OpenCores
URL https://opencores.org/ocsvn/phr/phr/trunk

Subversion Repositories phr

[/] [phr/] [trunk/] [doc/] [papers/] [PHR/] [2014-03-12/] [bare_conf.tex] - Rev 392

Go to most recent revision | Compare with Previous | Blame | View Log

%% bare_conf.tex
%% V1.3
%% 2007/01/11
%% by Michael Shell
%% See:
%% http://www.michaelshell.org/
%% for current contact information.
%%
%% This is a skeleton file demonstrating the use of IEEEtran.cls
%% (requires IEEEtran.cls version 1.7 or later) with an IEEE conference paper.
%%
%% Support sites:
%% http://www.michaelshell.org/tex/ieeetran/
%% http://www.ctan.org/tex-archive/macros/latex/contrib/IEEEtran/
%% and
%% http://www.ieee.org/
 
%%*************************************************************************
%% Legal Notice:
%% This code is offered as-is without any warranty either expressed or
%% implied; without even the implied warranty of MERCHANTABILITY or
%% FITNESS FOR A PARTICULAR PURPOSE! 
%% User assumes all risk.
%% In no event shall IEEE or any contributor to this code be liable for
%% any damages or losses, including, but not limited to, incidental,
%% consequential, or any other damages, resulting from the use or misuse
%% of any information contained here.
%%
%% All comments are the opinions of their respective authors and are not
%% necessarily endorsed by the IEEE.
%%
%% This work is distributed under the LaTeX Project Public License (LPPL)
%% ( http://www.latex-project.org/ ) version 1.3, and may be freely used,
%% distributed and modified. A copy of the LPPL, version 1.3, is included
%% in the base LaTeX documentation of all distributions of LaTeX released
%% 2003/12/01 or later.
%% Retain all contribution notices and credits.
%% ** Modified files should be clearly indicated as such, including  **
%% ** renaming them and changing author support contact information. **
%%
%% File list of work: IEEEtran.cls, IEEEtran_HOWTO.pdf, bare_adv.tex,
%%                    bare_conf.tex, bare_jrnl.tex, bare_jrnl_compsoc.tex
%%*************************************************************************
 
% *** Authors should verify (and, if needed, correct) their LaTeX system  ***
% *** with the testflow diagnostic prior to trusting their LaTeX platform ***
% *** with production work. IEEE's font choices can trigger bugs that do  ***
% *** not appear when using other class files.                            ***
% The testflow support page is at:
% http://www.michaelshell.org/tex/testflow/
 
 
 
% Note that the a4paper option is mainly intended so that authors in
% countries using A4 can easily print to A4 and see how their papers will
% look in print - the typesetting of the document will not typically be
% affected with changes in paper size (but the bottom and side margins will).
% Use the testflow package mentioned above to verify correct handling of
% both paper sizes by the user's LaTeX system.
%
% Also note that the "draftcls" or "draftclsnofoot", not "draft", option
% should be used if it is desired that the figures are to be displayed in
% draft mode.
%
\documentclass[conference]{IEEEtran}
% Add the compsoc option for Computer Society conferences.
%
% If IEEEtran.cls has not been installed into the LaTeX system files,
% manually specify the path to it like:
% \documentclass[conference]{../sty/IEEEtran}
 
 
% Some very useful LaTeX packages include:
% (uncomment the ones you want to load)
 
 
% *** MISC UTILITY PACKAGES ***
%
%\usepackage{ifpdf}
% Heiko Oberdiek's ifpdf.sty is very useful if you need conditional
% compilation based on whether the output is pdf or dvi.
% usage:
% \ifpdf
%   % pdf code
% \else
%   % dvi code
% \fi
% The latest version of ifpdf.sty can be obtained from:
% http://www.ctan.org/tex-archive/macros/latex/contrib/oberdiek/
% Also, note that IEEEtran.cls V1.7 and later provides a builtin
% \ifCLASSINFOpdf conditional that works the same way.
% When switching from latex to pdflatex and vice-versa, the compiler may
% have to be run twice to clear warning/error messages.
 
 
 
% *** CITATION PACKAGES ***
%
%\usepackage{cite}
% cite.sty was written by Donald Arseneau
% V1.6 and later of IEEEtran pre-defines the format of the cite.sty package
% \cite{} output to follow that of IEEE. Loading the cite package will
% result in citation numbers being automatically sorted and properly
% "compressed/ranged". e.g., [1], [9], [2], [7], [5], [6] without using
% cite.sty will become [1], [2], [5]--[7], [9] using cite.sty. cite.sty's
% \cite will automatically add leading space, if needed. Use cite.sty's
% noadjust option (cite.sty V3.8 and later) if you want to turn this off.
% cite.sty is already installed on most LaTeX systems. Be sure and use
% version 4.0 (2003-05-27) and later if using hyperref.sty. cite.sty does
% not currently provide for hyperlinked citations.
% The latest version can be obtained at:
% http://www.ctan.org/tex-archive/macros/latex/contrib/cite/
% The documentation is contained in the cite.sty file itself.
 
 
% *** GRAPHICS RELATED PACKAGES ***
%
\ifCLASSINFOpdf
\usepackage[pdftex]{graphicx}
  % declare the path(s) where your graphic files are
  % \graphicspath{{../pdf/}{../jpeg/}}
  % and their extensions so you won't have to specify these with
  % every instance of \includegraphics
  % \DeclareGraphicsExtensions{.pdf,.jpeg,.png}
\else
  % or other class option (dvipsone, dvipdf, if not using dvips). graphicx
  % will default to the driver specified in the system graphics.cfg if no
  % driver is specified.
  % \usepackage[dvips]{graphicx}
  % declare the path(s) where your graphic files are
  % \graphicspath{{../eps/}}
  % and their extensions so you won't have to specify these with
  % every instance of \includegraphics
  % \DeclareGraphicsExtensions{.eps}
\fi
% graphicx was written by David Carlisle and Sebastian Rahtz. It is
% required if you want graphics, photos, etc. graphicx.sty is already
% installed on most LaTeX systems. The latest version and documentation can
% be obtained at: 
% http://www.ctan.org/tex-archive/macros/latex/required/graphics/
% Another good source of documentation is "Using Imported Graphics in
% LaTeX2e" by Keith Reckdahl which can be found as epslatex.ps or
% epslatex.pdf at: http://www.ctan.org/tex-archive/info/
%
% latex, and pdflatex in dvi mode, support graphics in encapsulated
% postscript (.eps) format. pdflatex in pdf mode supports graphics
% in .pdf, .jpeg, .png and .mps (metapost) formats. Users should ensure
% that all non-photo figures use a vector format (.eps, .pdf, .mps) and
% not a bitmapped formats (.jpeg, .png). IEEE frowns on bitmapped formats
% which can result in "jaggedy"/blurry rendering of lines and letters as
% well as large increases in file sizes.
%
% You can find documentation about the pdfTeX application at:
% http://www.tug.org/applications/pdftex
 
 
% *** MATH PACKAGES ***
%
\usepackage[cmex10]{amsmath}
% A popular package from the American Mathematical Society that provides
% many useful and powerful commands for dealing with mathematics. If using
% it, be sure to load this package with the cmex10 option to ensure that
% only type 1 fonts will utilized at all point sizes. Without this option,
% it is possible that some math symbols, particularly those within
% footnotes, will be rendered in bitmap form which will result in a
% document that can not be IEEE Xplore compliant!
%
% Also, note that the amsmath package sets \interdisplaylinepenalty to 10000
% thus preventing page breaks from occurring within multiline equations. Use:
%\interdisplaylinepenalty=2500
% after loading amsmath to restore such page breaks as IEEEtran.cls normally
% does. amsmath.sty is already installed on most LaTeX systems. The latest
% version and documentation can be obtained at:
% http://www.ctan.org/tex-archive/macros/latex/required/amslatex/math/
 
