OpenCores
URL https://opencores.org/ocsvn/pci/pci/trunk

Subversion Repositories pci

[/] [pci/] [tags/] [rel_3/] [rtl/] [verilog/] [pci_user_constants.v] - Rev 154

Compare with Previous | Blame | View Log

//////////////////////////////////////////////////////////////////////
////                                                              ////
////  File name "pci_user_constants.v"                            ////
////                                                              ////
////  This file is part of the "PCI bridge" project               ////
////  http://www.opencores.org/cores/pci/                         ////
////                                                              ////
////  Author(s):                                                  ////
////      - Miha Dolenc (mihad@opencores.org)                     ////
////      - Tadej Markovic (tadej@opencores.org)                  ////
////                                                              ////
//////////////////////////////////////////////////////////////////////
////                                                              ////
//// Copyright (C) 2000 Miha Dolenc, mihad@opencores.org          ////
////                                                              ////
//// This source file may be used and distributed without         ////
//// restriction provided that this copyright statement is not    ////
//// removed from the file and that any derivative work contains  ////
//// the original copyright notice and the associated disclaimer. ////
////                                                              ////
//// This source file is free software; you can redistribute it   ////
//// and/or modify it under the terms of the GNU Lesser General   ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any   ////
//// later version.                                               ////
////                                                              ////
//// This source is distributed in the hope that it will be       ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied   ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      ////
//// PURPOSE.  See the GNU Lesser General Public License for more ////
//// details.                                                     ////
////                                                              ////
//// You should have received a copy of the GNU Lesser General    ////
//// Public License along with this source; if not, download it   ////
//// from http://www.opencores.org/lgpl.shtml                     ////
////                                                              ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.4  2002/09/30 17:22:45  mihad
// Added support for Virtual Silicon two port RAM. Didn't run regression on it yet!
//
// Revision 1.3  2002/08/13 11:03:53  mihad
// Added a few testcases. Repaired wrong reset value for PCI_AM5 register. Repaired Parity Error Detected bit setting. Changed PCI_AM0 to always enabled(regardles of PCI_AM0 define), if image 0 is used as configuration image
//
// Revision 1.2  2002/03/05 11:53:47  mihad
// Added some testcases, removed un-needed fifo signals
//
// Revision 1.1  2002/02/01 14:43:31  mihad
// *** empty log message ***
//
//
 
// Fifo implementation defines:
// If FPGA and XILINX are defined, Xilinx's BlockSelectRAM+ is instantiated for Fifo storage.
// 16 bit width is used, so 8 bits of address ( 256 ) locations are available. If RAM_DONT_SHARE is not defined (commented out),
// then one block RAM is shared between two FIFOs. That means each Fifo can have a maximum address length of 7 - depth of 128 and only 6 block rams are used
// If RAM_DONT_SHARE is defined ( not commented out ), then 12 block RAMs are used and each Fifo can have a maximum address length of 8 ( 256 locations )
// If FPGA is not defined, then ASIC RAMs are used. Currently there is only one version of ARTISAN RAM supported. User should generate synchronous RAM with
// width of 40 and instantiate it in pci_tpram.v. If RAM_DONT_SHARE is defined, then these can be dual port rams ( write port
// in one clock domain, read in other ), otherwise it must be two port RAM ( read and write ports in both clock domains ).
// If RAM_DONT_SHARE is defined, then all RAM address lengths must be specified accordingly, otherwise there are two relevant lengths - PCI_FIFO_RAM_ADDR_LENGTH and
// WB_FIFO_RAM_ADDR_LENGTH.
 
