 0, sbytes = 0; struct mm_tblock_struct * tblock; /* Logic: we've got two memory sums for each process, "shared", and * "non-shared". Shared memory may get counted more then once, for * each process that owns it. Non-shared memory is counted * accurately. * * -- Kenneth Albanowski */ for(tblock = &p->mm->tblock;tblock;tblock=tblock->next) { if (tblock->rblock) { bytes += ksize(tblock); if ((p->mm->count > 1) || (tblock->rblock->refcount > 1)) { sbytes += ksize(tblock->rblock->kblock); sbytes += ksize(tblock->rblock) ; } else { bytes += ksize(tblock->rblock->kblock); bytes += ksize(tblock->rblock) ; } } } ((p->mm->count > 1) ? sbytes : bytes) += ksize(p->mm); ((p->fs->count > 1) ? sbytes : bytes) += ksize(p->fs); ((p->files->count > 1) ? sbytes : bytes) += ksize(p->files); ((p->sig->count > 1) ? sbytes : bytes) += ksize(p->sig); bytes += ksize(p); bytes += PAGE_SIZE; /* Kernel stack */ buffer += sprintf(buffer, "Mem:\t%8lu bytes\n" "Shared:\t%8lu bytes\n", bytes, sbytes); #endif /* NO_MM */ return buffer; } static inline char * task_sig(struct task_struct *p, char *buffer) { buffer += sprintf(buffer, "SigPnd:\t%08lx\n" "SigBlk:\t%08lx\n", p->signal, p->blocked); if (p->sig) { struct sigaction * action = p->sig->action; unsigned long sig_ign = 0, sig_caught = 0; unsigned long bit = 1; int i; for (i = 0; i < 32; i++) { switch((unsigned long) action->sa_handler) { case 0: break; case 1: sig_ign |= bit; break; default: sig_caught |= bit; } bit <<= 1; action++; } buffer += sprintf(buffer, "SigIgn:\t%08lx\n" "SigCgt:\t%08lx\n", sig_ign, sig_caught); } return buffer; } static int get_status(int pid, char * buffer) { char * orig = buffer; struct task_struct ** p = get_task(pid), *tsk; if (!p || (tsk = *p) == NULL) return 0; buffer = task_name(tsk, buffer); buffer = task_state(tsk, buffer); buffer = task_mem(tsk, buffer); buffer = task_sig(tsk, buffer); return buffer - orig; } static int get_stat(int pid, char * buffer) { struct task_struct ** p = get_task(pid), *tsk; unsigned long sigignore=0, sigcatch=0, wchan; unsigned long vsize, eip, esp; long priority, nice; int i,tty_pgrp; char state; if (!p || (tsk = *p) == NULL) return 0; if (tsk->state < 0 || tsk->state > 5) state = '.'; else state = "RSDZTW"[tsk->state]; vsize = eip = esp = 0; if (tsk->mm && tsk->mm != &init_mm) { #ifndef NO_MM struct vm_area_struct *vma = tsk->mm->mmap; while (vma) { vsize += vma->vm_end - vma->vm_start; vma = vma->vm_next; } if (tsk->kernel_stack_page) { eip = KSTK_EIP(tsk); esp = KSTK_ESP(tsk); } #endif /* !NO_MM */ } wchan = get_wchan(tsk); if (tsk->sig) { unsigned long bit = 1; for(i=0; i<32; ++i) { switch((unsigned long) tsk->sig->action[i].sa_handler) { case 0: break; case 1: sigignore |= bit; break; default: sigcatch |= bit; } bit <<= 1; } } if (tsk->tty) tty_pgrp = tsk->tty->pgrp; else tty_pgrp = -1; /* scale priority and nice values from timeslices to -20..20 */ /* to make it look like a "normal" unix priority/nice value */ priority = tsk->counter; priority = 20 - (priority * 10 + DEF_PRIORITY / 2) / DEF_PRIORITY; nice = tsk->priority; nice = 20 - (nice * 20 + DEF_PRIORITY / 2) / DEF_PRIORITY; return sprintf(buffer,"%d (%s) %c %d %d %d %d %d %lu %lu \ %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu %lu \ %lu %lu %lu %lu %lu %lu %lu %lu\n", pid, tsk->comm, state, tsk->p_pptr->pid, tsk->pgrp, tsk->session, tsk->tty ? kdev_t_to_nr(tsk->tty->device) : 0, tty_pgrp, tsk->flags, tsk->min_flt, tsk->cmin_flt, tsk->maj_flt, tsk->cmaj_flt, tsk->utime, tsk->stime, tsk->cutime, tsk->cstime, priority, nice, tsk->timeout, tsk->it_real_value, tsk->start_time, vsize, tsk->mm ? tsk->mm->rss : 0, /* you might want to shift this left 3 */ tsk->rlim ? tsk->rlim[RLIMIT_RSS].rlim_cur : 0, tsk->mm ? tsk->mm->start_code : 0, tsk->mm ? tsk->mm->end_code : 0, tsk->mm ? tsk->mm->start_stack : 0, esp, eip, tsk->signal, tsk->blocked, sigignore, sigcatch, wchan, tsk->nswap, tsk->cnswap); } #ifndef NO_MM static inline void statm_pte_range(pmd_t * pmd, unsigned long address, unsigned long size, int * pages, int * shared, int * dirty, int * total) { pte_t * pte; unsigned long end; if (pmd_none(*pmd)) return; if (pmd_bad(*pmd)) { printk("statm_pte_range: bad pmd (%08lx)\n", pmd_val(*pmd)); pmd_clear(pmd); return; } pte = pte_offset(pmd, address); address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; do { pte_t page = *pte; address += PAGE_SIZE; pte++; if (pte_none(page)) continue; ++*total; if (!pte_present(page)) continue; ++*pages; if (pte_dirty(page)) ++*dirty; if (pte_page(page) >= high_memory) continue; if (mem_map[MAP_NR(pte_page(page))].count > 1) ++*shared; } while (address < end); } static inline void statm_pmd_range(pgd_t * pgd, unsigned long address, unsigned long size, int * pages, int * shared, int * dirty, int * total) { pmd_t * pmd; unsigned long end; if (pgd_none(*pgd)) return; if (pgd_bad(*pgd)) { printk("statm_pmd_range: bad pgd (%08lx)\n", pgd_val(*pgd)); pgd_clear(pgd); return; } pmd = pmd_offset(pgd, address); address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; do { statm_pte_range(pmd, address, end - address, pages, shared, dirty, total); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address < end); } static void statm_pgd_range(pgd_t * pgd, unsigned long address, unsigned long end, int * pages, int * shared, int * dirty, int * total) { while (address < end) { statm_pmd_range(pgd, address, end - address, pages, shared, dirty, total); address = (address + PGDIR_SIZE) & PGDIR_MASK; pgd++; } } static int get_statm(int pid, char * buffer) { struct task_struct ** p = get_task(pid), *tsk; int size=0, resident=0, share=0, trs=0, lrs=0, drs=0, dt=0; if (!p || (tsk = *p) == NULL) return 0; if (tsk->mm && tsk->mm != &init_mm) { struct vm_area_struct * vma = tsk->mm->mmap; while (vma) { pgd_t *pgd = pgd_offset(tsk->mm, vma->vm_start); int pages = 0, shared = 0, dirty = 0, total = 0; statm_pgd_range(pgd, vma->vm_start, vma->vm_end, &pages, &shared, &dirty, &total); resident += pages; share += shared; dt += dirty; size += total; if (vma->vm_flags & VM_EXECUTABLE) trs += pages; /* text */ else if (vma->vm_flags & VM_GROWSDOWN) drs += pages; /* stack */ else if (vma->vm_end > 0x60000000) lrs += pages; /* library */ else drs += pages; vma = vma->vm_next; } } return sprintf(buffer,"%d %d %d %d %d %d %d\n", size, resident, share, trs, lrs, drs, dt); } /* * The way we support synthetic files > 4K * - without storing their contents in some buffer and * - without walking through the entire synthetic file until we reach the * position of the requested data * is to cleverly encode the current position in the file's f_pos field. * There is no requirement that a read() call which returns `count' bytes * of data increases f_pos by exactly `count'. * * This idea is Linus' one. Bruno implemented it. */ /* * For the /proc/<pid>/maps file, we use fixed length records, each containing * a single line. */ #define MAPS_LINE_LENGTH 1024 #define MAPS_LINE_SHIFT 10 /* * f_pos = (number of the vma in the task->mm->mmap list) * MAPS_LINE_LENGTH * + (index into the line) */ /* for systems with sizeof(void*) == 4: */ #define MAPS_LINE_FORMAT4 "%08lx-%08lx %s %08lx %s %lu\n" #define MAPS_LINE_MAX4 49 /* sum of 8 1 8 1 4 1 8 1 5 1 10 1 */ /* for systems with sizeof(void*) == 8: */ #define MAPS_LINE_FORMAT8 "%016lx-%016lx %s %016lx %s %lu\n" #define MAPS_LINE_MAX8 73 /* sum of 16 1 16 1 4 1 16 1 5 1 10 1 */ #define MAPS_LINE_MAX MAPS_LINE_MAX8 static int read_maps (int pid, struct file * file, char * buf, int count) { struct task_struct ** p = get_task(pid); char * destptr; loff_t lineno; int column; struct vm_area_struct * map; int i; if (!p || !