OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [arch/] [m68k/] [ifpsp060/] [src/] [ilsp.S] - Rev 3

Compare with Previous | Blame | View Log

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
M68000 Hi-Performance Microprocessor Division
M68060 Software Package
Production Release P1.00 -- October 10, 1994

M68060 Software Package Copyright © 1993, 1994 Motorola Inc.  All rights reserved.

THE SOFTWARE is provided on an "AS IS" basis and without warranty.
To the maximum extent permitted by applicable law,
MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
and any warranty against infringement with regard to the SOFTWARE
(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.

To the maximum extent permitted by applicable law,
IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.

You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
so long as this entire notice is retained without alteration in any modified and/or
redistributed versions, and that such modified versions are clearly identified as such.
No licenses are granted by implication, estoppel or otherwise under any patents
or trademarks of Motorola, Inc.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# litop.s:
#       This file is appended to the top of the 060FPLSP package
# and contains the entry points into the package. The user, in
# effect, branches to one of the branch table entries located here.
#

        bra.l   _060LSP__idivs64_
        short   0x0000
        bra.l   _060LSP__idivu64_
        short   0x0000

        bra.l   _060LSP__imuls64_
        short   0x0000
        bra.l   _060LSP__imulu64_
        short   0x0000

        bra.l   _060LSP__cmp2_Ab_
        short   0x0000
        bra.l   _060LSP__cmp2_Aw_
        short   0x0000
        bra.l   _060LSP__cmp2_Al_
        short   0x0000
        bra.l   _060LSP__cmp2_Db_
        short   0x0000
        bra.l   _060LSP__cmp2_Dw_
        short   0x0000
        bra.l   _060LSP__cmp2_Dl_
        short   0x0000

# leave room for future possible aditions.
        align   0x200

#########################################################################
# XDEF **************************************************************** #
#       _060LSP__idivu64_(): Emulate 64-bit unsigned div instruction.   #
#       _060LSP__idivs64_(): Emulate 64-bit signed div instruction.     #
#                                                                       #
#       This is the library version which is accessed as a subroutine   #
#       and therefore does not work exactly like the 680X0 div{s,u}.l   #
#       64-bit divide instruction.                                      #
#                                                                       #
# XREF **************************************************************** #
#       None.                                                           #
#                                                                       #
# INPUT *************************************************************** #
#       0x4(sp)  = divisor                                              #
#       0x8(sp)  = hi(dividend)                                         #
#       0xc(sp)  = lo(dividend)                                         #
#       0x10(sp) = pointer to location to place quotient/remainder      #
#                                                                       #
# OUTPUT ************************************************************** #
#       0x10(sp) = points to location of remainder/quotient.            #
#                  remainder is in first longword, quotient is in 2nd.  #
#                                                                       #
# ALGORITHM *********************************************************** #
#       If the operands are signed, make them unsigned and save the     #
# sign info for later. Separate out special cases like divide-by-zero   #
# or 32-bit divides if possible. Else, use a special math algorithm     #
# to calculate the result.                                              #
#       Restore sign info if signed instruction. Set the condition      #
# codes before performing the final "rts". If the divisor was equal to  #
# zero, then perform a divide-by-zero using a 16-bit implemented        #
# divide instruction. This way, the operating system can record that    #
# the event occurred even though it may not point to the correct place. #
#                                                                       #
#########################################################################

set     POSNEG,         -1
set     NDIVISOR,       -2
set     NDIVIDEND,      -3
set     DDSECOND,       -4
set     DDNORMAL,       -8
set     DDQUOTIENT,     -12
set     DIV64_CC,       -16

##########
# divs.l #
##########
        global          _060LSP__idivs64_
_060LSP__idivs64_:
# PROLOGUE BEGIN ########################################################
        link.w          %a6,&-16
        movm.l          &0x3f00,-(%sp)          # save d2-d7
#       fmovm.l         &0x0,-(%sp)             # save no fpregs
# PROLOGUE END ##########################################################

        mov.w           %cc,DIV64_CC(%a6)
        st              POSNEG(%a6)             # signed operation
        bra.b           ldiv64_cont

##########
# divu.l #
##########
        global          _060LSP__idivu64_
_060LSP__idivu64_:
# PROLOGUE BEGIN ########################################################
        link.w          %a6,&-16
        movm.l          &0x3f00,-(%sp)          # save d2-d7
#       fmovm.l         &0x0,-(%sp)             # save no fpregs
# PROLOGUE END ##########################################################

        mov.w           %cc,DIV64_CC(%a6)
        sf              POSNEG(%a6)             # unsigned operation

ldiv64_cont:
        mov.l           0x8(%a6),%d7            # fetch divisor

        beq.w           ldiv64eq0               # divisor is = 0!!!