 
% *** SPECIALIZED LIST PACKAGES ***
%
%\usepackage{algorithmic}
% algorithmic.sty was written by Peter Williams and Rogerio Brito.
% This package provides an algorithmic environment fo describing algorithms.
% You can use the algorithmic environment in-text or within a figure
% environment to provide for a floating algorithm. Do NOT use the algorithm
% floating environment provided by algorithm.sty (by the same authors) or
% algorithm2e.sty (by Christophe Fiorio) as IEEE does not use dedicated
% algorithm float types and packages that provide these will not provide
% correct IEEE style captions. The latest version and documentation of
% algorithmic.sty can be obtained at:
% http://www.ctan.org/tex-archive/macros/latex/contrib/algorithms/
% There is also a support site at:
% http://algorithms.berlios.de/index.html
% Also of interest may be the (relatively newer and more customizable)
% algorithmicx.sty package by Szasz Janos:
% http://www.ctan.org/tex-archive/macros/latex/contrib/algorithmicx/
 
 
% *** ALIGNMENT PACKAGES ***
%
%\usepackage{array}
% Frank Mittelbach's and David Carlisle's array.sty patches and improves
% the standard LaTeX2e array and tabular environments to provide better
% appearance and additional user controls. As the default LaTeX2e table
% generation code is lacking to the point of almost being broken with
% respect to the quality of the end results, all users are strongly
% advised to use an enhanced (at the very least that provided by array.sty)
% set of table tools. array.sty is already installed on most systems. The
% latest version and documentation can be obtained at:
% http://www.ctan.org/tex-archive/macros/latex/required/tools/
 
 
%\usepackage{mdwmath}
%\usepackage{mdwtab}
% Also highly recommended is Mark Wooding's extremely powerful MDW tools,
% especially mdwmath.sty and mdwtab.sty which are used to format equations
% and tables, respectively. The MDWtools set is already installed on most
% LaTeX systems. The lastest version and documentation is available at:
% http://www.ctan.org/tex-archive/macros/latex/contrib/mdwtools/
 
 
% IEEEtran contains the IEEEeqnarray family of commands that can be used to
% generate multiline equations as well as matrices, tables, etc., of high
% quality.
 
 
%\usepackage{eqparbox}
% Also of notable interest is Scott Pakin's eqparbox package for creating
% (automatically sized) equal width boxes - aka "natural width parboxes".
% Available at:
% http://www.ctan.org/tex-archive/macros/latex/contrib/eqparbox/
 
 
 
% *** SUBFIGURE PACKAGES ***
%\usepackage[tight,footnotesize]{subfigure}
% subfigure.sty was written by Steven Douglas Cochran. This package makes it
% easy to put subfigures in your figures. e.g., "Figure 1a and 1b". For IEEE
% work, it is a good idea to load it with the tight package option to reduce
% the amount of white space around the subfigures. subfigure.sty is already
% installed on most LaTeX systems. The latest version and documentation can
% be obtained at:
% http://www.ctan.org/tex-archive/obsolete/macros/latex/contrib/subfigure/
% subfigure.sty has been superceeded by subfig.sty.
 
 
 
%\usepackage[caption=false]{caption}
\usepackage[font=footnotesize,caption=false]{subfig}
% subfig.sty, also written by Steven Douglas Cochran, is the modern
% replacement for subfigure.sty. However, subfig.sty requires and
% automatically loads Axel Sommerfeldt's caption.sty which will override
% IEEEtran.cls handling of captions and this will result in nonIEEE style
% figure/table captions. To prevent this problem, be sure and preload
% caption.sty with its "caption=false" package option. This is will preserve
% IEEEtran.cls handing of captions. Version 1.3 (2005/06/28) and later 
% (recommended due to many improvements over 1.2) of subfig.sty supports
% the caption=false option directly:
%\usepackage[caption=false,font=footnotesize]{subfig}
%
% The latest version and documentation can be obtained at:
% http://www.ctan.org/tex-archive/macros/latex/contrib/subfig/
% The latest version and documentation of caption.sty can be obtained at:
% http://www.ctan.org/tex-archive/macros/latex/contrib/caption/
 
 
% *** FLOAT PACKAGES ***
%
%\usepackage{fixltx2e}
% fixltx2e, the successor to the earlier fix2col.sty, was written by
% Frank Mittelbach and David Carlisle. This package corrects a few problems
% in the LaTeX2e kernel, the most notable of which is that in current
% LaTeX2e releases, the ordering of single and double column floats is not
% guaranteed to be preserved. Thus, an unpatched LaTeX2e can allow a
% single column figure to be placed prior to an earlier double column
% figure. The latest version and documentation can be found at:
% http://www.ctan.org/tex-archive/macros/latex/base/
 
 
 
%\usepackage{stfloats}
% stfloats.sty was written by Sigitas Tolusis. This package gives LaTeX2e
% the ability to do double column floats at the bottom of the page as well
% as the top. (e.g., "\begin{figure*}[!b]" is not normally possible in
% LaTeX2e). It also provides a command:
%\fnbelowfloat
% to enable the placement of footnotes below bottom floats (the standard
% LaTeX2e kernel puts them above bottom floats). This is an invasive package
% which rewrites many portions of the LaTeX2e float routines. It may not work
% with other packages that modify the LaTeX2e float routines. The latest
% version and documentation can be obtained at:
% http://www.ctan.org/tex-archive/macros/latex/contrib/sttools/
% Documentation is contained in the stfloats.sty comments as well as in the
% presfull.pdf file. Do not use the stfloats baselinefloat ability as IEEE
% does not allow \baselineskip to stretch. Authors submitting work to the
% IEEE should note that IEEE rarely uses double column equations and
% that authors should try to avoid such use. Do not be tempted to use the
% cuted.sty or midfloat.sty packages (also by Sigitas Tolusis) as IEEE does
% not format its papers in such ways.
 
% --------------- USEPACKAGE agregados por guanucoluis ----------------
 
\usepackage[utf8]{inputenc}
\usepackage{multirow}
%\usepackage[english]{babel}
\usepackage{amssymb}
%\usepackage[pdftex]{graphicx}
\usepackage[hyphenbreaks]{breakurl}
\usepackage[hyphens]{url}
 
% ------------------------- Agregados por maxi ------------------------
 
\renewcommand{\abstractname}{Resumen}
\renewcommand{\figurename}{Fig.}
\renewcommand{\tablename}{Tabla}
\renewcommand{\refname}{Referencias}
\hyphenation{de-sa-rro-llar de-sa-rro-llos de-sa-rro-llo clas-si-fi-can ne-ce-sa-ria-men-te dis-po-si-ti-vos in-te-gra-das es-pa-cio pre-sen-tan di-men-sio-nes di-fe-ren-tes in-dus-tri-al prin-ci-pa-les per-mi-ten com-pu-ta-do-ras pro-por-cio-na dis-po-si-ti-vo im-ple-men-tar par-ti-ci-pa-do di-gi-ta-les rui-do-sa he-rra-mien-tas}
 
%lista de posibles "Fixed names"  de latex que pueden hacer falta
%\abstractname	 Abstract
%\alsoname	 see also (makeidx package)
%\appendixname	 Appendix
%\bibname	 Bibliography (report,book)
%\ccname	 cc (letter)
%\chaptername	 Chapter (report,book)
%\contentsname	 Contents
%\enclname	 encl (letter)
%\figurename	 Figure (for captions)
%\headtoname	 To (letter)
%\indexname	 Index
%\listfigurename	 List of Figures
%\listtablename	 List of Tables
%\pagename	 Page (letter)
%\partname	 Part
%\refname	 References (article)
%\seename	 see (makeidx package)
%\tablename	 Table (for caption)
 
 
% *** PDF, URL AND HYPERLINK PACKAGES ***
%
%\usepackage{url}
% url.sty was written by Donald Arseneau. It provides better support for
% handling and breaking URLs. url.sty is already installed on most LaTeX
% systems. The latest version can be obtained at:
% http://www.ctan.org/tex-archive/macros/latex/contrib/misc/
% Read the url.sty source comments for usage information. Basically,
% \url{my_url_here}.
 