`define WBW_ADDR_LENGTH 6
`define WBR_ADDR_LENGTH 4
`define PCIW_ADDR_LENGTH 3
`define PCIR_ADDR_LENGTH 3
 
//`define FPGA
//`define XILINX
 
//`define WB_RAM_DONT_SHARE
//`define PCI_RAM_DONT_SHARE
 
`ifdef FPGA
    `ifdef XILINX
        `define PCI_FIFO_RAM_ADDR_LENGTH 8      // PCI target unit fifo storage definition
        `define WB_FIFO_RAM_ADDR_LENGTH 8       // WB slave unit fifo storage definition
        `define PCI_XILINX_RAMB4
        `define WB_XILINX_RAMB4
        //`define PCI_XILINX_DIST_RAM
        //`define WB_XILINX_DIST_RAM
    `endif
`else
    `define PCI_FIFO_RAM_ADDR_LENGTH 4      // PCI target unit fifo storage definition when RAM sharing is used ( both pcir and pciw fifo use same instance of RAM )
    `define WB_FIFO_RAM_ADDR_LENGTH 7       // WB slave unit fifo storage definition when RAM sharing is used ( both wbr and wbw fifo use same instance of RAM )
//    `define WB_ARTISAN_SDP
//    `define PCI_ARTISAN_SDP
//    `define PCI_VS_STP
//    `define WB_VS_STP
`endif
 
// these two defines allow user to select active high or low output enables on PCI bus signals, depending on
// output buffers instantiated. Xilinx FPGAs use active low output enables.
`define ACTIVE_LOW_OE
//`define ACTIVE_HIGH_OE
 
// HOST/GUEST implementation selection - see design document and specification for description of each implementation
// only one can be defined at same time
`define GUEST
//`define HOST
 
// if NO_CNF_IMAGE is commented out, then READ-ONLY access to configuration space is ENABLED:
// - ENABLED Read-Only access from WISHBONE for GUEST bridges
// - ENABLED Read-Only access from PCI for HOST bridges
// with defining NO_CNF_IMAGE, one decoder and one multiplexer are saved
`define NO_CNF_IMAGE
 
// number defined here specifies how many MS bits in PCI address are compared with base address, to decode
// accesses. Maximum number allows for minimum image size ( number = 20, image size = 4KB ), minimum number
// allows for maximum image size ( number = 1, image size = 2GB ). If you intend on using different sizes of PCI images,
// you have to define a number of minimum sized image and enlarge others by specifying different address mask.
// smaller the number here, faster the decoder operation
`define PCI_NUM_OF_DEC_ADDR_LINES 20
 
// no. of PCI Target IMAGES
// - PCI provides 6 base address registers for image implementation.
// PCI_IMAGE1 definition is not required and has no effect, since PCI image 1 is always implemented
// If GUEST is defined, PCI Image 0 is also always implemented and is used for configuration space
// access.
// If HOST is defined and NO_CNF_IMAGE is not, then PCI Image 0 is used for Read Only access to configuration
// space. If HOST is defined and NO_CNF_IMAGE is defined, then user can define PCI_IMAGE0 as normal image, and there
// is no access to Configuration space possible from PCI bus.
// Implementation of all other PCI images is selected by defining PCI_IMAGE2 through PCI_IMAGE5 regardles of HOST
// or GUEST implementation.
`ifdef HOST
    `ifdef NO_CNF_IMAGE
        `define PCI_IMAGE0
    `endif
`endif
 
`define PCI_IMAGE2
`define PCI_IMAGE3
`define PCI_IMAGE4
`define PCI_IMAGE5
 
// initial value for PCI image address masks. Address masks can be defined in enabled state,
// to allow device independent software to detect size of image and map base addresses to
// memory space. If initial mask for an image is defined as 0, then device independent software
// won't detect base address implemented and device dependent software will have to configure
// address masks as well as base addresses!
`define PCI_AM0 20'hffff_e
`define PCI_AM1 20'hffff_c
`define PCI_AM2 20'hffff_8
`define PCI_AM3 20'hffff_0
`define PCI_AM4 20'hfffe_0
`define PCI_AM5 20'h0000_0
 