        mov.l           0xc(%a6), %d5           # get dividend hi
        mov.l           0x10(%a6), %d6          # get dividend lo

# separate signed and unsigned divide
        tst.b           POSNEG(%a6)             # signed or unsigned?
        beq.b           ldspecialcases          # use positive divide

# save the sign of the divisor
# make divisor unsigned if it's negative
        tst.l           %d7                     # chk sign of divisor
        slt             NDIVISOR(%a6)           # save sign of divisor
        bpl.b           ldsgndividend
        neg.l           %d7                     # complement negative divisor

# save the sign of the dividend
# make dividend unsigned if it's negative
ldsgndividend:
        tst.l           %d5                     # chk sign of hi(dividend)
        slt             NDIVIDEND(%a6)          # save sign of dividend
        bpl.b           ldspecialcases

        mov.w           &0x0, %cc               # clear 'X' cc bit
        negx.l          %d6                     # complement signed dividend
        negx.l          %d5

# extract some special cases:
#       - is (dividend == 0) ?
#       - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div)
ldspecialcases:
        tst.l           %d5                     # is (hi(dividend) == 0)
        bne.b           ldnormaldivide          # no, so try it the long way

        tst.l           %d6                     # is (lo(dividend) == 0), too
        beq.w           lddone                  # yes, so (dividend == 0)

        cmp.l           %d7,%d6                 # is (divisor <= lo(dividend))
        bls.b           ld32bitdivide           # yes, so use 32 bit divide

        exg             %d5,%d6                 # q = 0, r = dividend
        bra.w           ldivfinish              # can't divide, we're done.

ld32bitdivide:
        tdivu.l         %d7, %d5:%d6            # it's only a 32/32 bit div!

        bra.b           ldivfinish

ldnormaldivide:
# last special case:
#       - is hi(dividend) >= divisor ? if yes, then overflow
        cmp.l           %d7,%d5
        bls.b           lddovf                  # answer won't fit in 32 bits

# perform the divide algorithm:
        bsr.l           ldclassical             # do int divide

# separate into signed and unsigned finishes.
ldivfinish:
        tst.b           POSNEG(%a6)             # do divs, divu separately
        beq.b           lddone                  # divu has no processing!!!

# it was a divs.l, so ccode setting is a little more complicated...
        tst.b           NDIVIDEND(%a6)          # remainder has same sign
        beq.b           ldcc                    # as dividend.
        neg.l           %d5                     # sgn(rem) = sgn(dividend)
ldcc:
        mov.b           NDIVISOR(%a6), %d0
        eor.b           %d0, NDIVIDEND(%a6)     # chk if quotient is negative
        beq.b           ldqpos                  # branch to quot positive

# 0x80000000 is the largest number representable as a 32-bit negative
# number. the negative of 0x80000000 is 0x80000000.
        cmpi.l          %d6, &0x80000000        # will (-quot) fit in 32 bits?
        bhi.b           lddovf

        neg.l           %d6                     # make (-quot) 2's comp

        bra.b           lddone

ldqpos:
        btst            &0x1f, %d6              # will (+quot) fit in 32 bits?
        bne.b           lddovf

lddone:
# if the register numbers are the same, only the quotient gets saved.
# so, if we always save the quotient second, we save ourselves a cmp&beq
        andi.w          &0x10,DIV64_CC(%a6)
        mov.w           DIV64_CC(%a6),%cc
        tst.l           %d6                     # may set 'N' ccode bit

# here, the result is in d1 and d0. the current strategy is to save
# the values at the location pointed to by a0.
# use movm here to not disturb the condition codes.
ldexit:
        movm.l          &0x0060,([0x14,%a6])    # save result

# EPILOGUE BEGIN ########################################################
#       fmovm.l         (%sp)+,&0x0             # restore no fpregs
        movm.l          (%sp)+,&0x00fc          # restore d2-d7
        unlk            %a6
# EPILOGUE END ##########################################################

        rts

# the result should be the unchanged dividend
lddovf:
        mov.l           0xc(%a6), %d5           # get dividend hi
        mov.l           0x10(%a6), %d6          # get dividend lo

        andi.w          &0x1c,DIV64_CC(%a6)
        ori.w           &0x02,DIV64_CC(%a6)     # set 'V' ccode bit
        mov.w           DIV64_CC(%a6),%cc

        bra.b           ldexit

ldiv64eq0:
        mov.l           0xc(%a6),([0x14,%a6])
        mov.l           0x10(%a6),([0x14,%a6],0x4)

        mov.w           DIV64_CC(%a6),%cc

# EPILOGUE BEGIN ########################################################
#       fmovm.l         (%sp)+,&0x0             # restore no fpregs
        movm.l          (%sp)+,&0x00fc          # restore d2-d7
        unlk            %a6
# EPILOGUE END ##########################################################

        divu.w          &0x0,%d0                # force a divbyzero exception
        rts