 
% *** Do not adjust lengths that control margins, column widths, etc. ***
% *** Do not use packages that alter fonts (such as pslatex).         ***
% There should be no need to do such things with IEEEtran.cls V1.6 and later.
% (Unless specifically asked to do so by the journal or conference you plan
% to submit to, of course. )
 
 
% correct bad hyphenation here
\hyphenation{op-tical net-works semi-conduc-tor}
 
 
\begin{document}
%
% paper title
% can use linebreaks \\ within to get better formatting as desired
\title{Plataforma de Hardware Reconfigurable para el Diseño de Sistemas Digitales}
 
 
% author names and affiliations
% use a multiple column layout for up to three different
% affiliations
\author{\IEEEauthorblockN{Alexis Maximiliano Quinteros, Luis Alberto Guanuco, Sergio Daniel Olmedo}
\IEEEauthorblockA{Centro Universitario de Desarrollo en Automoción y Robótica\\
Universidad Tecnológica Nacional\\
Facultad Regional Córdoba\\
Email: \{50214,lguanuco\}@electronica.frc.utn.edu.ar, solmedo@scdt.frc.utn.edu.ar}
}
 
 
% conference papers do not typically use \thanks and this command
% is locked out in conference mode. If really needed, such as for
% the acknowledgment of grants, issue a \IEEEoverridecommandlockouts
% after \documentclass
 
% for over three affiliations, or if they all won't fit within the width
% of the page, use this alternative format:
% 
%\author{\IEEEauthorblockN{Michael Shell\IEEEauthorrefmark{1},
%Homer Simpson\IEEEauthorrefmark{2},
%James Kirk\IEEEauthorrefmark{3}, 
%Montgomery Scott\IEEEauthorrefmark{3} and
%Eldon Tyrell\IEEEauthorrefmark{4}}
%\IEEEauthorblockA{\IEEEauthorrefmark{1}School of Electrical and Computer Engineering\\
%Georgia Institute of Technology,
%Atlanta, Georgia 30332--0250\\ Email: see http://www.michaelshell.org/contact.html}
%\IEEEauthorblockA{\IEEEauthorrefmark{2}Twentieth Century Fox, Springfield, USA\\
%Email: homer@thesimpsons.com}
%\IEEEauthorblockA{\IEEEauthorrefmark{3}Starfleet Academy, San Francisco, California 96678-2391\\
%Telephone: (800) 555--1212, Fax: (888) 555--1212}
%\IEEEauthorblockA{\IEEEauthorrefmark{4}Tyrell Inc., 123 Replicant Street, Los Angeles, California 90210--4321}}
 
 
% use for special paper notices
%\IEEEspecialpapernotice{(Invited Paper)}
 
 
% make the title area
\maketitle
 
 
\begin{abstract}
 
La constante evolución de los sistemas electrónicos (digitales y analógicos) exige la búsqueda de nuevas herramientas para la formación académica. En el caso del diseño de sistemas digitales una excelente alternativa es el uso placas de evaluación basadas en dispositivos lógicos programables (PLDs). En función de los requerimientos y necesidades académicas que demandan recursos de hardware, y las oportunidades concretas de desarrollar una plataforma ajustada a las necesidades planteadas es que se presenta una plataforma reconfigurable con especificaciones abiertas. Este diseño cuenta con una FPGA (Field Programmable Gate Array) que dispone de una gran cantidad de recursos internos para el uso en sistemas digitales avanzados, pero  además cuenta con periféricos básicos con los que se puede interactuar en la implementación de sistemas digitales. El proyecto se publica en forma libre (licencia GPL) buscando incentivar a otros grupos académicos en la  modificación y adaptación de este trabajo a sus necesidades como así también proponer mejoras en versiones futuras de la plataforma.
 
\end{abstract}
 
% IEEEtran.cls defaults to using nonbold math in the Abstract.
% This preserves the distinction between vectors and scalars. However,
% if the conference you are submitting to favors bold math in the abstract,
% then you can use LaTeX's standard command \boldmath at the very start
% of the abstract to achieve this. Many IEEE journals/conferences frown on
% math in the abstract anyway.
 
% no keywords
 
 
 
 
% For peer review papers, you can put extra information on the cover
% page as needed:
% \ifCLASSOPTIONpeerreview
% \begin{center} \bfseries EDICS Category: 3-BBND \end{center}
% \fi
%
% For peerreview papers, this IEEEtran command inserts a page break and
% creates the second title. It will be ignored for other modes.
\IEEEpeerreviewmaketitle
 
\section{Introducción}
 
Las áreas académicas vinculadas a la electrónica y la computación se encuentran en constante demanda de recursos educativos de hardware y software en virtud de potenciar los conocimientos de los estudiantes. En el caso de las tecnologías con poca difusión o implementación en la industria regional, la principal opción es la importación de plataformas educativas adquiridas de empresas destinadas a la manufacturación de sistemas embebidos. Estas plataformas comerciales se clasifican según su implementación por lo que no siempre cubren los requerimientos académicos. Por ejemplo, en el área de las técnicas digitales, los requerimientos de hardware para las cátedras iniciales difieren de las cátedras avanzadas. Esta situación presenta la oportunidad de desarrollar una plataforma a la medida de las necesidades de las instituciones académicas. Si se dispone de las especificaciones por parte de los docentes y la articulación de laboratorios y grupos de investigación, es posible obtener un desarrollo que cubra las expectativas y aliente a la producción regional de plataformas educativas en un marco de transferencia de tecnología. 
 
En el proceso de aprendizaje de las Técnicas Digitales necesariamente se deben implementar los diseños digitales. Desde el Álgebra de Boole, con operaciones digitales simples, hasta la implementación de un microprocesador son prácticas comunes de los sistemas digitales lógicos y resulta fundamental su ejercitación para concluir el ciclo de enseñanza. 
 
Al comienzo de la década de los 90s surgieron varios trabajos donde se planteaba la necesidad de una plataforma educativa orientada a la implementación de diseños lógicos digitales basados en PLDs. Los principales demandantes eran diseñadores de arquitecturas de microprocesadores \cite{ASArev.1}, desarrollos que años anteriores resultaban dificultosos por el costo de la implementación en hardware. El avance en el proceso de integración de los circuitos integrados ha llevado a que se desarrollen plataformas más complejas que ofrecen una gran cantidad de recursos de hardware. Al día de hoy se han generado varios proyectos desarrollados por instituciones académicas \cite{FPGA-platform-CPU-design}\cite{Low-Cost-Interactive-Rapid-Prototyping}\cite{FPGA-Based-Experiment-Platform-for-Multi-Core-System}, otras con especificaciones abiertas \cite{Building-an-Evolvable-Low-Cost-HWSW-Platform}\cite{NetFPGA} y también con fines comerciales \cite{Port-Emb-Linux-XUP-Virtex-II.Dev-Board}. Todos estos trabajos tienen algunas características en común\footnote{La caracterización anterior no es un intento de generalizar a todas las plataformas educativas basadas en PLDs, pero sí resulta útil para definir el perfil de la plataforma que se describe en este trabajo.}:
 
\begin{itemize}
\item El dispositivo lógico programable central es una FPGA
\item Poseen Memoria de configuración de la FPGA
\item El acceso al dispositivo es a través de JTAG
\item Disponen de algún software para interactuar con la plataforma desde una computadora
\item Tienen dos perfiles de diseño:
  \begin{itemize}
  \item Para la implementación de sistemas lógicos generales
  \item Orientado a un área específica
  \end{itemize}
\end{itemize}
 
