URL
https://opencores.org/ocsvn/pci/pci/trunk
Subversion Repositories pci
[/] [pci/] [trunk/] [rtl/] [verilog/] [pci_target32_sm.v] - Rev 2
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// File name: pci_target32_sm.v //// //// //// //// This file is part of the "PCI bridge" project //// //// http://www.opencores.org/cores/pci/ //// //// //// //// Author(s): //// //// - Tadej Markovic, tadej@opencores.org //// //// //// //// All additional information is avaliable in the README.txt //// //// file. //// //// //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000 Tadej Markovic, tadej@opencores.org //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: not supported by cvs2svn $ // `define FSM_BITS 2 // number of bits needed for FSM states `include "bus_commands.v" `include "constants.v" module PCI_TARGET32_SM ( // system inputs clk_in, reset_in, // master inputs pci_frame_in, pci_irdy_in, pci_idsel_in, pci_frame_reg_in, pci_irdy_reg_in, pci_idsel_reg_in, // target response outputs pci_trdy_out, pci_stop_out, pci_devsel_out, pci_trdy_en_out, pci_stop_en_out, pci_devsel_en_out, pci_target_load_out, // address, data, bus command, byte enable in/outs pci_ad_reg_in, pci_ad_out, pci_ad_en_out, pci_cbe_reg_in, bckp_trdy_en_in, bckp_devsel_in, bckp_trdy_in, bckp_stop_in, // backend side of state machine with control signals to pci_io_mux ... address_out, addr_claim_in, bc_out, bc0_out, data_out, data_in, be_out, req_out, rdy_out, addr_phase_out, bckp_trdy_out, last_reg_out, frame_reg_out, fetch_pcir_fifo_out, load_medium_reg_out, sel_fifo_mreg_out, sel_conf_fifo_out, fetch_conf_out, load_to_pciw_fifo_out, load_to_conf_out, same_read_in, norm_access_to_config_in, read_completed_in, read_processing_in, target_abort_in, disconect_wo_data_in, target_abort_set_out, pciw_fifo_full_in, pcir_fifo_data_err_in, wbw_fifo_empty_in, wbu_frame_en_in ) ; /*---------------------------------------------------------------------------------------------------------------------- Various parameters needed for state machine and other stuff ----------------------------------------------------------------------------------------------------------------------*/ parameter S_IDLE = `FSM_BITS'h0 ; parameter S_WAIT = `FSM_BITS'h1 ; parameter S_TRANSFERE = `FSM_BITS'h2 ; parameter S_BACKOFF = `FSM_BITS'h3 ; /*================================================================================================================== System inputs. ==================================================================================================================*/ // PCI side clock and reset input clk_in, reset_in ; /*================================================================================================================== PCI interface signals - bidirectional signals are divided to inputs and outputs in I/O cells instantiation module. Enables are separate signals. ==================================================================================================================*/ // master inputs input pci_frame_in, pci_irdy_in, pci_idsel_in ; input pci_frame_reg_in, pci_irdy_reg_in, pci_idsel_reg_in ; // target response outputs output pci_trdy_out, pci_stop_out, pci_devsel_out ; output pci_trdy_en_out, pci_stop_en_out, pci_devsel_en_out ; output pci_target_load_out ; // address, data, bus command, byte enable in/outs input [31:0] pci_ad_reg_in ; output [31:0] pci_ad_out ; output pci_ad_en_out ; input [3:0] pci_cbe_reg_in ; input bckp_trdy_en_in ; input bckp_devsel_in ; input bckp_trdy_in ; input bckp_stop_in ; /*================================================================================================================== Other side of PCI Target state machine ==================================================================================================================*/ // Data, byte enables, bus commands and address ports output [31:0] address_out ; // current request address output - registered input addr_claim_in ; // current request address claim input output [3:0] bc_out ; // current request bus command output - registered output bc0_out ; // current cycle RW signal output input [31:0] data_in ; // for read operations - current dataphase data input output [31:0] data_out ; // for write operations - current request data output - registered output [3:0] be_out ; // current dataphase byte enable outputs - registered // Port connection control signals from PCI FSM output req_out ; // Read is requested to WB master output rdy_out ; // DATA / ADDRESS selection when read or write - registered output addr_phase_out ; // Indicates address phase and also fast-back-to-back address phase - registered output bckp_trdy_out ; // TRDY output (which is registered) equivalent output last_reg_out ; // Indicates last data phase - registered output frame_reg_out ; // FRAME output signal - registered output fetch_pcir_fifo_out ;// Read enable for PCIR_FIFO when when read is finishen on WB side output load_medium_reg_out ;// Load data from PCIR_FIFO to medium register (first data must be prepared on time) output sel_fifo_mreg_out ; // Read data selection between PCIR_FIFO and medium register output sel_conf_fifo_out ; // Read data selection between Configuration registers and "FIFO" output fetch_conf_out ; // Read enable for configuration space registers output load_to_pciw_fifo_out ;// Write enable to PCIW_FIFO output load_to_conf_out ; // Write enable to Configuration space registers /*================================================================================================================== Status ==================================================================================================================*/ input same_read_in ; // Indicates the same read request (important when read is finished on WB side) input norm_access_to_config_in ; // Indicates the access to Configuration space with MEMORY commands input read_completed_in ; // Indicates that read request is completed on WB side input read_processing_in ; // Indicates that read request is processing on WB side input target_abort_in ; // Indicates target abort termination input disconect_wo_data_in ; // Indicates disconnect with OR without data termination input pciw_fifo_full_in ; // Indicates that write PCIW_FIFO is full input pcir_fifo_data_err_in ; // Indicates data error on current data read from PCIR_FIFO input wbw_fifo_empty_in ; // Indicates that WB SLAVE UNIT has no data to be written to PCI bus input wbu_frame_en_in ; // Indicates that WB SLAVE UNIT is accessing the PCI bus (important if // address on PCI bus is also claimed by decoder in this PCI TARGET UNIT output target_abort_set_out ; // Signal used to be set in configuration space registers /*================================================================================================================== END of input / output PORT DEFINITONS !!! ==================================================================================================================*/ // Delayed frame signal for determining the address phase reg previous_frame ; // Delayed read completed