###########################################################################
#########################################################################
# This routine uses the 'classical' Algorithm D from Donald Knuth's     #
# Art of Computer Programming, vol II, Seminumerical Algorithms.        #
# For this implementation b=2**16, and the target is U1U2U3U4/V1V2,     #
# where U,V are words of the quadword dividend and longword divisor,    #
# and U1, V1 are the most significant words.                            #
#                                                                       #
# The most sig. longword of the 64 bit dividend must be in %d5, least   #
# in %d6. The divisor must be in the variable ddivisor, and the         #
# signed/unsigned flag ddusign must be set (0=unsigned,1=signed).       #
# The quotient is returned in %d6, remainder in %d5, unless the         #
# v (overflow) bit is set in the saved %ccr. If overflow, the dividend  #
# is unchanged.                                                         #
#########################################################################
ldclassical:
# if the divisor msw is 0, use simpler algorithm then the full blown
# one at ddknuth:

        cmpi.l          %d7, &0xffff
        bhi.b           lddknuth                # go use D. Knuth algorithm

# Since the divisor is only a word (and larger than the mslw of the dividend),
# a simpler algorithm may be used :
# In the general case, four quotient words would be created by
# dividing the divisor word into each dividend word. In this case,
# the first two quotient words must be zero, or overflow would occur.
# Since we already checked this case above, we can treat the most significant
# longword of the dividend as (0) remainder (see Knuth) and merely complete
# the last two divisions to get a quotient longword and word remainder:

        clr.l           %d1
        swap            %d5                     # same as r*b if previous step rqd
        swap            %d6                     # get u3 to lsw position
        mov.w           %d6, %d5                # rb + u3

        divu.w          %d7, %d5

        mov.w           %d5, %d1                # first quotient word
        swap            %d6                     # get u4
        mov.w           %d6, %d5                # rb + u4

        divu.w          %d7, %d5

        swap            %d1
        mov.w           %d5, %d1                # 2nd quotient 'digit'
        clr.w           %d5
        swap            %d5                     # now remainder
        mov.l           %d1, %d6                # and quotient

        rts

lddknuth:
# In this algorithm, the divisor is treated as a 2 digit (word) number
# which is divided into a 3 digit (word) dividend to get one quotient
# digit (word). After subtraction, the dividend is shifted and the
# process repeated. Before beginning, the divisor and quotient are
# 'normalized' so that the process of estimating the quotient digit
# will yield verifiably correct results..

        clr.l           DDNORMAL(%a6)           # count of shifts for normalization
        clr.b           DDSECOND(%a6)           # clear flag for quotient digits
        clr.l           %d1                     # %d1 will hold trial quotient
lddnchk:
        btst            &31, %d7                # must we normalize? first word of
        bne.b           lddnormalized           # divisor (V1) must be >= 65536/2
        addq.l          &0x1, DDNORMAL(%a6)     # count normalization shifts
        lsl.l           &0x1, %d7               # shift the divisor
        lsl.l           &0x1, %d6               # shift u4,u3 with overflow to u2
        roxl.l          &0x1, %d5               # shift u1,u2
        bra.w           lddnchk
lddnormalized:

# Now calculate an estimate of the quotient words (msw first, then lsw).
# The comments use subscripts for the first quotient digit determination.
        mov.l           %d7, %d3                # divisor
        mov.l           %d5, %d2                # dividend mslw
        swap            %d2
        swap            %d3
        cmp.w           %d2, %d3                # V1 = U1 ?
        bne.b           lddqcalc1
        mov.w           &0xffff, %d1            # use max trial quotient word
        bra.b           lddadj0
lddqcalc1:
        mov.l           %d5, %d1

        divu.w          %d3, %d1                # use quotient of mslw/msw

        andi.l          &0x0000ffff, %d1        # zero any remainder
lddadj0:

# now test the trial quotient and adjust. This step plus the
# normalization assures (according to Knuth) that the trial
# quotient will be at worst 1 too large.
        mov.l           %d6, -(%sp)
        clr.w           %d6                     # word u3 left
        swap            %d6                     # in lsw position
lddadj1: mov.l          %d7, %d3
        mov.l           %d1, %d2
        mulu.w          %d7, %d2                # V2q
        swap            %d3
        mulu.w          %d1, %d3                # V1q
        mov.l           %d5, %d4                # U1U2
        sub.l           %d3, %d4                # U1U2 - V1q

        swap            %d4

        mov.w           %d4,%d0
        mov.w           %d6,%d4                 # insert lower word (U3)

        tst.w           %d0                     # is upper word set?
        bne.w           lddadjd1