En función del perfil del usuario de la plataforma se definen los dispositivos que se utilizarán. La Tabla \ref{tab:rec-plataforma} ilustra una clasificación de los recursos que ofrecen diferentes plataformas basada en dispositivos PLDs. A niveles iniciales en el estudio de la lógica digital se requieren periféricos básicos como ser llaves conmutadoras de estados lógicos, pulsadores, dispositivos indicadores como diodos LED, etc. A un nivel medio se manejan controladores para display gráficos LCD/LED, comunicaciones entre varios dispositivos mediante SPI, I2C, etc. Y por último, en la formación de especialistas de sistemas embebidos, se requieren recursos como interfaces físicos para ethernet, controladores HDMI, USB, y otros más.
 
\begin{table}[!t]
\renewcommand{\arraystretch}{1.3}
\caption{Recursos de hardware en función de los niveles de aprendizaje}
\label{tab:rec-plataforma}
\centering
\begin{tabular}{|l|c|c|c|}
\hline
\multirow{2}{*}{Nivel} & Llaves/pulsadores & ADC\&DAC/SPI & USB/ETH \\
                       & Diodos LED & Display LCD/VGA & HDMI \\
\hline
Inicial & $\checkmark$ & & \\
\hline
Medio & $\checkmark$ & $\checkmark$ & \\
\hline
Avanzado & $\checkmark$ & $\checkmark$ & $\checkmark$ \\
\hline
\end{tabular}
\end{table}
 
Las principales empresas fabricantes de sistemas embebidos basados en dispositivos PLDs son Xilinx, Altera y Digilent. Estos desarrollos se encuentran orientados a, 
 
\begin{itemize}
\item Sistemas de comunicaciones
\item Procesamiento de Señales Digitales (DSP)
\item Automoción
\end{itemize}
 
En la Fig. \ref{fig:board-fpga} se pueden ver tres diferentes plataformas orientadas al diseño de sistemas digitales\footnote{Alguna de estas plataformas disponen de módulos conversores ADC y DAC, por lo que se podría decir que también permiten la implementación de sistemas analógicos en dominio discreto.}. Los recursos de hardware que ofrecen estos desarrollos son:
 
\begin{itemize}
\item FPGA
\item Memoria de configuración de la FPGA
\item Periféricos básicos (LEDs, display, pulsadores, llaves, etc.)
\item Puerto USB
\item Puerto para módulos externos
\item Puerto para propósitos generales
\item Varias señales de reloj (clock)
\item VGA
\item PS/2
\item Memorias ROM/RAM
\item ADC/DAC
\end{itemize}
 
\begin{figure}[!t]
  \centering
  \subfloat[BASYS2 (Digilent)]{\includegraphics[width=0.2\textwidth]{img/BASYS2-top-400}%  
    \label{fig:digilent-board}}
  \hfil
  \subfloat[DE0-Nano (Altera)]{\includegraphics[width=0.2\textwidth]{img/de0-nano}%
    \label{fig:altera-board}}
  \hfil
  \subfloat[Avnet Spartan-6 LX150T (Xilinx/Avnet)]{\includegraphics[width=0.2\textwidth]{img/Avnet-Spartan-6-lx9-MicroBoard}%
    \label{fig:xilinx-board}}
  \caption{Plataformas comerciales de desarrollo educativas basadas en FPGAs.}
  \label{fig:board-fpga}
\end{figure}
 
En nuestra región las tecnologías PLD se encuentran integradas en varias líneas de investigación y desarrollos hace algunos años. Instituciones gubernamentales de defensa \cite{citedef-ref}, aeroespaciales, comunicaciones \cite{paper-dta-conae} están implementando dispositivos como FPGAs y CPLDs en sus sistemas electrónicos. Además existe una constante actualización por parte de las instituciones académicas en los programas analíticos de las carreras relacionadas a los sistemas embebidos \cite{act-curricula}. 
 
La primera experiencia sobre el desarrollo de una plataforma orientada a la enseñanza de lógica programable ha sido realizada en el año 2006 \cite{paper-cudar}. En esta versión se trabajó con un CPLD de Xilinx, a éste se conectaron algunos periféricos simples necesarios para las cátedras de Técnicas Digitales. 
 
El Instituto Nacional de Tecnología Industrial impulsa un proyecto denominado FPGALibre \cite{fpgalibre}. Este proyecto busca desarrollar y brindar herramientas de software libre y diseños de hardware abiertos para trabajar con tecnologías FPGA \cite{fpgalibre-paper}. Dentro de este proyecto se destaca el desarrollo de una plataforma basada en una FPGA orientada a las áreas de educación y desarrollo de prototipos \cite{s3proto-mini}.
 
Las plataformas anteriormente nombradas son referencias de desarrollos nacionales usados en laboratorios universitarios. Sin embargo, la mayoría de las plataformas de evaluación comerciales son fabricadas en el exterior del país. 
 
Considerando la situación expuesta es que se impulsa el desarrollo de la Plataforma de Hardware Reconfigurable (PHR). Esta plataforma es un proyecto a medida de las necesidades en la  enseñanza de los sistemas digitales lógicos en las cátedras iniciales. Ofrece recursos básicos para que los estudiantes interactúen con la tecnología de los dispositivos PLDs, pero también dispone de puertos para conectar otros recursos físicos permitiendo que estudiantes avanzados puedan hacer uso de ellas sin limitaciones. Al ser publicado bajo licencia libre/abierta permitirá que el diseño, o parte de él, sirva como referencia a otras instituciones académicas que se encuentren en búsqueda de una plataforma para implementar en sus diferentes cátedras. 
 
\section{Dispositivos principales}
 
Son varios los dispositivos principales que se deben definir antes de comenzar a conectar algún componente electrónico. En función de estos dispositivos es que se deben seleccionar los restantes. Se podrían listar:
 
\begin{itemize}
\item FPGA
\item Memoria de configuración
\end{itemize}
 
\subsection{FPGA}
\label{sec:fpga}
La FPGA que se utiliza pertenece a la familia Spartan-3 de Xilinx Inc. Esta familia a la vez se clasifican en
 
\begin{itemize}
\item Familia Spartan-3A extendida (bajo costo):
  \begin{itemize}
  \item Spartan-3A
    \begin{itemize}
    \item Ideal para uso de interfaz entre dispositivos.
    \end{itemize}
  \item Spartan-3A DSP
    \begin{itemize}
    \item Mayor densidad de recursos en comparación que la familia Spartan-3A
    \item Dispone de un dispositivo DSP (DSP48A)
    \end{itemize}
  \item Spartan-3AN
    \begin{itemize}
    \item Dispositivos no volátiles
    \item Ideal para aplicaciones con restricciones de espacio
    \end{itemize}
  \end{itemize}
\item Familia Spartan-3E
\item Familia Spartan-3
\end{itemize}
 
Altera, Atmel y otros fabricantes de FPGAs también presentan familias similares a las Spartan-3. Aquí se optó por Xilinx Inc. debido a la experiencia en software/hardware con que cuenta el Centro de Investigación\footnote{CUDAR -- Centro Universitario de Desarrollo en Automoción y Robótica.} donde se desarrolla el proyecto. La familia extendida Spartan-3A es la que se utiliza en el diseño de la PHR, que   se distingue en la comparativa entre costo y recursos de hardware. Las Spartan-3A, permiten una gran variedad de modos de configuración en contraste con la familia Spartan-3. Por otro lado, no es necesaria una gran capacidad de procesamiento que justifique la inclusión de un DSP, debido al perfil del usuario de la plataforma que se desarrolla. Las principales características de las FPGAs Spartan-3A se describen en la Tabla \ref{tab:char-fpga}.
 