signal for preparing the data from pcir fifo reg read_completed_reg ; // Delayed disconnect with/without data for stop loading data to PCIW_FIFO reg disconect_wo_data_reg ; // Delayed frame signal for determining the address phase! always@(posedge clk_in or posedge reset_in) begin if (reset_in) begin previous_frame <= 1'b1 ; read_completed_reg <= 1'b0 ; disconect_wo_data_reg <= 1'b0 ; end else begin previous_frame <= pci_frame_reg_in ; read_completed_reg <= read_completed_in ; disconect_wo_data_reg <= disconect_wo_data_in ; end end // Address phase is when previous frame was 1 and this frame is 0 and frame isn't generated from pci master (in WBU) wire addr_phase = (previous_frame && ~pci_frame_reg_in && ~wbu_frame_en_in) ; // Wire tells when there is configuration (read or write) command with IDSEL signal active wire config_access = ((pci_idsel_reg_in && pci_cbe_reg_in[3]) && (~pci_cbe_reg_in[2] && pci_cbe_reg_in[1])) ; // Signal for loadin data to medium register from pcir fifo when read completed from WB side! wire prepare_rd_fifo_data = (read_completed_in && ~read_completed_reg) ; // Write and read progresses are used for determining next state wire write_progress = ( (norm_access_to_config_in) || (read_completed_in && ~pciw_fifo_full_in) || (~read_processing_in && ~pciw_fifo_full_in) ) ; wire read_progress = ((~read_completed_in && norm_access_to_config_in) || (read_completed_in && wbw_fifo_empty_in)) ; // Write allowed to PCIW_FIFO wire write_to_fifo = ((read_completed_in && ~pciw_fifo_full_in) || (~read_processing_in && ~pciw_fifo_full_in)) ; // Read allowed from PCIR_FIFO wire read_from_fifo = (read_completed_in && wbw_fifo_empty_in) ; // Read request is allowed to be proceed regarding the WB side wire read_request = (~read_completed_in && ~read_processing_in && ~norm_access_to_config_in) ; // Critically calculated signals are latched in this clock period (address phase) to be used in the next clock period reg rw_cbe0 ; reg wr_progress ; reg rd_progress ; reg rd_from_fifo ; reg rd_request ; reg wr_to_fifo ; reg norm_access_to_conf_reg ; reg same_read_reg ; reg cnf_progress ; reg addr_claim_reg ; always@(posedge clk_in or posedge reset_in) begin if (reset_in) begin rw_cbe0 <= 1'b0 ; wr_progress <= 1'b0 ; rd_progress <= 1'b0 ; rd_from_fifo <= 1'b0 ; rd_request <= 1'b0 ; wr_to_fifo <= 1'b0 ; norm_access_to_conf_reg <= 1'b0 ; same_read_reg <= 1'b0 ; cnf_progress <= 1'b0 ; addr_claim_reg <= 1'b0 ; end else begin if (addr_phase) begin rw_cbe0 <= pci_cbe_reg_in[0] ; wr_progress <= write_progress ; rd_progress <= read_progress ; rd_from_fifo <= read_from_fifo ; rd_request <= read_request ; wr_to_fifo <= write_to_fifo ; norm_access_to_conf_reg <= norm_access_to_config_in ; same_read_reg <= same_read_in ; cnf_progress <= config_access ; addr_claim_reg <= addr_claim_in ; end end end // Signal used in S_WAIT state to determin next state wire s_wait_progress = ( (~cnf_progress && rw_cbe0 && wr_progress && ~target_abort_in) || (~cnf_progress && ~rw_cbe0 && same_read_reg && rd_progress && ~target_abort_in) || (~cnf_progress && ~rw_cbe0 && ~same_read_reg && norm_access_to_conf_reg && ~target_abort_in) || (cnf_progress && ~target_abort_in) ) ; // Signal used in S_TRANSFERE state to determin next state wire s_tran_progress = ( (rw_cbe0 && ~disconect_wo_data_in) || (~rw_cbe0 && ~disconect_wo_data_in && ~target_abort_in && ~pcir_fifo_data_err_in) ) ; // Clock enable for PCI state machine driven directly from critical inputs - FRAME and IRDY wire pcit_sm_clk_en ; // FSM states signals indicating