#       add.l           %d6, %d4                # (U1U2 - V1q) + U3

        cmp.l           %d2, %d4
        bls.b           lddadjd1                # is V2q > (U1U2-V1q) + U3 ?
        subq.l          &0x1, %d1               # yes, decrement and recheck
        bra.b           lddadj1
lddadjd1:
# now test the word by multiplying it by the divisor (V1V2) and comparing
# the 3 digit (word) result with the current dividend words
        mov.l           %d5, -(%sp)             # save %d5 (%d6 already saved)
        mov.l           %d1, %d6
        swap            %d6                     # shift answer to ms 3 words
        mov.l           %d7, %d5
        bsr.l           ldmm2
        mov.l           %d5, %d2                # now %d2,%d3 are trial*divisor
        mov.l           %d6, %d3
        mov.l           (%sp)+, %d5             # restore dividend
        mov.l           (%sp)+, %d6
        sub.l           %d3, %d6
        subx.l          %d2, %d5                # subtract double precision
        bcc             ldd2nd                  # no carry, do next quotient digit
        subq.l          &0x1, %d1               # q is one too large
# need to add back divisor longword to current ms 3 digits of dividend
# - according to Knuth, this is done only 2 out of 65536 times for random
# divisor, dividend selection.
        clr.l           %d2
        mov.l           %d7, %d3
        swap            %d3
        clr.w           %d3                     # %d3 now ls word of divisor
        add.l           %d3, %d6                # aligned with 3rd word of dividend
        addx.l          %d2, %d5
        mov.l           %d7, %d3
        clr.w           %d3                     # %d3 now ms word of divisor
        swap            %d3                     # aligned with 2nd word of dividend
        add.l           %d3, %d5
ldd2nd:
        tst.b           DDSECOND(%a6)   # both q words done?
        bne.b           lddremain
# first quotient digit now correct. store digit and shift the
# (subtracted) dividend
        mov.w           %d1, DDQUOTIENT(%a6)
        clr.l           %d1
        swap            %d5
        swap            %d6
        mov.w           %d6, %d5
        clr.w           %d6
        st              DDSECOND(%a6)           # second digit
        bra.w           lddnormalized
lddremain:
# add 2nd word to quotient, get the remainder.
        mov.w           %d1, DDQUOTIENT+2(%a6)
# shift down one word/digit to renormalize remainder.
        mov.w           %d5, %d6
        swap            %d6
        swap            %d5
        mov.l           DDNORMAL(%a6), %d7      # get norm shift count
        beq.b           lddrn
        subq.l          &0x1, %d7               # set for loop count
lddnlp:
        lsr.l           &0x1, %d5               # shift into %d6
        roxr.l          &0x1, %d6
        dbf             %d7, lddnlp
lddrn:
        mov.l           %d6, %d5                # remainder
        mov.l           DDQUOTIENT(%a6), %d6    # quotient

        rts
ldmm2:
# factors for the 32X32->64 multiplication are in %d5 and %d6.
# returns 64 bit result in %d5 (hi) %d6(lo).
# destroys %d2,%d3,%d4.

# multiply hi,lo words of each factor to get 4 intermediate products
        mov.l           %d6, %d2
        mov.l           %d6, %d3
        mov.l           %d5, %d4
        swap            %d3
        swap            %d4
        mulu.w          %d5, %d6                # %d6 <- lsw*lsw
        mulu.w          %d3, %d5                # %d5 <- msw-dest*lsw-source
        mulu.w          %d4, %d2                # %d2 <- msw-source*lsw-dest
        mulu.w          %d4, %d3                # %d3 <- msw*msw
# now use swap and addx to consolidate to two longwords
        clr.l           %d4
        swap            %d6
        add.w           %d5, %d6                # add msw of l*l to lsw of m*l product
        addx.w          %d4, %d3                # add any carry to m*m product
        add.w           %d2, %d6                # add in lsw of other m*l product
        addx.w          %d4, %d3                # add any carry to m*m product
        swap            %d6                     # %d6 is low 32 bits of final product
        clr.w           %d5
        clr.w           %d2                     # lsw of two mixed products used,
        swap            %d5                     # now use msws of longwords
        swap            %d2
        add.l           %d2, %d5
        add.l           %d3, %d5        # %d5 now ms 32 bits of final product
        rts