\begin{table}[!t]
%increase table row spacing, adjust to taste
\renewcommand{\arraystretch}{1.3}
% if using array.sty, it might be a good idea to tweak the value of
% \extrarowheight as needed to properly center the text within the cells
\caption{Característica de la familia Spartan-3A}
\label{tab:char-fpga}
\centering
% Some packages, such as MDW tools, offer better commands for making tables
% than the plain LaTeX2e tabular which is used here.
\begin{tabular}{|l|c|c|c|c|}
\hline
\multirow{2}{*}{\textbf{Devices}} & \textbf{System} & \textbf{Block RAM} & \textbf{Dedicated} &  \textbf{Maximum} \\
 & \textbf{Gates} & \textbf{bits} & \textbf{Multipliers} & \textbf{User I/O} \\
\hline
XC3S50A & 50K & 54K & 3 & 144 \\
\hline
\textbf{XC3S200A} & \textbf{200K} & \textbf{288K} & \textbf{16} & \textbf{248} \\
\hline
XC3S400A & 400K & 360K & 20 & 311 \\
\hline
XC3S700A & 700K & 360K & 20 & 372 \\
\hline
XC3S1400A & 1400K & 576K & 32 & 502 \\
\hline
\end{tabular}
\end{table}
 
El dispositivo seleccionado, como se puede ver en la Tabla \ref{tab:char-fpga}, es el XC3S200A. Éste cuenta con una gran densidad de recursos de hardware (200K compuertas lógicas) a la vez que se puede encontrar en un encapsulado de pequeñas dimensiones (VQ100) que facilita el diseño del PCB (Printed Circuit Board). En este encapsulado se puede contar con 68 puertos de entrada/salida (I/O) para ser utilizados externamente a diferentes tecnologías programables (LVTTL, LVCMOS33/25/18, entre otros). El perfil del diseño de la PHR no requiere de una gran cantidad de puertos de I/O debido a las aplicaciones para las que se lo diseña.
 
\subsection{Memoria de configuración}
\label{sec:mem-prog}
La tecnología utilizada en las FPGAs Spartan-3A requieren de una memoria externa que configure al dispositivo ya que es volátil. Esta familia permite la utilización de varios tipos de memorias como modos de configuración para embeber el diseño digital en la FPGA. Xilinx comercializa memorias Flash PROM para todas sus familias de FPGA. Hay una relación directa entre la capacidad lógica de una FPGA con el tamaño de la memoria de configuración, en la Tabla \ref{tab:mem-fpga} se puede apreciar esta relación para el caso de la familia Spartan-3A.
 
\begin{table}[!t]
\renewcommand{\arraystretch}{1.3}
\caption{Tipo de memoria para la familia Spartan-3A}
\label{tab:mem-fpga}
\centering
\begin{tabular}{|l|c|c|}
\hline
\multirow{2}{*}{\textbf{Devices}} & \textbf{Configuration} & \textbf{ISP PROM} \\
 & \textbf{Bits} & \textbf{Solution} \\
\hline
XC3S50A   & 437,312   & XCF01S \\
\hline                        
\textbf{XC3S200A}  & \textbf{1,196,128} & \textbf{XCF02S} \\
\hline                        
XC3S400A  & 1,886,560 & XCF02S \\
\hline                        
XC3S700A  & 2,732,640 & XCF04S \\
\hline
XC3S1400A & 4,755,296 & XCF08P     \\
\hline
\end{tabular}
\end{table}
 
Tanto la FPGA como la memoria de configuración Flash PROM se encuentran conectadas en cadena a través de una interfaz JTAG Boundary-Scan (IEEE 1149.1) que Xilinx Inc. implementa en sus dispositivos FPGAs, CPLDs y memorias Flash PROM para transferir los diseños sintetizados.
 
\section{Sistema de alimentación}
\label{sec:sist-power}
 
Por su arquitectura interna y la gran densidad de recursos lógicos que ofrecen, la necesidad de alimentar estos dispositivos en forma eficiente es de significancia en el diseño de la plataforma. Los sistemas complejos como las FPGAs requieren minimizar los ruidos presentes en las fuentes de alimentación y es aquí donde las fuentes de alimentación lineales son las ideales. Pero la desventaja de estos circuitos radica en la baja eficiencia que presentan (menor que 50\%). Las fuentes de alimentación conmutadas (Switch-Mode) tienen una eficiencia mayor (alrededor del 90\%) pero son mas ruidosas en comparación con las lineales \cite{Power-Supply-Soluc-4-Xilinx-FPGAs}. Con esta primera observación sobre los dos principales tipos de fuentes de alimentación, se deben considerar otros aspectos sobre el tipo de regulador a utilizar,
 
\begin{itemize}
\item Secuencia de arranque
\item Inicio monotónico de la rampa de tensión
\item Arranque suave
\item Encapsulado y diseño del PCB
\end{itemize}
 
El TPS75003, fabricado por Texas Instruments, es un dispositivo que integra tres reguladores de tensión en una sola pastilla. Este integrado fue diseñado para aplicaciones donde se deben alimentar a FPGAs y DSPs. En especial, el TPS75003 fue testeado con las familias Spartan-3 de Xilinx proporcionando las tensiones necesarias para estas FPGAs. Esta compuesto por dos controladores Buck que logran una gran eficiencia y un regulador lineal LDO (Low-Dropout). 
 
El Laboratorio de Desarrollo Electrónico con Software Libre, perteneciente al Instituto Nacional de Tecnología Industrial (INTI), ha realizado la implementación de un módulo de alimentación para placas con dispositivos FPGA \cite{s3power-paper}. En este desarrollo se utiliza el TPS75003 como dispositivo central y fue probado con una FPGA de la familia Spartan-3E. El diseño se encuentra disponible bajo una licencia de libre uso y modificación. Esta última aclaración no resulta un dato menor, pues la plataforma PHR persigue el mismo fin que el desarrollo realizado por el INTI. La idea de compartir y transferir desarrollos a la comunidad. Para la plataforma PHR se utiliza el módulo desarrollado por el INTI. 
 
\section{Placa PHR}
\label{sec:placa-phr}
Luego de las consideraciones sobre los dispositivos principales se presenta un diagrama en bloque de la plataforma PHR. La Fig. \ref{fig:phr-bloque} incluye no solo la placa base que contiene la FPGA, la memoria de configuración de la FPGA y los periféricos sino también las placas de programación JTAG y la fuente de alimentación para todo el sistema. 
 
\begin{figure}[!t]
\centering
  \includegraphics[width=0.45\textwidth]{img/block}
  \caption{Diagrama en bloque de la PHR.}
  \label{fig:phr-bloque}
\end{figure}
 
La placa de alimentación llamada S3Power es el desarrollo mencionado en la Sección \ref{sec:sist-power}. Es una placa basada en el dispositivo TPS75003 que proporciona los tres niveles de tensión para la FPGA (1.2V, 2.5V y 3.3V). La S3Power se conecta a la placa base PHR a través de dos conectores, uno para tomar la tensión de alimentación de todo el sistema (5V) y otro conector donde entrega las correspondientes tensiones para la FPGA. La ventaja de esta implementación es la posibilidad de reutilizar la S3Power en otros diseños que requieran las mismas especificaciones de potencia que la PHR. En la Fig. \ref{fig:placas-phr-s3power-con} se puede ver la placa PHR y su conexión con la placa S3Power.
 