*p) return -EINVAL; if (!(*p)->mm || (*p)->mm == &init_mm || count == 0) return 0; /* decode f_pos */ lineno = file->f_pos >> MAPS_LINE_SHIFT; column = file->f_pos & (MAPS_LINE_LENGTH-1); /* quickly go to line lineno */ for (map = (*p)->mm->mmap, i = 0; map && (i < lineno); map = map->vm_next, i++) continue; destptr = buf; for ( ; map ; ) { /* produce the next line */ char line[MAPS_LINE_MAX+1]; char str[5], *cp = str; int flags; kdev_t dev; unsigned long ino; int len; flags = map->vm_flags; *cp++ = flags & VM_READ ? 'r' : '-'; *cp++ = flags & VM_WRITE ? 'w' : '-'; *cp++ = flags & VM_EXEC ? 'x' : '-'; *cp++ = flags & VM_MAYSHARE ? 's' : 'p'; *cp++ = 0; if (map->vm_inode != NULL) { dev = map->vm_inode->i_dev; ino = map->vm_inode->i_ino; } else { dev = 0; ino = 0; } len = sprintf(line, sizeof(void*) == 4 ? MAPS_LINE_FORMAT4 : MAPS_LINE_FORMAT8, map->vm_start, map->vm_end, str, map->vm_offset, kdevname(dev), ino); if (column >= len) { column = 0; /* continue with next line at column 0 */ lineno++; map = map->vm_next; continue; } i = len-column; if (i > count) i = count; memcpy_tofs(destptr, line+column, i); destptr += i; count -= i; column += i; if (column >= len) { column = 0; /* next time: next line at column 0 */ lineno++; map = map->vm_next; } /* done? */ if (count == 0) break; /* By writing to user space, we might have slept. * Stop the loop, to avoid a race condition. */ if (*p != current) break; } /* encode f_pos */ file->f_pos = (lineno << MAPS_LINE_SHIFT) + column; return destptr-buf; } #endif /* !NO_MM */ #ifdef CONFIG_MODULES extern int get_module_list(char *); extern int get_ksyms_list(char *, char **, off_t, int); #endif extern int get_device_list(char *); extern int get_filesystem_list(char *); extern int get_filesystem_info( char * ); extern int get_irq_list(char *); extern int get_serialinfo(char *); extern int get_dma_list(char *); extern int get_cpuinfo(char *); extern int get_pci_list(char*); extern int get_md_status (char *); extern int get_rtc_status (char *); extern int get_locks_status (char *, char **, off_t, int); #ifdef __SMP_PROF__ extern int get_smp_prof_list(char *); #endif static int get_root_array(char * page, int type, char **start, off_t offset, int length) { switch (type) { case PROC_LOADAVG: return get_loadavg(page); case PROC_UPTIME: return get_uptime(page); case PROC_MEMINFO: return get_meminfo(page); #ifdef CONFIG_PCI case PROC_PCI: return get_pci_list(page); #endif case PROC_CPUINFO: return get_cpuinfo(page); case PROC_VERSION: return get_version(page); #ifdef CONFIG_DEBUG_MALLOC case PROC_MALLOC: return get_malloc(page); #endif #ifdef CONFIG_MODULES case PROC_MODULES: return get_module_list(page); case PROC_KSYMS: return get_ksyms_list(page, start, offset, length); #endif case PROC_STAT: return get_kstat(page); case PROC_DEVICES: return get_device_list(page); case PROC_INTERRUPTS: return get_irq_list(page); case PROC_SERIAL: return get_serialinfo(page); case PROC_FILESYSTEMS: return get_filesystem_list(page); case PROC_DMA: return get_dma_list(page); case PROC_IOPORTS: return get_ioport_list(page); #ifdef CONFIG_BLK_DEV_MD case PROC_MD: return get_md_status(page); #endif #ifdef __SMP_PROF__ case PROC_SMP_PROF: return get_smp_prof_list(page); #endif case PROC_CMDLINE: return get_cmdline(page); case PROC_MTAB: return get_filesystem_info( page ); #ifdef CONFIG_RTC case PROC_RTC: return get_rtc_status(page); #endif case PROC_LOCKS: return get_locks_status(page, start, offset, length); } return -EBADF; } static int process_unauthorized(int type, int pid) { struct task_struct ** p = get_task(pid); if (!p || !*p || !