#########################################################################
# XDEF **************************************************************** #
#       _060LSP__imulu64_(): Emulate 64-bit unsigned mul instruction    #
#       _060LSP__imuls64_(): Emulate 64-bit signed mul instruction.     #
#                                                                       #
#       This is the library version which is accessed as a subroutine   #
#       and therefore does not work exactly like the 680X0 mul{s,u}.l   #
#       64-bit multiply instruction.                                    #
#                                                                       #
# XREF **************************************************************** #
#       None                                                            #
#                                                                       #
# INPUT *************************************************************** #
#       0x4(sp) = multiplier                                            #
#       0x8(sp) = multiplicand                                          #
#       0xc(sp) = pointer to location to place 64-bit result            #
#                                                                       #
# OUTPUT ************************************************************** #
#       0xc(sp) = points to location of 64-bit result                   #
#                                                                       #
# ALGORITHM *********************************************************** #
#       Perform the multiply in pieces using 16x16->32 unsigned         #
# multiplies and "add" instructions.                                    #
#       Set the condition codes as appropriate before performing an     #
# "rts".                                                                #
#                                                                       #
#########################################################################

set MUL64_CC, -4

        global          _060LSP__imulu64_
_060LSP__imulu64_:

# PROLOGUE BEGIN ########################################################
        link.w          %a6,&-4
        movm.l          &0x3800,-(%sp)          # save d2-d4
#       fmovm.l         &0x0,-(%sp)             # save no fpregs
# PROLOGUE END ##########################################################

        mov.w           %cc,MUL64_CC(%a6)       # save incoming ccodes

        mov.l           0x8(%a6),%d0            # store multiplier in d0
        beq.w           mulu64_zero             # handle zero separately

        mov.l           0xc(%a6),%d1            # get multiplicand in d1
        beq.w           mulu64_zero             # handle zero separately

#########################################################################
#       63                         32                           0        #
#       ----------------------------                                    #
#       | hi(mplier) * hi(mplicand)|                                    #
#       ----------------------------                                    #
#                    -----------------------------                      #
#                    | hi(mplier) * lo(mplicand) |                      #
#                    -----------------------------                      #
#                    -----------------------------                      #
#                    | lo(mplier) * hi(mplicand) |                      #
#                    -----------------------------                      #
#         |                        -----------------------------        #
#       --|--                      | lo(mplier) * lo(mplicand) |        #
#         |                        -----------------------------        #
#       ========================================================        #
#       --------------------------------------------------------        #
#       |       hi(result)         |        lo(result)         |        #
#       --------------------------------------------------------        #
#########################################################################
mulu64_alg:
# load temp registers with operands
        mov.l           %d0,%d2                 # mr in d2
        mov.l           %d0,%d3                 # mr in d3
        mov.l           %d1,%d4                 # md in d4
        swap            %d3                     # hi(mr) in lo d3
        swap            %d4                     # hi(md) in lo d4

# complete necessary multiplies:
        mulu.w          %d1,%d0                 # [1] lo(mr) * lo(md)
        mulu.w          %d3,%d1                 # [2] hi(mr) * lo(md)
        mulu.w          %d4,%d2                 # [3] lo(mr) * hi(md)
        mulu.w          %d4,%d3                 # [4] hi(mr) * hi(md)

# add lo portions of [2],[3] to hi portion of [1].
# add carries produced from these adds to [4].
# lo([1]) is the final lo 16 bits of the result.
        clr.l           %d4                     # load d4 w/ zero value
        swap            %d0                     # hi([1]) <==> lo([1])
        add.w           %d1,%d0                 # hi([1]) + lo([2])
        addx.l          %d4,%d3                 #    [4]  + carry
        add.w           %d2,%d0                 # hi([1]) + lo([3])
        addx.l          %d4,%d3                 #    [4]  + carry
        swap            %d0                     # lo([1]) <==> hi([1])

# lo portions of [2],[3] have been added in to final result.
# now, clear lo, put hi in lo reg, and add to [4]
        clr.w           %d1                     # clear lo([2])
        clr.w           %d2                     # clear hi([3])
        swap            %d1                     # hi([2]) in lo d1
        swap            %d2                     # hi([3]) in lo d2
        add.l           %d2,%d1                 #    [4]  + hi([2])
        add.l           %d3,%d1                 #    [4]  + hi([3])

# now, grab the condition codes. only one that can be set is 'N'.
# 'N' CAN be set if the operation is unsigned if bit 63 is set.
        mov.w           MUL64_CC(%a6),%d4
        andi.b          &0x10,%d4               # keep old 'X' bit
        tst.l           %d1                     # may set 'N' bit
        bpl.b           mulu64_ddone
        ori.b           &0x8,%d4                # set 'N' bit
mulu64_ddone:
        mov.w           %d4,%cc