\begin{figure}[!t]
  \centering
  \subfloat[Placa PHR (base)]{\includegraphics[width=0.4\textwidth]{img/foto-phr-comp}%  
    \label{fig:foto-phr}}
  \hfil
  \subfloat[Placa S3Power]{\includegraphics[width=0.2\textwidth]{img/foto-s3power-comp}%
    \label{fig:foto-s3power}}
  \hfil
  \subfloat[Conexión PHR-S3Power]{\includegraphics[width=0.25\textwidth]{img/foto-phr-s3power-comp}%
    \label{fig:foto-phr-s3power}}
  \caption{Placas PHR y S3Power.}
  \label{fig:placas-phr-s3power-con}
\end{figure}
 
\subsection{Periféricos}
\label{sec:perifericos}
 
Los periféricos que se implementan en este diseño permiten a los usuarios iniciales realizar prácticas sencillas. Pero también los usuarios avanzados requieren de indicadores de señales lógicas, pulsadores, etc. (Tabla \ref{tab:rec-plataforma}). Los periféricos que ofrece la plataforma PHR son:
 
\begin{itemize}
\item Salidas
  \begin{itemize}
  \item 8 LEDs indicadores
  \item Display de 7 segmentos cuádruple
  \end{itemize}
\item Entradas
  \begin{itemize}
  \item 8 Llaves (DIP switch)
  \item 4 Pulsadores
  \item Relojes (Clocks) 
    \begin{itemize}
    \item 50Mhz
    \item Divisor de reloj de 16Mhz a $\sim$1Mhz
    \end{itemize}
  \end{itemize}
\item Entrada/Salida
  \begin{itemize}
  \item Puerto Serie (RS-232)
  \item Puerto con I/O para propósitos generales (conectores IDE)
  \end{itemize}
\end{itemize}
 
\section{Interfaz JTAG}
\label{sec:jtag}
 
La plataforma PHR requiere interactuar con una computadora personal, sobre la cual el usuario realiza su diseño lógico mediante un lenguaje descriptivo de hardware (HDL). Para obtener la síntesis del diseño se utilizan las herramientas de software proporcionadas por el fabricante de la FPGA, Luego se transfiere el diseño directamente a la FPGA o se almacenan los datos sobre la memoria Flash PROM.
 
Actualmente el puerto serie y paralelo, muy utilizados antiguamente, están quedando obsoletos. Por otro lado el puerto USB es la interfaz cableada más utilizada para la comunicación entre una computadora y dispositivos externos.
 
Los requerimientos planteados para la interfaz JTAG son:
 
\begin{description}
\item[JTAG] Comunicarse con la plataforma PHR utilizando un dispositivo externo que implemente el estándar IEEE 1149.1.
\item[USB] Comunicarse con una computadora personal a través de este puerto sin restricción al sistema operativo a utilizar (GNU/Linux, Mac OS y Microsoft Windows).
\end{description}
 
Uno de los dispositivo comerciales que presenta las ca\-rac\-te\-rís\-ti\-cas anteriormente definidas es el FT2232D fabricado por Future Technology Devices International Ltd. (FTDI). El FT2232D  dispone de una interfaz llamada MPSSE (Multi-Protocol Synchronous Serial Engine). Esta tecnología proporciona un medio flexible para comunicar dispositivos seriales síncronos a un puerto USB\cite{AN-135-MPSSE-Basic}. Por ser ``Multi-Protocolo'', el MPSSE permite comunicar con diferentes tipos de dispositivos síncronos, los más populares son SPI, I$^2$C y JTAG. Otra característica del FT2232D es la disponibilidad de dos canales independientes. De esta forma en uno de los canales se puede implementar JTAG y en otro una UART, funcionalidad muy útil para comunicarse por RS-232 desde una computadora sin puerto serie.  El esquema de la implementación para este dispositivo se presenta en la Fig. \ref{fig:oocdlink-bloque}, la placa se denomina OOCDLink\footnote{El nombre OOCDLink es tomado de un desarrollo publicado en una web de sistemas embebidos sobre el cual se baso la  placa.}.
\begin{figure*}[!t]
  \centerline{\subfloat[Esquema de la  FT2232D]{\includegraphics[width=0.35\textwidth]{img/FTblock}%  
    \label{fig:oocdlink-bloque}}
  \hfil
  \subfloat[Placa OOCDLink]{\includegraphics[width=0.2\textwidth]{img/oocdlink_top}%
    \label{fig:oocdlink-foto}}
  \hfil
  \subfloat[Conexión entre la placa PHR y OOCDLink]{\includegraphics[width=0.4\textwidth]{img/placasConexionado}%
    \label{fig:oocdlink-phr}}}
  \caption{Interfaz JTAG (implementación FT2232D).}
  \label{fig:oocdlink}
\end{figure*}
 
En la Fig. \ref{fig:oocdlink-foto} se muestra la placa OOCDLink. En la misma se puede ver el conector mini-USB para la PC y un conector IDE de 20 pines donde se mapean las señales de JTAG. El puerto JTAG de la FPGA y la memoria Flash PROM utiliza solo cuatro pines del estándar IEEE 1149.1 (TDI, TDO, TCK y TMS). Pero la mayoría de los microcontroladores utilizan dos señales más desde el puerto JTAG para realizar debugging. Es por esta razón que la placa OOCDLink utiliza el conector IDE de 20 pines agregando las señales TRST y SRST. En la Fig. \ref{fig:oocdlink-phr} se puede ver como se conectarían las placas PHR y OOCDLink. %TODO El adaptador puede también ser evitado realizando un cableado simple.
 
\section{Proceso de configuración y programación}
 
Además del hardware se desarrollan algunas herramientas de software necesarias para la configuración/programación del diseño lógico en la FPGA/Flash PROM. 
 
Los lenguajes descriptivos como VHDL y Verilog se definen en los estándares ANSI/IEEE 1076-1993 y IEEE 1364-1995 respectivamente. Esto asegura que los diseños descritos puedan ser reutilizados. En cambio la implementación sobre el dispositivo PLD difiere según el fabricante (a través de sus diferentes herramientas de software). En nuestros caso, se utilizan las herramientas de Xilinx para realizar la implementación y generación de archivos de configuración para la FPGA. 
 
\subsection{PHR GUI}
 
La transferencia a la FPGA o la memoria Flash PROM es mediante un software llamado xc3sprog. Su nombre, xc3sprog, hace referencia a que inicialmente fue diseñado para la familia de FPGA Spartan-3 de Xilinx. Sin embargo se ha extendido el manejo a varios otros tipos de dispositivos que incluyen otras FPGAs, CPLDs, XCF flash PROMs, microprocesadores AVRs de Atmel y memorias flash SPI. El xc3sprog soporta varios cables JTAG, incluyendo cables de puerto paralelo y programadores USB.
 
La PHR GUI se desarrolla con el uso de herramientas libres python, wxGlade y el xc3sprog que se ejecuta por debajo de esta interfaz amigable para los usuarios de la PHR. La Fig. \ref{fig:flujo-hdl} es una captura de pantalla del software PHR GUI. 
 
\begin{figure}[!t]
\centering
  \includegraphics[width=0.4\textwidth]{img/msw9x_output}
  \caption{Captura de pantalla del software PHR GUI.}
  \label{fig:flujo-hdl}
\end{figure}
 
El uso de este software es muy sencillo, solo se debe proporcionar el archivo generado por las herramientas de Xilinx (.bit) y elegir si se quiere configurar la FPGA o programar la memoria Flash PROM.
 