(*p)->mm) return 1; switch(type) { case PROC_PID_STATUS: case PROC_PID_STAT: case PROC_PID_CMDLINE: #ifndef NO_MM case PROC_PID_STATM: case PROC_PID_MAPS: #endif return 0; } if(suser() || current->fsuid == (*p)->euid) return 0; return 1; } static int get_process_array(char * page, int pid, int type) { switch (type) { case PROC_PID_STATUS: return get_status(pid, page); case PROC_PID_ENVIRON: return get_env(pid, page); case PROC_PID_CMDLINE: return get_arg(pid, page); case PROC_PID_STAT: return get_stat(pid, page); #ifndef NO_MM case PROC_PID_STATM: return get_statm(pid, page); #endif /* !NO_MM */ } return -EBADF; } static inline int fill_array(char * page, int pid, int type, char **start, off_t offset, int length) { if (pid) return get_process_array(page, pid, type); return get_root_array(page, type, start, offset, length); } #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ static int array_read(struct inode * inode, struct file * file,char * buf, int count) { unsigned long page; char *start; int length; int end; unsigned int type, pid; struct proc_dir_entry *dp; if (count < 0) return -EINVAL; if (count > PROC_BLOCK_SIZE) count = PROC_BLOCK_SIZE; if (!(page = __get_free_page(GFP_KERNEL))) return -ENOMEM; type = inode->i_ino; pid = type >> 16; type &= 0x0000ffff; start = NULL; dp = (struct proc_dir_entry *) inode->u.generic_ip; if (pid && process_unauthorized(type, pid)) { free_page(page); return -EIO; } if (dp->get_info) length = dp->get_info((char *)page, &start, file->f_pos, count, 0); else length = fill_array((char *) page, pid, type, &start, file->f_pos, count); if (length < 0) { free_page(page); return length; } if (start != NULL) { /* We have had block-adjusting processing! */ memcpy_tofs(buf, start, length); file->f_pos += length; count = length; } else { /* Static 4kB (or whatever) block capacity */ if (file->f_pos >= length) { free_page(page); return 0; } if (count + file->f_pos > length) count = length - file->f_pos; end = count + file->f_pos; memcpy_tofs(buf, (char *) page + file->f_pos, count); file->f_pos = end; } free_page(page); return count; } static struct file_operations proc_array_operations = { NULL, /* array_lseek */ array_read, NULL, /* array_write */ NULL, /* array_readdir */ NULL, /* array_select */ NULL, /* array_ioctl */ NULL, /* mmap */ NULL, /* no special open code */ NULL, /* no special release code */ NULL /* can't fsync */ }; struct inode_operations proc_array_inode_operations = { &proc_array_operations, /* default base directory file-ops */ NULL, /* create */ NULL, /* lookup */ NULL, /* link */ NULL, /* unlink */ NULL, /* symlink */ NULL, /* mkdir */ NULL, /* rmdir */ NULL, /* mknod */ NULL, /* rename */ NULL, /* readlink */ NULL, /* follow_link */ NULL, /* readpage */ NULL, /* writepage */ NULL, /* bmap */ NULL, /* truncate */ NULL /* permission */ }; static int arraylong_read (struct inode * inode, struct file * file, char * buf, int count) { #ifndef NO_MM unsigned int pid = inode->i_ino >> 16; unsigned int type = inode->i_ino & 0x0000ffff; if (count < 0) return -EINVAL; switch (type) { case PROC_PID_MAPS: return read_maps(pid, file, buf, count); } #endif /* !NO_MM */ return -EINVAL; } static struct file_operations proc_arraylong_operations = { NULL, /* array_lseek */ arraylong_read, NULL, /* array_write */ NULL, /* array_readdir */ NULL, /* array_select */ NULL, /* array_ioctl */ NULL, /* mmap */ NULL, /* no special open code */ NULL, /* no special release code */ NULL /* can't fsync */ }; struct inode_operations proc_arraylong_inode_operations = { &proc_arraylong_operations, /* default base directory file-ops */ NULL, /* create */ NULL, /* lookup */ NULL, /* link */ NULL, /* unlink */ NULL, /* symlink */ NULL, /* mkdir */ NULL, /* rmdir */ NULL, /* mknod */ NULL, /* rename */ NULL, /* readlink */ NULL, /* follow_link */ NULL, /* readpage */ NULL, /* writepage */ NULL, /* bmap */ NULL, /* truncate */ NULL /* permission */ };
Go to most recent revision | Compare with Previous | Blame | View Log