# here, the result is in d1 and d0. the current strategy is to save
# the values at the location pointed to by a0.
# use movm here to not disturb the condition codes.
mulu64_end:
        exg             %d1,%d0
        movm.l          &0x0003,([0x10,%a6])            # save result

# EPILOGUE BEGIN ########################################################
#       fmovm.l         (%sp)+,&0x0             # restore no fpregs
        movm.l          (%sp)+,&0x001c          # restore d2-d4
        unlk            %a6
# EPILOGUE END ##########################################################

        rts

# one or both of the operands is zero so the result is also zero.
# save the zero result to the register file and set the 'Z' ccode bit.
mulu64_zero:
        clr.l           %d0
        clr.l           %d1

        mov.w           MUL64_CC(%a6),%d4
        andi.b          &0x10,%d4
        ori.b           &0x4,%d4
        mov.w           %d4,%cc                 # set 'Z' ccode bit

        bra.b           mulu64_end

##########
# muls.l #
##########
        global          _060LSP__imuls64_
_060LSP__imuls64_:

# PROLOGUE BEGIN ########################################################
        link.w          %a6,&-4
        movm.l          &0x3c00,-(%sp)          # save d2-d5
#       fmovm.l         &0x0,-(%sp)             # save no fpregs
# PROLOGUE END ##########################################################

        mov.w           %cc,MUL64_CC(%a6)       # save incoming ccodes

        mov.l           0x8(%a6),%d0            # store multiplier in d0
        beq.b           mulu64_zero             # handle zero separately

        mov.l           0xc(%a6),%d1            # get multiplicand in d1
        beq.b           mulu64_zero             # handle zero separately

        clr.b           %d5                     # clear sign tag
        tst.l           %d0                     # is multiplier negative?
        bge.b           muls64_chk_md_sgn       # no
        neg.l           %d0                     # make multiplier positive

        ori.b           &0x1,%d5                # save multiplier sgn

# the result sign is the exclusive or of the operand sign bits.
muls64_chk_md_sgn:
        tst.l           %d1                     # is multiplicand negative?
        bge.b           muls64_alg              # no
        neg.l           %d1                     # make multiplicand positive

        eori.b          &0x1,%d5                # calculate correct sign

#########################################################################
#       63                         32                           0        #
#       ----------------------------                                    #
#       | hi(mplier) * hi(mplicand)|                                    #
#       ----------------------------                                    #
#                    -----------------------------                      #
#                    | hi(mplier) * lo(mplicand) |                      #
#                    -----------------------------                      #
#                    -----------------------------                      #
#                    | lo(mplier) * hi(mplicand) |                      #
#                    -----------------------------                      #
#         |                        -----------------------------        #
#       --|--                      | lo(mplier) * lo(mplicand) |        #
#         |                        -----------------------------        #
#       ========================================================        #
#       --------------------------------------------------------        #
#       |       hi(result)         |        lo(result)         |        #
#       --------------------------------------------------------        #
#########################################################################
muls64_alg:
# load temp registers with operands
        mov.l           %d0,%d2                 # mr in d2
        mov.l           %d0,%d3                 # mr in d3
        mov.l           %d1,%d4                 # md in d4
        swap            %d3                     # hi(mr) in lo d3
        swap            %d4                     # hi(md) in lo d4

# complete necessary multiplies:
        mulu.w          %d1,%d0                 # [1] lo(mr) * lo(md)
        mulu.w          %d3,%d1                 # [2] hi(mr) * lo(md)
        mulu.w          %d4,%d2                 # [3] lo(mr) * hi(md)
        mulu.w          %d4,%d3                 # [4] hi(mr) * hi(md)

# add lo portions of [2],[3] to hi portion of [1].
# add carries produced from these adds to [4].
# lo([1]) is the final lo 16 bits of the result.
        clr.l           %d4                     # load d4 w/ zero value
        swap            %d0                     # hi([1]) <==> lo([1])
        add.w           %d1,%d0                 # hi([1]) + lo([2])
        addx.l          %d4,%d3                 #    [4]  + carry
        add.w           %d2,%d0                 # hi([1]) + lo([3])
        addx.l          %d4,%d3                 #    [4]  + carry
        swap            %d0                     # lo([1]) <==> hi([1])

# lo portions of [2],[3] have been added in to final result.
# now, clear lo, put hi in lo reg, and add to [4]
        clr.w           %d1                     # clear lo([2])
        clr.w           %d2                     # clear hi([3])
        swap            %d1                     # hi([2]) in lo d1
        swap            %d2                     # hi([3]) in lo d2
        add.l           %d2,%d1                 #    [4]  + hi([2])
        add.l           %d3,%d1                 #    [4]  + hi([3])

        tst.b           %d5                     # should result be signed?
        beq.b           muls64_done             # no