// initial value for PCI image maping to MEMORY or IO spaces.  If initial define is set to 0,
// then IMAGE with that base address points to MEMORY space, othervise it points ti IO space. D
// Device independent software sets the base addresses acording to MEMORY or IO maping!
`define PCI_BA0_MEM_IO 1'b0 // considered only when PCI_IMAGE0 is used as general PCI-WB image!
`define PCI_BA1_MEM_IO 1'b1
`define PCI_BA2_MEM_IO 1'b0
`define PCI_BA3_MEM_IO 1'b1
`define PCI_BA4_MEM_IO 1'b0
`define PCI_BA5_MEM_IO 1'b1
 
// number defined here specifies how many MS bits in WB address are compared with base address, to decode
// accesses. Maximum number allows for minimum image size ( number = 20, image size = 4KB ), minimum number
// allows for maximum image size ( number = 1, image size = 2GB ). If you intend on using different sizes of WB images,
// you have to define a number of minimum sized image and enlarge others by specifying different address mask.
// smaller the number here, faster the decoder operation
`define WB_NUM_OF_DEC_ADDR_LINES 20
 
// no. of WISHBONE Slave IMAGES
// WB image 0 is always used for access to configuration space. In case configuration space access is not implemented,
// ( both GUEST and NO_CNF_IMAGE defined ), then WB image 0 is not implemented. User doesn't need to define image 0.
// WB Image 1 is always implemented and user doesnt need to specify its definition
// WB images' 2 through 5 implementation by defining each one.
//`define WB_IMAGE2
`define WB_IMAGE3
`define WB_IMAGE4
//`define WB_IMAGE5
 
// If this define is commented out, then address translation will not be implemented.
// addresses will pass through bridge unchanged, regardles of address translation enable bits.
// Address translation also slows down the decoding
//`define ADDR_TRAN_IMPL
 
// decode speed for WISHBONE definition - initial cycle on WISHBONE bus will take 1 WS for FAST, 2 WSs for MEDIUM and 3 WSs for slow.
// slower decode speed can be used, to provide enough time for address to be decoded.
//`define WB_DECODE_FAST
`define WB_DECODE_MEDIUM
//`define WB_DECODE_SLOW
 
// Base address for Configuration space access from WB bus. This value cannot be changed during runtime
`define WB_CONFIGURATION_BASE 20'hF300_0
 
// Turn registered WISHBONE slave outputs on or off
// all outputs from WB Slave state machine are registered, if this is defined - WB bus outputs as well as
// outputs to internals of the core.
//`define REGISTER_WBS_OUTPUTS
 
/*-----------------------------------------------------------------------------------------------------------
Core speed definition - used for simulation and 66MHz Capable bit value in status register indicating 66MHz
capable device
-----------------------------------------------------------------------------------------------------------*/
`define PCI33
//`define PCI66
 
/*-----------------------------------------------------------------------------------------------------------
[000h-00Ch] First 4 DWORDs (32-bit) of PCI configuration header - the same regardless of the HEADER type !
	Vendor_ID is an ID for a specific vendor defined by PCI_SIG - 2321h does not belong to anyone (e.g.
	Xilinx's Vendor_ID is 10EEh and Altera's Vendor_ID is 1172h). Device_ID and Revision_ID should be used
	together by application.
-----------------------------------------------------------------------------------------------------------*/
`define HEADER_VENDOR_ID    16'h1895
`define HEADER_DEVICE_ID    16'h0001
`define HEADER_REVISION_ID  8'h01
 
// Turn registered WISHBONE master outputs on or off
// all outputs from WB Master state machine are registered, if this is defined - WB bus outputs as well as
// outputs to internals of the core.
`define REGISTER_WBM_OUTPUTS
 
// MAX Retry counter value for WISHBONE Master state-machine
// 	This value is 8-bit because of 8-bit retry counter !!!
`define WB_RTY_CNT_MAX			8'hff
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.