OpenCores
URL https://opencores.org/ocsvn/pci/pci/trunk

Subversion Repositories pci

[/] [pci/] [tags/] [rel_3/] [rtl/] [verilog/] [wbr_fifo_control.v] - Rev 154

Compare with Previous | Blame | View Log

//////////////////////////////////////////////////////////////////////
////                                                              ////
////  File name "wbr_fifo_control.v"                              ////
////                                                              ////
////  This file is part of the "PCI bridge" project               ////
////  http://www.opencores.org/cores/pci/                         ////
////                                                              ////
////  Author(s):                                                  ////
////      - Miha Dolenc (mihad@opencores.org)                     ////
////                                                              ////
////  All additional information is avaliable in the README       ////
////  file.                                                       ////
////                                                              ////
////                                                              ////
//////////////////////////////////////////////////////////////////////
////                                                              ////
//// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org          ////
////                                                              ////
//// This source file may be used and distributed without         ////
//// restriction provided that this copyright statement is not    ////
//// removed from the file and that any derivative work contains  ////
//// the original copyright notice and the associated disclaimer. ////
////                                                              ////
//// This source file is free software; you can redistribute it   ////
//// and/or modify it under the terms of the GNU Lesser General   ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any   ////
//// later version.                                               ////
////                                                              ////
//// This source is distributed in the hope that it will be       ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied   ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      ////
//// PURPOSE.  See the GNU Lesser General Public License for more ////
//// details.                                                     ////
////                                                              ////
//// You should have received a copy of the GNU Lesser General    ////
//// Public License along with this source; if not, download it   ////
//// from http://www.opencores.org/lgpl.shtml                     ////
////                                                              ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.5  2002/09/30 16:03:04  mihad
// Added meta flop module for easier meta stable FF identification during synthesis
//
// Revision 1.4  2002/09/25 15:53:52  mihad
// Removed all logic from asynchronous reset network
//
// Revision 1.3  2002/02/01 15:25:13  mihad
// Repaired a few bugs, updated specification, added test bench files and design document
//
// Revision 1.2  2001/10/05 08:14:30  mihad
// Updated all files with inclusion of timescale file for simulation purposes.
//
// Revision 1.1.1.1  2001/10/02 15:33:47  mihad
// New project directory structure
//
//
 
/* FIFO_CONTROL module provides read/write address and status generation for
   FIFOs implemented with standard dual port SRAM cells in ASIC or FPGA designs */
`include "pci_constants.v"
// synopsys translate_off
`include "timescale.v"
// synopsys translate_on
 
module WBR_FIFO_CONTROL
(
    rclock_in,
    wclock_in,
    renable_in,
    wenable_in,
    reset_in,
    flush_in,
    empty_out,
    waddr_out,
    raddr_out,
    rallow_out,
    wallow_out
) ;
 
parameter ADDR_LENGTH = 7 ;
 
// independent clock inputs - rclock_in = read clock, wclock_in = write clock
input  rclock_in, wclock_in;
 
// enable inputs - read address changes on rising edge of rclock_in when reads are allowed
//                 write address changes on rising edge of wclock_in when writes are allowed
input  renable_in, wenable_in;
 
// reset input
input  reset_in;
 
// flush input
input flush_in ;
 
// empty status output
output empty_out;
 
// read and write addresses outputs
output [(ADDR_LENGTH - 1):0] waddr_out, raddr_out;
 
// read and write allow outputs
output rallow_out, wallow_out ;
 
// read address register
reg [(ADDR_LENGTH - 1):0] raddr ;
 
// write address register
reg [(ADDR_LENGTH - 1):0] waddr;
assign waddr_out = waddr ;
 
// grey code registers
// grey code pipeline for write address
reg [(ADDR_LENGTH - 1):0] wgrey_addr ; // current
reg [(ADDR_LENGTH - 1):0] wgrey_next ; // next
 
// next write gray address calculation - bitwise xor between address and shifted address
wire [(ADDR_LENGTH - 2):0] calc_wgrey_next  = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ;
 
// grey code pipeline for read address
reg [(ADDR_LENGTH - 1):0] rgrey_addr ; // current
reg [(ADDR_LENGTH - 1):0] rgrey_next ; // next
 
// next read gray address calculation - bitwise xor between address and shifted address
wire [(ADDR_LENGTH - 2):0] calc_rgrey_next  = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ;
 
// FF for registered empty flag
wire empty ;
 
// write allow wire
wire wallow = wenable_in ;
 
// write allow output assignment
assign wallow_out = wallow ;
 
// read allow wire
wire rallow ;
 
