OpenCores
URL https://opencores.org/ocsvn/pci/pci/trunk

Subversion Repositories pci

[/] [pci/] [tags/] [rel_3/] [rtl/] [verilog/] [wbr_fifo_control.v] - Rev 2

Go to most recent revision | Compare with Previous | Blame | View Log

//////////////////////////////////////////////////////////////////////
////                                                              ////
////  File name "wbr_fifo_control.v"                              ////
////                                                              ////
////  This file is part of the "PCI bridge" project               ////
////  http://www.opencores.org/cores/pci/                         ////
////                                                              ////
////  Author(s):                                                  ////
////      - Miha Dolenc (mihad@opencores.org)                     ////
////                                                              ////
////  All additional information is avaliable in the README       ////
////  file.                                                       ////
////                                                              ////
////                                                              ////
//////////////////////////////////////////////////////////////////////
////                                                              ////
//// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org          ////
////                                                              ////
//// This source file may be used and distributed without         ////
//// restriction provided that this copyright statement is not    ////
//// removed from the file and that any derivative work contains  ////
//// the original copyright notice and the associated disclaimer. ////
////                                                              ////
//// This source file is free software; you can redistribute it   ////
//// and/or modify it under the terms of the GNU Lesser General   ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any   ////
//// later version.                                               ////
////                                                              ////
//// This source is distributed in the hope that it will be       ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied   ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      ////
//// PURPOSE.  See the GNU Lesser General Public License for more ////
//// details.                                                     ////
////                                                              ////
//// You should have received a copy of the GNU Lesser General    ////
//// Public License along with this source; if not, download it   ////
//// from http://www.opencores.org/lgpl.shtml                     ////
////                                                              ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
//
 
/* FIFO_CONTROL module provides read/write address and status generation for
   FIFOs implemented with standard dual port SRAM cells in ASIC or FPGA designs */
`include "constants.v"
`ifdef FPGA
    // fifo design in FPGA will be synchronous
    `ifdef SYNCHRONOUS
    `else
        `define SYNCHRONOUS
    `endif
`endif
 
module WBR_FIFO_CONTROL
(
    rclock_in,
    wclock_in, 
    renable_in, 
    wenable_in, 
    reset_in, 
    flush_in, 
    empty_out, 
    waddr_out, 
    raddr_out, 
    rallow_out, 
    wallow_out
) ;
 
parameter ADDR_LENGTH = 7 ;
 
// independent clock inputs - rclock_in = read clock, wclock_in = write clock
input  rclock_in, wclock_in;
 
// enable inputs - read address changes on rising edge of rclock_in when reads are allowed
//                 write address changes on rising edge of wclock_in when writes are allowed
input  renable_in, wenable_in;
 
// reset input
input  reset_in;
 
// flush input
input flush_in ;
 
// empty status output
output empty_out;
 
// read and write addresses outputs
output [(ADDR_LENGTH - 1):0] waddr_out, raddr_out;
 
// read and write allow outputs
output rallow_out, wallow_out ;
 
// read address register
reg [(ADDR_LENGTH - 1):0] raddr ;
 
// write address register
reg [(ADDR_LENGTH - 1):0] waddr;
assign waddr_out = waddr ;
 
// grey code registers
// grey code pipeline for write address
reg [(ADDR_LENGTH - 1):0] wgrey_addr ; // current
reg [(ADDR_LENGTH - 1):0] wgrey_next ; // next
 
// next write gray address calculation - bitwise xor between address and shifted address
wire [(ADDR_LENGTH - 2):0] calc_wgrey_next  = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ;
 
// grey code pipeline for read address
reg [(ADDR_LENGTH - 1):0] rgrey_addr ; // current
reg [(ADDR_LENGTH - 1):0] rgrey_next ; // next
 
// next read gray address calculation - bitwise xor between address and shifted address
wire [(ADDR_LENGTH - 2):0] calc_rgrey_next  = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ;
 
// FF for registered empty flag
reg empty ;
 
// write allow wire
wire wallow = wenable_in ;
 
// write allow output assignment
assign wallow_out = wallow ;
 
// read allow wire
wire rallow ;
 
// clear generation for FFs and registers
wire clear = reset_in || flush_in ;
 
`ifdef SYNCHRONOUS
 
    reg wclock_nempty_detect ;
    always@(posedge reset_in or posedge wclock_in)
    begin
        if (reset_in)
            wclock_nempty_detect <= #`FF_DELAY 1'b0 ;
        else
            wclock_nempty_detect <= #`FF_DELAY (rgrey_addr != wgrey_addr) ;
    end
 
    // special synchronizing mechanism for different implementations - in synchronous imp., empty is prolonged for 1 clock edge if no write clock comes after initial write
    reg stretched_empty ;
    always@(posedge rclock_in or posedge clear)
    begin
        if(clear)
            stretched_empty <= #`FF_DELAY 1'b1 ;
        else
            stretched_empty <= #`FF_DELAY empty && ~wclock_nempty_detect ;
    end
 
    // empty output is actual empty + 1 read clock cycle ( stretched empty )
    assign empty_out = empty  || stretched_empty ;
 
    //rallow generation    
    assign rallow = renable_in && ~empty && ~stretched_empty ; // reads allowed if read enable is high and FIFO is not empty
 
    // rallow output assignment
    assign rallow_out = renable_in ; 
 
    // at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary
    // when FIFO is empty, this register provides actual read address, so first location can be read
    reg [(ADDR_LENGTH - 1):0] raddr_plus_one ;
 