\section{Discusión}
 
% Existen dos formas de solventar esta demanda, la primera opción es la adquisición de estos recursos a empresas que ofrecen plataformas educativas que cumplan con las especificaciones, pero aquí se presenta una segunda opción que es generar estas plataformas personalizadas a las necesidades de la región. Actualmente se dispone de los conocimientos necesarios para emprender un ciclo de trabajo donde las mismas unidades académicas cubren sus demandas a través de diferentes espacios como son los grupos de investigación y laboratorios 
 
%\subsection{Diseño digital basado en HDL}
% Los lenguajes descriptivos como VHDL y Verilog se encuentran estandarizados. En el caso de VHDL el estándar ANSI/IEEE 1076-1993 lo define, mientras que para Verilog se estandarizo en la revisión IEEE 1364-1995. Esto asegura que los diseños descritos por estos lenguajes puedan ser reutilizados. Si un fabricante cambia sus librerías, solo bastará con recompilar para poder obtener la síntesis del diseño nuevamente. La implementación del diseño está vinculada con el fabricante de los dispositivos sobre los cuales se piensa trabajar. La simulación del circuito muchas veces resulta útil para una primera aproximación del sistema. Este proceso requiere de información del diseño como así también señales de entradas del sistema (test vectors) con que contrastar las salidas del simulador. Una vez que el sistema responde a las especificaciones se procede a la implementación. El procesos de síntesis proporciona un documento llamado netlist donde describe por completo el diseño sintetizado pero en este caso utiliza compuertas lógicas específicas del fabricante. El proceso de Translate comprende varios programas usados para importar el netlist y prepararlo para la reconfiguración del dispositivo PLD. Los procesos de Fitting y Place and Route corresponden a la designación de los recursos de los dispositivos (compuertas, memorias y otros bloques de hardware) sobre 
 
 
% La Fig. \ref{fig:flujo-hdl} representa el flujo de diseño que implementan los sistemas digitales descritos con los lenguajes HDL. 
 
% \begin{figure}[!t]
% \centering
%   \includegraphics[width=0.25\textwidth]{img/flujo-hdl}
%   \caption{Flujo de diseño usando HDL.}
%   \label{fig:flujo-hdl}
% \end{figure}
 
% Los diseñadores deber primeramente conocer las especificaciones del sistema digital a describir. 
 
 
\subsection{Costos}
\label{sec:costos}
 
Como todo diseño prototipo, los costos en su desarrollo no se comparan con el costo que tienen las plataformas comerciales. La compra de los componentes y los PCBs para armar las tres placas que componen el proyecto cuestan actualmente unos \$120 (dólares). Este valor se ve afectado por el volumen de placas que se pensó armar al comienzo.  Se espera que con la divulgación de la tecnología lógica reprogramable se logre incrementar la demandan de estas plataformas educativas y poder reducir los costos para alguna empresa local fabricante de placas electrónicas.
 
\subsection{Disposiciones del sistema de alimentación}
\label{sec:disp-sistem-alim}
 
En la Sección \ref{sec:sist-power} se hizo referencia a las ventajas de la utilización de un desarrollo abierto. Y es una de las principales motivaciones el hecho de poder reutilizar desarrollos y herramientas disponibles abiertamente en la comunidad. El diseño de la placa S3Power es muy versátil por sus características eléctricas y por motivos de su modularidad. No obstante, el sistema de alimentación es un aspecto a considerar en futuras versiones de la plataforma, pues no solo implica un costo adicional por el hecho de tener un PCB más, sino que también se desconocen los efectos térmicos y electromagnéticos que pueda tener sobre el resto de la plataforma. Especialmente teniendo en cuenta la disposición asignada a la placa S3Power, que se encuentra justo por encima del dispositivo FPGA.
 
\section{Conclusiones}
 
El desarrollo del proyecto PHR ha requerido pasar por todas las etapas del proceso de producción de sistemas electrónicos. Desde los primeros diagramas en bloque, pasando por el diseño del esquemático y PCB de las diferentes placas. Además se realizó la compra de todos los componentes sin intermediarios debido al volumen requerido. Por cada una de estas etapas se escribió  documentación que sirve de referencia para los estudiantes y para aquellos que deseen abordar proyectos semejantes.
 
Desde un concepto estratégico se consideró disponer de la etapa de alimentación (Sección \ref{sec:sist-power}) y la interfaz JTAG (Sección \ref{sec:jtag}) en forma independientes a la placa principal PHR. Ambas placas pueden ser reutilizadas en otros proyectos por parte de los estudiantes que tengan acceso al proyecto PHR. Y es que la placa S3power está diseñada para alimentar cualquier sistema basado en las FPGAs Spartan-3 de Xilinx. De la misma forma la placa OOCDLink soporta el protocolo JTAG que es muy utilizado en los microcontroladores actuales.
 
La modularidad de las diferentes placas, en contraste con el párrafo anterior, presenta la desventaja del costo en la fabricación de los PCBs. En general, el aspecto económico no fué el de mayor significancia a lo largo del proyecto, sin embargo, el presente trabajo sirve como referencia para futuros desarrollos mas eficientes desde este punto de vista.
 
%TODO Los costos totales del desarrollo son superiores a plataformas comerciales con las mismas prestaciones [papilio]. 
 
El proyecto se realizó en su totalidad con herramientas de software libre/abiertas. Por cada etapa del desarrollo se buscaron alternativas libres que cubrieran los requerimientos del caso. Se tenía referencias sobre proyectos de las mismas envergadura pero la plataforma PHR requería nuevas tecnologías a implementar que han sido resueltas con herramientas desarrolladas por la comunidad de software/hardware libre/abierto.
 
La transferencia del desarrollo se encuentran en ejecución. Se realizan tareas conjuntas con la formación del personal a cargo del Laboratorio donde se instalarán las plataformas. En principio se tiene una plataforma funcional e instalada sin problema alguno. 
 
\section*{Agradecimientos}
 
Los autores quieren agradecer a los docentes de las cátedras de Técnicas Digitales I y IV de la Facultad Regional Córdoba -- Universidad Tecnológica Nacional (UTN -- FRC). Sus aportes en el planteo y desarrollo de la PHR han sido de gran ayuda. Además se agradece a todos los estudiantes que han participado en las diferentes etapas de desarrollo de la plataforma. Agradecemos a los responsables del Centro Universitario de Desarrollo en Automoción y Robótica (CUDAR) por permitir realizar este proyecto en su espacio como también el soporte técnico recibido. Al personal del Laboratorio de Técnicas Digitales e Informática de la (UTN -- FRC) por formar parte de la transferencia. Por último también agradecer a la Agencia para el Desarrollo Económico de la ciudad de Córdoba (ADEC) por financiar parte del proyecto.
 
% An example of a floating figure using the graphicx package.
% Note that \label must occur AFTER (or within) \caption.
% For figures, \caption should occur after the \includegraphics.
% Note that IEEEtran v1.7 and later has special internal code that
% is designed to preserve the operation of \label within \caption
% even when the captionsoff option is in effect. However, because
% of issues like this, it may be the safest practice to put all your
% \label just after \caption rather than within \caption{}.
%
% Reminder: the "draftcls" or "draftclsnofoot", not "draft", class
% option should be used if it is desired that the figures are to be
% displayed while in draft mode.
%
%\begin{figure}[!t]
%\centering
%\includegraphics[width=2.5in]{myfigure}
% where an .eps filename suffix will be assumed under latex, 
% and a .pdf suffix will be assumed for pdflatex; or what has been declared
% via \DeclareGraphicsExtensions.
%\caption{Simulation Results}
%\label{fig_sim}
%\end{figure}
 
% Note that IEEE typically puts floats only at the top, even when this
% results in a large percentage of a column being occupied by floats.
 