the current state reg state_idle ; reg state_wait ; reg state_transfere ; reg state_backoff ; reg state_default ; // Clock enable module used for preserving the architecture because of minimum delay for critical inputs PCI_TARGET32_CLK_EN pci_target_clock_en ( .addr_phase (addr_phase), .config_access (config_access), .addr_claim_in (addr_claim_in), .disconect_wo_data_in (disconect_wo_data_in), .pcir_fifo_data_err_in (pcir_fifo_data_err_in), .rw_cbe0 (rw_cbe0), .pci_frame_in (pci_frame_in), .pci_irdy_in (pci_irdy_in), .state_wait (state_wait), .state_transfere (state_transfere), .state_backoff (state_backoff), .state_default (state_default), .clk_enable (pcit_sm_clk_en) ); reg [(`FSM_BITS - 1):0] c_state ; //current state register reg [(`FSM_BITS - 1):0] n_state ; //next state input to current state register // state machine register control always@(posedge clk_in or posedge reset_in) begin if (reset_in) // reset state machine to S_IDLE state c_state <= #`FF_DELAY S_IDLE ; else if (pcit_sm_clk_en) // if conditions are true, then FSM goes to next state! c_state <= #`FF_DELAY n_state ; end // state machine logic always@(c_state or s_wait_progress or s_tran_progress ) begin case (c_state) S_IDLE : begin state_idle <= 1'b1 ; state_wait <= 1'b0 ; state_transfere <= 1'b0 ; state_backoff <= 1'b0 ; state_default <= 1'b0 ; n_state <= S_WAIT ; end S_WAIT : begin state_idle <= 1'b0 ; state_wait <= 1'b1 ; state_transfere <= 1'b0 ; state_backoff <= 1'b0 ; state_default <= 1'b0 ; if (s_wait_progress) n_state <= S_TRANSFERE ; else n_state <= S_BACKOFF ; end S_TRANSFERE : begin state_idle <= 1'b0 ; state_wait <= 1'b0 ; state_transfere <= 1'b1 ; state_backoff <= 1'b0 ; state_default <= 1'b0 ; if (s_tran_progress) n_state <= S_IDLE ; else n_state <= S_BACKOFF ; end S_BACKOFF : begin state_idle <= 1'b0 ; state_wait <= 1'b0 ; state_transfere <= 1'b0 ; state_backoff <= 1'b1 ; state_default <= 1'b0 ; n_state <= S_IDLE ; end default : begin state_idle <= 1'b0 ; state_wait <= 1'b0 ; state_transfere <= 1'b0 ; state_backoff <= 1'b0 ; state_default <= 1'b1 ; n_state <= S_IDLE ; end endcase end // if not retry and not target abort // NO CRITICAL SIGNALS wire trdy_w = ( (state_wait && ~cnf_progress && rw_cbe0 && wr_progress && ~target_abort_in) || (state_wait && ~cnf_progress && ~rw_cbe0 && same_read_reg && rd_progress && ~target_abort_in) || (state_wait && ~cnf_progress && ~rw_cbe0 && ~same_read_reg && norm_access_to_conf_reg && ~target_abort_in) || (state_wait && cnf_progress && ~target_abort_in) ) ; // if not disconnect without data and not target abort (only during reads) // MUST BE ANDED WITH CRITICAL ~FRAME wire trdy_w_frm = ( (state_transfere && ~disconect_wo_data_in) || (state_transfere && disconect_wo_data_in && pci_irdy_reg_in) || (state_transfere && ~rw_cbe0 && ~pcir_fifo_data_err_in) ) ; // if not disconnect without data and not target abort (only during reads) // MUST BE ANDED WITH CRITICAL ~FRAME AND IRDY wire trdy_w_frm_irdy = ( (state_transfere && disconect_wo_data_in) || (state_transfere && ~rw_cbe0 && pcir_fifo_data_err_in) || (state_backoff && ~bckp_trdy_in) ) ; // TRDY critical module used for preserving the architecture because of minimum delay for critical inputs PCI_TARGET32_TRDY_CRIT pci_target_trdy_critical ( .trdy_w (trdy_w), .trdy_w_frm (trdy_w_frm), .trdy_w_frm_irdy (trdy_w_frm_irdy), .pci_frame_in (pci_frame_in), .pci_irdy_in (pci_irdy_in), .pci_trdy_out (pci_trdy_out) ); // if target abort or retry // NO CRITICAL SIGNALS wire stop_w = ( (state_wait && target_abort_in) || (state_wait && ~cnf_progress && rw_cbe0 && ~wr_progress) || (state_wait && ~cnf_progress && ~rw_cbe0 && same_read_reg && ~rd_progress) || (state_wait && ~cnf_progress && ~rw_cbe0 && ~same_read_reg && ~norm_access_to_conf_reg) ) ; // if asserted, wait for deactivating the frame // MUST BE ANDED WITH CRITICAL ~FRAME wire stop_w_frm = ( (state_backoff && ~bckp_stop_in) ) ; // if target abort or if disconnect without data (after data transfere) // MUST BE ANDED WITH CRITICAL ~FRAME AND ~IRDY wire stop_w_frm_irdy = ( (state_transfere && disconect_wo_data_in) || (state_transfere && ~rw_cbe0 && pcir_fifo_data_err_in) ) ; // STOP critical module used for preserving the architecture because of minimum delay for critical inputs PCI_TARGET32_STOP_CRIT pci_target_stop_critical ( .stop_w (stop_w), .stop_w_frm (stop_w_frm), .stop_w_frm_irdy (stop_w_frm_irdy), .pci_frame_in (pci_frame_in), .pci_irdy_in (pci_irdy_in), .pci_stop_out (pci_stop_out) ); // if OK to respond and not target abort // NO CRITICAL SIGNALS wire devs_w = ( (addr_phase && config_access) || (addr_phase && ~config_access && addr_claim_in) || (state_wait && ~target_abort_in) ) ; // if not target abort (only during reads) or if asserted, wait for deactivating the frame // MUST BE ANDED WITH CRITICAL ~FRAME wire devs_w_frm = ( (state_transfere && rw_cbe0) || (state_transfere && ~rw_cbe0 && ~pcir_fifo_data_err_in) || (state_backoff && ~bckp_devsel_in) ) ; // if not target abort (only during reads) // MUST BE ANDED WITH CRITICAL ~FRAME AND IRDY wire devs_w_frm_irdy = ( (state_transfere && ~rw_cbe0 && pcir_fifo_data_err_in) ) ; // DEVSEL critical module used for preserving the architecture because of minimum delay for critical inputs PCI_TARGET32_DEVS_CRIT pci_target_devsel_critical ( .devs_w (devs_w), .devs_w_frm (devs_w_frm), .devs_w_frm_irdy (devs_w_frm_irdy), .pci_frame_in (pci_frame_in), .pci_irdy_in (pci_irdy_in), .pci_devsel_out (pci_devsel_out) ); // if address is claimed when read // NO CRITICAL SIGNALS wire ad_en_w = ( (addr_phase && config_access && ~pci_cbe_reg_in[0]) || (addr_phase && ~config_access && addr_claim_in && ~pci_cbe_reg_in[0]) || (state_wait && ~rw_cbe0) ) ; // if read // MUST BE ANDED WITH CRITICAL ~FRAME wire ad_en_w_frm = ( (state_transfere && ~rw_cbe0) || (state_backoff && ~rw_cbe0) ) ; // AD enable module used for preserving the architecture because of minimum delay for critical inputs PCI_TARGET32_AD_EN_CRIT pci_target_ad_enable_critical ( .ad_en_w (ad_en_w), .ad_en_w_frm (ad_en_w_frm), .pci_frame_in (pci_frame_in), .pci_ad_en_out (pci_ad_en_out) ); wire fast_back_to_back = (addr_phase && ~pci_irdy_reg_in) ; // if cycle will progress or will not be stopped // NO CRITICAL SIGNALS wire ctrl_en_w = ( (~wbu_frame_en_in && fast_back_to_back) || (addr_phase && config_access) || (addr_phase && ~config_access && addr_claim_in) || (state_wait) || (state_transfere && ~pci_frame_reg_in) || (state_backoff && ~pci_frame_reg_in) ) ; // if cycle is progressing // MUST BE ANDED WITH CRITICAL ~IRDY wire ctrl_en_w_irdy = ( (state_transfere) || (state_backoff) ) ; // Clock enable module used for preserving the architecture because of minimum delay for critical inputs PCI_TARGET32_CTRL_EN_CRIT pci_target_control_enable_critical ( .ctrl_en_w (ctrl_en_w), .ctrl_en_w_irdy (ctrl_en_w_irdy), .pci_irdy_in (pci_irdy_in), .pci_trdy_en_out (pci_trdy_en_out), .pci_stop_en_out (pci_stop_en_out), .pci_devsel_en_out (pci_devsel_en_out) ); // target ready output signal delayed for one clock used in conjunction with irdy_reg to select which // data