    // address output mux - when FIFO is empty, current actual address is driven out, when it is non - empty next address is driven out
    // done for zero wait state burst
    assign raddr_out = rallow ? raddr_plus_one : raddr ;
 
    // enable for this register
    wire raddr_plus_one_en = rallow ; 
    always@(posedge rclock_in or posedge clear)
    begin
        if (clear)
        begin
            raddr_plus_one[(ADDR_LENGTH - 1):1] <= #`FF_DELAY { (ADDR_LENGTH - 1){1'b0}} ;
            raddr_plus_one[0] <= #`FF_DELAY 1'b1 ;
        end
        else if (raddr_plus_one_en)
            raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ;
    end
 
    // raddr is filled with raddr_plus_one on rising read clock edge when rallow is high
    always@(posedge rclock_in or posedge clear)
    begin
	    if (clear)
            // initial value is 000......00
		    raddr <= #`FF_DELAY { ADDR_LENGTH{1'b0}} ;
	    else if (rallow)
	    	raddr <= #`FF_DELAY raddr_plus_one ;
    end
 
`else            
    // asynchronous RAM storage for FIFOs - somewhat simpler control logic
    //rallow generation    
    assign rallow = renable_in && ~empty ;
 
    assign rallow_out = rallow ;
 
    // read address counter - normal counter, nothing to it
    // for asynchronous implementation, there is no need for pointing to next address.
    // On clock edge that read is performed, read address will change and on the next clock edge
    // asynchronous memory will provide next data
    always@(posedge rclock_in or posedge clear)
    begin
	    if (clear)
            // initial value is 000......00
		    raddr <= #`FF_DELAY { ADDR_LENGTH{1'b0}} ;
	    else if (rallow)
		    raddr <= #`FF_DELAY raddr + 1'b1 ;
    end
 
    assign empty_out = empty ;
    assign raddr_out = raddr ;
`endif
 
/*-----------------------------------------------------------------------------------------------
Read address control consists of Read address counter and Grey Address pipeline
There are 3 Grey addresses: 
    - rgrey_addr is Grey Code of current read address
    - rgrey_next is Grey Code of next read address
--------------------------------------------------------------------------------------------------*/
 
// grey code register for read address - represents current Read Address
always@(posedge rclock_in or posedge clear)
begin
	if (clear)
    begin
        // initial value is 100.......01
		rgrey_addr[(ADDR_LENGTH - 1)] <= #`FF_DELAY 1'b1 ;
        rgrey_addr[(ADDR_LENGTH - 2):1] <= #`FF_DELAY { (ADDR_LENGTH - 2){1'b0} } ;
        rgrey_addr[0] <= #`FF_DELAY 1'b1 ;
    end
	else
		if (rallow)
			rgrey_addr <= #`FF_DELAY rgrey_next ;
end
 
// grey code register for next read address - represents Grey Code of next read address    
always@(posedge rclock_in or posedge clear)
begin
	if (clear)
    begin
        // initial value is 100......00
		rgrey_next[(ADDR_LENGTH - 1)] <= #`FF_DELAY 1'b1 ;
        rgrey_next[(ADDR_LENGTH - 2):0] <= #`FF_DELAY { (ADDR_LENGTH - 1){1'b0} } ;
    end
	else
		if (rallow)
            rgrey_next <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ;
end
 
/*--------------------------------------------------------------------------------------------
Write address control consists of write address counter and two Grey Code Registers:
    - wgrey_addr represents current Grey Coded write address
    - wgrey_next represents Grey Coded next write address
----------------------------------------------------------------------------------------------*/
// grey code register for write address
always@(posedge wclock_in or posedge clear)
begin
	if (clear)
    begin
        // initial value is 100.....001
        wgrey_addr[(ADDR_LENGTH - 1)] <= #`FF_DELAY 1'b1 ;
        wgrey_addr[(ADDR_LENGTH - 2):1] <= #`FF_DELAY { (ADDR_LENGTH - 2){1'b0} } ;
        wgrey_addr[0] <= #`FF_DELAY 1'b1 ;
    end
	else
		if (wallow)
			wgrey_addr <= #`FF_DELAY wgrey_next ;
end
 
// grey code register for next write address
always@(posedge wclock_in or posedge clear)
begin
	if (clear)
    begin
        // initial value is 100......00
		wgrey_next[(ADDR_LENGTH - 1)] <= #`FF_DELAY 1'b1 ;
        wgrey_next[(ADDR_LENGTH - 2):0] <= #`FF_DELAY { (ADDR_LENGTH - 1){1'b0} } ;
    end
	else
        if (wallow)
            wgrey_next <= #`FF_DELAY {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ;
end
 
// write address counter - nothing special
always@(posedge wclock_in or posedge clear)
begin
	if (clear)
        // initial value 00.........00
		waddr <= #`FF_DELAY { (ADDR_LENGTH){1'b0} } ;
	else
		if (wallow)
			waddr <= #`FF_DELAY waddr + 1'b1 ;
end
 
 
/*------------------------------------------------------------------------------------------------------------------------------
Registered empty control:
registered empty is set on rising edge of rclock_in, 
when only one location is used and read in/from fifo. It's kept high until something is written to FIFO, which is registered on
the next read clock.
--------------------------------------------------------------------------------------------------------------------------------*/
// combinatorial input for registered emty FlipFlop
wire reg_empty = (rallow && (rgrey_next == wgrey_addr)) || (rgrey_addr == wgrey_addr) ;
 
always@(posedge rclock_in or posedge clear)
begin
    if (clear)
        empty <= #`FF_DELAY 1'b1 ;
	else
        empty <= #`FF_DELAY reg_empty ;
end
 
endmodule
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.