 
% An example of a double column floating figure using two subfigures.
% (The subfig.sty package must be loaded for this to work.)
% The subfigure \label commands are set within each subfloat command, the
% \label for the overall figure must come after \caption.
% \hfil must be used as a separator to get equal spacing.
% The subfigure.sty package works much the same way, except \subfigure is
% used instead of \subfloat.
%
%\begin{figure*}[!t]
%\centerline{\subfloat[Case I]\includegraphics[width=2.5in]{subfigcase1}%
%\label{fig_first_case}}
%\hfil
%\subfloat[Case II]{\includegraphics[width=2.5in]{subfigcase2}%
%\label{fig_second_case}}}
%\caption{Simulation results}
%\label{fig_sim}
%\end{figure*}
%
% Note that often IEEE papers with subfigures do not employ subfigure
% captions (using the optional argument to \subfloat), but instead will
% reference/describe all of them (a), (b), etc., within the main caption.
 
 
% An example of a floating table. Note that, for IEEE style tables, the 
% \caption command should come BEFORE the table. Table text will default to
% \footnotesize as IEEE normally uses this smaller font for tables.
% The \label must come after \caption as always.
%
%\begin{table}[!t]
%% increase table row spacing, adjust to taste
%\renewcommand{\arraystretch}{1.3}
% if using array.sty, it might be a good idea to tweak the value of
% \extrarowheight as needed to properly center the text within the cells
%\caption{An Example of a Table}
%\label{table_example}
%\centering
%% Some packages, such as MDW tools, offer better commands for making tables
%% than the plain LaTeX2e tabular which is used here.
%\begin{tabular}{|c||c|}
%\hline
%One & Two\\
%\hline
%Three & Four\\
%\hline
%\end{tabular}
%\end{table}
 
 
% Note that IEEE does not put floats in the very first column - or typically
% anywhere on the first page for that matter. Also, in-text middle ("here")
% positioning is not used. Most IEEE journals/conferences use top floats
% exclusively. Note that, LaTeX2e, unlike IEEE journals/conferences, places
% footnotes above bottom floats. This can be corrected via the \fnbelowfloat
% command of the stfloats package.
 
 
 
% trigger a \newpage just before the given reference
% number - used to balance the columns on the last page
% adjust value as needed - may need to be readjusted if
% the document is modified later
%\IEEEtriggeratref{8}
% The "triggered" command can be changed if desired:
%\IEEEtriggercmd{\enlargethispage{-5in}}
 
% references section
 
% can use a bibliography generated by BibTeX as a .bbl file
% BibTeX documentation can be easily obtained at:
% http://www.ctan.org/tex-archive/biblio/bibtex/contrib/doc/
% The IEEEtran BibTeX style support page is at:
% http://www.michaelshell.org/tex/ieeetran/bibtex/
%\bibliographystyle{IEEEtran}
% argument is your BibTeX string definitions and bibliography database(s)
%\bibliography{IEEEabrv,../bib/paper}
%
% <OR> manually copy in the resultant .bbl file
% set second argument of \begin to the number of references
% (used to reserve space for the reference number labels box)
\begin{thebibliography}{1}
 
% \bibitem{IEEEhowto:kopka}
% H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus
%   0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999.
 
\bibitem{ASArev.1}
Hiroyuki~Ochi, \emph{ASAver.1: An FPGA-Based Education Board for Computer Architecture/system Design}, Design Automation Conference 1997. Proceedings of the ASP-DAC'97. Asia and South Pacific. January 1997.
 
\bibitem{FPGA-platform-CPU-design}
C.~Chang, C.~Huang, Y.~Lin, Z.~Huang and T.~Hu, \emph{FPGA Platform for CPU Design and Applications},  5th. IEEE Conference on Nanotechnology. Nagoya, Japan. July 2005.
 
\bibitem{Low-Cost-Interactive-Rapid-Prototyping}
D.~Kang, S.~Hwang, K.~Jhang, K.~Yi, \emph{A Low Cost and Interactive Rapid Prototyping Platform For Digital System Design Education}, IEEE International Conference on Microelectronic Systems Education, MSE'07. 2007. 
 
\bibitem{FPGA-Based-Experiment-Platform-for-Multi-Core-System}
J.~Xing, W.~Zhao and H.~Hu, \emph{An FPGA-Based Experiment Platform for Multi-Cores System}, 9th. International Conference for Young Computer Scientistis, ICYCS'08. 2008. 
 
\bibitem{Building-an-Evolvable-Low-Cost-HWSW-Platform}
A.~Cicuttin, M.~Crespo, A.~Shapiro, N.~Abdallah, \emph{Building an Evolvable Low-Cost HW/SW Educational Platform -- Application to Virtual Instrumentation},  IEEE International Conference on Microelectronic Systems Education, MSE'07. 2007.
 
\bibitem{NetFPGA}
J.~Lockwood, N.~McKeown, G.~Watson, G.~Gibb, P.~Hartke, J.~Naous, R.~Raghuraman and J.~Luo, \emph{NetFPGA - An Open Platform for Gigabit-rate Network Switching and Routing}, IEEE International Conference on Microelectronic Systems Education, MSE'07. 2007.
 
\bibitem{Port-Emb-Linux-XUP-Virtex-II.Dev-Board}
Z.~Qingguo, Y.~Qi, L.~Chanjuan, H.~Bin, \emph{Port Embedded Linux to XUP Virtex-II Pro Development Board}, IEEE. 2009.
 
\bibitem{citedef-ref}
Instituto de Investigación Científica y Técnicas para al defensa (CITEDEF), \emph{Radar Láser}, url: \texttt{\burl{http://www.citedef.gob.ar/i-d/laser/areas-de-trabajo-laser/ral-descripcion/}}.
 
\bibitem{paper-dta-conae}
J.~Siman, G.~Jaquenod and H.~Mascialino, \emph{Fpga-Based Transmit/Receive Distributed Controller for the TR Modules of an L Band Antenna (SAR)}, 4th. Southern Conference on Programmable Logic, 2008.
 
\bibitem{act-curricula}
P.~Cayuela, \emph{Actualización de la currícula -- Incorporación de la lógica programable en ingeniería}, Jornada de Investigación y Desarrollo en Ingeniería de Software (JIDIS'07). Córdoba Argentina. 2007.
 
\bibitem{paper-cudar}
S.~Olmedo, E.~Pereyra, G.~Manfredi, \emph{Kit de desarrollo educativo con CPLD}, FPGA Based Systems. 2nd. Southern Conference on Programmable Logic, 2006.
 
\bibitem{fpgalibre}
INTI Electrónica e Informática, \emph{Proyecto FPGA Libre}, url: \texttt{\burl{http://fpgalibre.sourceforge.net}}.
 
\bibitem{fpgalibre-paper}
S.~Tropea, D.~Brengi, and J.~Borgna, \emph{FPGAlibre: Herramientas de software libre para diseño con FPGAs}, FPGA Based Systems. Mar del Plata: Surlabs Project, 2nd. Southern Conference on Programmable Logic, 2006.
 
\bibitem{s3proto-mini}
S.~Tropea, D.~Brengi, M.~Visentin, C.~Huy and R.~Melo, \emph{S3Proto-mini: Tarjeta de Hardware Libre con FPGA de encapsulado BGA}, XVIII Workshop Iberchip 2012. Playa del Carmen, México. February 29. 2012.
 
\bibitem{Power-Supply-Soluc-4-Xilinx-FPGAs}
D.~Canny, \emph{Power-Supply Solutions for Xilinx FPGAs}, Maxim Integrated TM. (Application Notes). April 24, 2012.
 
\bibitem{s3power-paper}
C.Huy and D.~Brengi, \emph{Módulo de alimentación para placas con dispositivos FPGA}, Congreso de Microelectrónica Aplicada ($\mu$EA2010). San Justo, Buenos Aires. 2010.
 
\bibitem{AN-135-MPSSE-Basic}
Future Technology Devices International Ltd., \emph{FTDI MPSSE Basics}, (Application Notes). Document Reference No.:FT\_000208, AN\_135. December 2010.
 
\end{thebibliography}
 
% that's all folks
\end{document}
 
 
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.