are registered in io mux module - from fifo or medoum register reg bckp_trdy_reg ; // delayed indicators for states transfere and backoff reg state_transfere_reg ; reg state_backoff_reg ; always@(posedge clk_in or posedge reset_in) begin if (reset_in) begin bckp_trdy_reg <= 1'b1 ; state_transfere_reg <= 1'b0 ; state_backoff_reg <= 1'b0 ; end else begin bckp_trdy_reg <= bckp_trdy_in ; state_transfere_reg <= state_transfere ; state_backoff_reg <= state_backoff ; end end // Read control signals assignments assign fetch_pcir_fifo_out = ( (prepare_rd_fifo_data) || (state_wait && ~cnf_progress && ~rw_cbe0 && same_read_reg && rd_from_fifo && ~target_abort_in) || (bckp_trdy_en_in && ~bckp_trdy_reg && ~cnf_progress && ~rw_cbe0 && same_read_reg && rd_from_fifo && ~pci_irdy_reg_in) ) ; // NO CRITICAL SIGNALS wire tar_load_out_w = (state_wait) ; // MUST BE ANDED WITH CRITICAL ~IRDY wire tar_load_out_w_irdy = (bckp_trdy_en_in && ~rw_cbe0) ; // NO CRITICAL SIGNALS wire load_med_reg_w = ( (prepare_rd_fifo_data) || (state_wait && ~cnf_progress && ~rw_cbe0 && same_read_reg && rd_from_fifo && ~target_abort_in) ) ; // MUST BE ANDED WITH CRITICAL ~IRDY wire load_med_reg_w_irdy = (bckp_trdy_en_in && ~bckp_trdy_in && ~cnf_progress && ~rw_cbe0 && same_read_reg && rd_from_fifo) ; // Clock enable module used for preserving the architecture because of minimum delay for critical inputs PCI_TARGET32_LOAD_CRIT pci_target_load_critical ( .tar_load_out_w (tar_load_out_w), .tar_load_out_w_irdy (tar_load_out_w_irdy), .load_med_reg_w (load_med_reg_w), .load_med_reg_w_irdy (load_med_reg_w_irdy), .pci_irdy_in (pci_irdy_in), .pci_target_load_out (pci_target_load_out), .load_medium_reg_out (load_medium_reg_out) ); assign sel_fifo_mreg_out = (~pci_irdy_reg_in && ~bckp_trdy_reg) ; assign sel_conf_fifo_out = (cnf_progress || norm_access_to_conf_reg) ; assign fetch_conf_out = ((cnf_progress || norm_access_to_conf_reg) && ~rw_cbe0 && ~bckp_devsel_in) ; // Write control signals assignments assign load_to_pciw_fifo_out = ( (state_wait && (~cnf_progress && ~norm_access_to_conf_reg) && rw_cbe0 && wr_to_fifo && ~target_abort_in) || (state_transfere_reg && ~state_backoff && rw_cbe0 && wr_to_fifo && ~disconect_wo_data_reg && ~pci_irdy_reg_in && ~bckp_trdy_reg && (~cnf_progress && ~norm_access_to_conf_reg)) || ((state_backoff || state_backoff_reg) && rw_cbe0 && wr_to_fifo && ~pci_irdy_reg_in && ~bckp_trdy_reg && (~cnf_progress && ~norm_access_to_conf_reg)) ) ; assign load_to_conf_out = ( (state_transfere_reg && cnf_progress && rw_cbe0 && ~pci_irdy_reg_in && ~bckp_trdy_reg) || (state_transfere_reg && norm_access_to_conf_reg && rw_cbe0 && ~pci_irdy_reg_in && ~bckp_trdy_reg) ) ; // General control sigal assignments assign addr_phase_out = addr_phase ; assign last_reg_out = (pci_frame_reg_in && ~pci_irdy_reg_in) ; assign frame_reg_out = pci_frame_reg_in ; assign bckp_trdy_out = bckp_trdy_in ; assign target_abort_set_out = (bckp_devsel_in && bckp_trdy_in && ~bckp_stop_in) ; // request signal for delayed sinc. module assign req_out = (state_wait && ~cnf_progress && ~norm_access_to_conf_reg && ~rw_cbe0 && rd_request && ~target_abort_in) ; // ready tells when address or data are written into fifo - RDY ? DATA : ADDRESS assign rdy_out = ~bckp_trdy_reg ; // data and address outputs assignments! assign pci_ad_out = data_in ; assign data_out = pci_ad_reg_in ; assign be_out = pci_cbe_reg_in ; assign address_out = pci_ad_reg_in ; assign bc_out = pci_cbe_reg_in ; assign bc0_out = rw_cbe0 ; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log