# result should be a signed negative number.
# compute 2's complement of the unsigned number:
#   -negate all bits and add 1
muls64_neg:
        not.l           %d0                     # negate lo(result) bits
        not.l           %d1                     # negate hi(result) bits
        addq.l          &1,%d0                  # add 1 to lo(result)
        addx.l          %d4,%d1                 # add carry to hi(result)

muls64_done:
        mov.w           MUL64_CC(%a6),%d4
        andi.b          &0x10,%d4               # keep old 'X' bit
        tst.l           %d1                     # may set 'N' bit
        bpl.b           muls64_ddone
        ori.b           &0x8,%d4                # set 'N' bit
muls64_ddone:
        mov.w           %d4,%cc

# here, the result is in d1 and d0. the current strategy is to save
# the values at the location pointed to by a0.
# use movm here to not disturb the condition codes.
muls64_end:
        exg             %d1,%d0
        movm.l          &0x0003,([0x10,%a6])    # save result at (a0)

# EPILOGUE BEGIN ########################################################
#       fmovm.l         (%sp)+,&0x0             # restore no fpregs
        movm.l          (%sp)+,&0x003c          # restore d2-d5
        unlk            %a6
# EPILOGUE END ##########################################################

        rts

# one or both of the operands is zero so the result is also zero.
# save the zero result to the register file and set the 'Z' ccode bit.
muls64_zero:
        clr.l           %d0
        clr.l           %d1

        mov.w           MUL64_CC(%a6),%d4
        andi.b          &0x10,%d4
        ori.b           &0x4,%d4
        mov.w           %d4,%cc                 # set 'Z' ccode bit

        bra.b           muls64_end

#########################################################################
# XDEF **************************************************************** #
#       _060LSP__cmp2_Ab_(): Emulate "cmp2.b An,<ea>".                  #
#       _060LSP__cmp2_Aw_(): Emulate "cmp2.w An,<ea>".                  #
#       _060LSP__cmp2_Al_(): Emulate "cmp2.l An,<ea>".                  #
#       _060LSP__cmp2_Db_(): Emulate "cmp2.b Dn,<ea>".                  #
#       _060LSP__cmp2_Dw_(): Emulate "cmp2.w Dn,<ea>".                  #
#       _060LSP__cmp2_Dl_(): Emulate "cmp2.l Dn,<ea>".                  #
#                                                                       #
#       This is the library version which is accessed as a subroutine   #
#       and therefore does not work exactly like the 680X0 "cmp2"       #
#       instruction.                                                    #
#                                                                       #
# XREF **************************************************************** #
#       None                                                            #
#                                                                       #
# INPUT *************************************************************** #
#       0x4(sp) = Rn                                                    #
#       0x8(sp) = pointer to boundary pair                              #
#                                                                       #
# OUTPUT ************************************************************** #
#       cc = condition codes are set correctly                          #
#                                                                       #
# ALGORITHM *********************************************************** #
#       In the interest of simplicity, all operands are converted to    #
# longword size whether the operation is byte, word, or long. The       #
# bounds are sign extended accordingly. If Rn is a data regsiter, Rn is #
# also sign extended. If Rn is an address register, it need not be sign #
# extended since the full register is always used.                      #
#       The condition codes are set correctly before the final "rts".   #
#                                                                       #
#########################################################################

set     CMP2_CC,        -4

        global          _060LSP__cmp2_Ab_
_060LSP__cmp2_Ab_:

# PROLOGUE BEGIN ########################################################
        link.w          %a6,&-4
        movm.l          &0x3800,-(%sp)          # save d2-d4
#       fmovm.l         &0x0,-(%sp)             # save no fpregs
# PROLOGUE END ##########################################################

        mov.w           %cc,CMP2_CC(%a6)
        mov.l           0x8(%a6), %d2           # get regval

        mov.b           ([0xc,%a6],0x0),%d0
        mov.b           ([0xc,%a6],0x1),%d1

        extb.l          %d0                     # sign extend lo bnd
        extb.l          %d1                     # sign extend hi bnd
        bra.w           l_cmp2_cmp              # go do the compare emulation

        global          _060LSP__cmp2_Aw_
_060LSP__cmp2_Aw_:

# PROLOGUE BEGIN ########################################################
        link.w          %a6,&-4
        movm.l          &0x3800,-(%sp)          # save d2-d4
#       fmovm.l         &0x0,-(%sp)             # save no fpregs
# PROLOGUE END ##########################################################

        mov.w           %cc,CMP2_CC(%a6)
        mov.l           0x8(%a6), %d2           # get regval

        mov.w           ([0xc,%a6],0x0),%d0
        mov.w           ([0xc,%a6],0x2),%d1

        ext.l           %d0                     # sign extend lo bnd
        ext.l           %d1                     # sign extend hi bnd
        bra.w           l_cmp2_cmp              # go do the compare emulation

        global          _060LSP__cmp2_Al_
_060LSP__cmp2_Al_:

# PROLOGUE BEGIN ########################################################
        link.w          %a6,&-4
        movm.l          &0x3800,-(%sp)          # save d2-d4
#       fmovm.l         &0x0,-(%sp)             # save no fpregs
# PROLOGUE END ##########################################################

        mov.w           %cc,CMP2_CC(%a6)
        mov.l           0x8(%a6), %d2           # get regval

        mov.l           ([0xc,%a6],0x0),%d0
        mov.l           ([0xc,%a6],0x4),%d1
        bra.w           l_cmp2_cmp              # go do the compare emulation

        global          _060LSP__cmp2_Db_
_060LSP__cmp2_Db_:

# PROLOGUE BEGIN ########################################################
        link.w          %a6,&-4
        movm.l          &0x3800,-(%sp)          # save d2-d4
#       fmovm.l         &0x0,-(%sp)             # save no fpregs
# PROLOGUE END ##########################################################

        mov.w           %cc,CMP2_CC(%a6)
        mov.l           0x8(%a6), %d2           # get regval

        mov.b           ([0xc,%a6],0x0),%d0
        mov.b           ([0xc,%a6],0x1),%d1

        extb.l          %d0                     # sign extend lo bnd
        extb.l          %d1                     # sign extend hi bnd

# operation is a data register compare.
# sign extend byte to long so we can do simple longword compares.
        extb.l          %d2                     # sign extend data byte
        bra.w           l_cmp2_cmp              # go do the compare emulation

        global          _060LSP__cmp2_Dw_
_060LSP__cmp2_Dw_:

# PROLOGUE BEGIN ########################################################
        link.w          %a6,&-4
        movm.l          &0x3800,-(%sp)          # save d2-d4
#       fmovm.l         &0x0,-(%sp)             # save no fpregs
# PROLOGUE END ##########################################################

        mov.w           %cc,CMP2_CC(%a6)
        mov.l           0x8(%a6), %d2           # get regval

        mov.w           ([0xc,%a6],0x0),%d0
        mov.w           ([0xc,%a6],0x2),%d1

        ext.l           %d0                     # sign extend lo bnd
        ext.l           %d1                     # sign extend hi bnd

# operation is a data register compare.
# sign extend word to long so we can do simple longword compares.
        ext.l           %d2                     # sign extend data word
        bra.w           l_cmp2_cmp              # go emulate compare

        global          _060LSP__cmp2_Dl_
_060LSP__cmp2_Dl_:

# PROLOGUE BEGIN ########################################################
        link.w          %a6,&-4
        movm.l          &0x3800,-(%sp)          # save d2-d4
#       fmovm.l         &0x0,-(%sp)             # save no fpregs
# PROLOGUE END ##########################################################

        mov.w           %cc,CMP2_CC(%a6)
        mov.l           0x8(%a6), %d2           # get regval

        mov.l           ([0xc,%a6],0x0),%d0
        mov.l           ([0xc,%a6],0x4),%d1

#
# To set the ccodes correctly:
#       (1) save 'Z' bit from (Rn - lo)
#       (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi))
#       (3) keep 'X', 'N', and 'V' from before instruction
#       (4) combine ccodes
#
l_cmp2_cmp:
        sub.l           %d0, %d2                # (Rn - lo)
        mov.w           %cc, %d3                # fetch resulting ccodes
        andi.b          &0x4, %d3               # keep 'Z' bit
        sub.l           %d0, %d1                # (hi - lo)
        cmp.l           %d1,%d2                 # ((hi - lo) - (Rn - hi))

        mov.w           %cc, %d4                # fetch resulting ccodes
        or.b            %d4, %d3                # combine w/ earlier ccodes
        andi.b          &0x5, %d3               # keep 'Z' and 'N'

        mov.w           CMP2_CC(%a6), %d4       # fetch old ccodes
        andi.b          &0x1a, %d4              # keep 'X','N','V' bits
        or.b            %d3, %d4                # insert new ccodes
        mov.w           %d4,%cc                 # save new ccodes

# EPILOGUE BEGIN ########################################################
#       fmovm.l         (%sp)+,&0x0             # restore no fpregs
        movm.l          (%sp)+,&0x001c          # restore d2-d4
        unlk            %a6
# EPILOGUE END ##########################################################

        rts

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.