// clear generation for FFs and registers
wire clear = reset_in /*|| flush_in*/ ; // flush changed to synchronous operation
 
reg wclock_nempty_detect ;
always@(posedge reset_in or posedge wclock_in)
begin
    if (reset_in)
        wclock_nempty_detect <= #`FF_DELAY 1'b0 ;
    else
        wclock_nempty_detect <= #`FF_DELAY (rgrey_addr != wgrey_addr) ;
end
 
// special synchronizing mechanism for different implementations - in synchronous imp., empty is prolonged for 1 clock edge if no write clock comes after initial write
wire stretched_empty ;
 
wire stretched_empty_flop_i = empty && !wclock_nempty_detect ;
 
meta_flop #(1) i_meta_flop_stretched_empty
(
    .rst_i      (clear),
    .clk_i      (rclock_in),
    .ld_i       (1'b0),
    .ld_val_i   (1'b0),
    .en_i       (1'b1),
    .d_i        (stretched_empty_flop_i),
    .meta_q_o   (stretched_empty)
) ;
 
// empty output is actual empty + 1 read clock cycle ( stretched empty )
assign empty_out = empty  || stretched_empty ;
 
//rallow generation
assign rallow = renable_in && !empty && !stretched_empty ; // reads allowed if read enable is high and FIFO is not empty
 
// rallow output assignment
assign rallow_out = renable_in ;
 
// at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary
// when FIFO is empty, this register provides actual read address, so first location can be read
reg [(ADDR_LENGTH - 1):0] raddr_plus_one ;
 
// address output mux - when FIFO is empty, current actual address is driven out, when it is non - empty next address is driven out
// done for zero wait state burst
assign raddr_out = rallow ? raddr_plus_one : raddr ;
 
always@(posedge rclock_in or posedge clear)
begin
    if (clear)
    begin
        raddr_plus_one <= #`FF_DELAY 3 ;
        raddr          <= #`FF_DELAY 2 ;
    end
    else if (flush_in)
    begin
        raddr_plus_one <= #`FF_DELAY waddr + 1'b1 ; 
        raddr          <= #`FF_DELAY waddr ;
    end
    else if (rallow)
    begin
        raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ;
        raddr          <= #`FF_DELAY raddr_plus_one ;
    end
end
 
/*-----------------------------------------------------------------------------------------------
Read address control consists of Read address counter and Grey Address pipeline
There are 3 Grey addresses:
    - rgrey_addr is Grey Code of current read address
    - rgrey_next is Grey Code of next read address
--------------------------------------------------------------------------------------------------*/
// grey coded address pipeline for status generation in read clock domain
always@(posedge rclock_in or posedge clear)
begin
    if (clear)
    begin
        rgrey_addr <= #`FF_DELAY 0 ;
        rgrey_next <= #`FF_DELAY 1 ;
    end
    else if (flush_in)
    begin
        rgrey_addr <= #`FF_DELAY wgrey_addr ;   // when flushed, copy value from write side
        rgrey_next <= #`FF_DELAY wgrey_next ;
    end
    else if (rallow)
    begin
        rgrey_addr <= #`FF_DELAY rgrey_next ;
        rgrey_next <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ;
    end
end
 
/*--------------------------------------------------------------------------------------------
Write address control consists of write address counter and two Grey Code Registers:
    - wgrey_addr represents current Grey Coded write address
    - wgrey_next represents Grey Coded next write address
----------------------------------------------------------------------------------------------*/
// grey coded address pipeline for status generation in write clock domain
always@(posedge wclock_in or posedge clear)
begin
    if (clear)
    begin
        wgrey_addr <= #`FF_DELAY 0 ;
        wgrey_next <= #`FF_DELAY 1 ;
    end
    else
    if (wallow)
    begin
        wgrey_addr <= #`FF_DELAY wgrey_next ;
        wgrey_next <= #`FF_DELAY {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ;
    end
end
 
// write address counter - nothing special except initial value
always@(posedge wclock_in or posedge clear)
begin
    if (clear)
        // initial value is 2
        waddr <= #`FF_DELAY 2 ;
    else
    if (wallow)
        waddr <= #`FF_DELAY waddr + 1'b1 ;
end
 
 
/*------------------------------------------------------------------------------------------------------------------------------
Registered empty control:
registered empty is set on rising edge of rclock_in,
when only one location is used and read in/from fifo. It's kept high until something is written to FIFO, which is registered on
the next read clock.
--------------------------------------------------------------------------------------------------------------------------------*/
// combinatorial input for registered emty FlipFlop
wire reg_empty = (rallow && (rgrey_next == wgrey_addr)) || (rgrey_addr == wgrey_addr) ;
 
meta_flop #(1) i_meta_flop_empty
(
    .rst_i      (clear),
    .clk_i      (rclock_in),
    .ld_i       (flush_in),
    .ld_val_i   (1'b1),
    .en_i       (1'b1),
    .d_i        (reg_empty),
    .meta_q_o   (empty)
) ;
 
endmodule
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.