URL
https://opencores.org/ocsvn/pit/pit/trunk
Subversion Repositories pit
[/] [pit/] [trunk/] [bench/] [verilog/] [tst_bench_top.v] - Rev 12
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // WISHBONE revB.2 compliant Programable Interval Timer - Test Bench // // Author: Bob Hayes // rehayes@opencores.org // // Downloaded from: http://www.opencores.org/projects/pit..... // //////////////////////////////////////////////////////////////////////////////// // Copyright (c) 2009, Robert Hayes // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of the <organization> nor the // names of its contributors may be used to endorse or promote products // derived from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY Robert Hayes ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL Robert Hayes BE LIABLE FOR ANY // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. //////////////////////////////////////////////////////////////////////////////// // 45678901234567890123456789012345678901234567890123456789012345678901234567890 `include "timescale.v" module tst_bench_top(); // // wires && regs // reg mstr_test_clk; reg [19:0] vector; reg [ 7:0] test_num; reg rstn; reg sync_reset; wire [31:0] adr; wire [15:0] dat_i, dat_o, dat0_i, dat1_i, dat2_i, dat3_i; wire we; wire stb; wire cyc; wire ack, ack_1, ack_2, ack_3, ack_4; wire inta_1, inta_2, inta_3, inta_4; wire count_en_1; wire count_flag_1; reg [15:0] q, qq; wire scl, scl0_o, scl0_oen, scl1_o, scl1_oen; wire sda, sda0_o, sda0_oen, sda1_o, sda1_oen; // Name Address Locations parameter PIT_CNTRL = 5'b0_0000; parameter PIT_MOD = 5'b0_0001; parameter PIT_COUNT = 5'b0_0010; parameter RD = 1'b1; parameter WR = 1'b0; parameter SADR = 7'b0010_000; parameter CTR_EN = 8'b1000_0000; // core enable bit parameter CTR_IEN = 8'b0100_0000; // core interrupt enable bit parameter PIT_CNTRL_SLAVE = 16'h8000; // PIT Slave mode parameter PIT_CNTRL_FLAG = 16'h0004; // PIT Rollover Flag parameter PIT_CNTRL_IRQEN = 16'h0002; // PIT Interupt Enable parameter PIT_CNTRL_ENA = 16'h0001; // PIT Enable parameter SLAVE_0_CNTRL = 5'b0_1000; parameter SLAVE_0_MOD = 5'b0_1001; parameter SLAVE_0_COUNT = 5'b0_1010; parameter SLAVE_1_CNTRL = 5'b1_0000; parameter SLAVE_1_MOD = 5'b1_0001; parameter SLAVE_1_COUNT = 5'b1_0010; parameter SLAVE_2_CNTRL_0 = 5'b1_1000; parameter SLAVE_2_CNTRL_1 = 5'b1_1001; parameter SLAVE_2_MOD_0 = 5'b1_1010; parameter SLAVE_2_MOD_1 = 5'b1_1011; parameter SLAVE_2_COUNT_0 = 5'b1_1100; parameter SLAVE_2_COUNT_1 = 5'b1_1101; // initial values and testbench setup initial begin mstr_test_clk = 0; vector = 0; test_num = 0; `ifdef WAVES $shm_open("waves"); $shm_probe("AS",tst_bench_top,"AS"); $display("\nINFO: Signal dump enabled ...\n\n"); `endif `ifdef WAVES_V $dumpfile ("pit_wave_dump.lxt"); $dumpvars (0, tst_bench_top); $dumpon; $display("\nINFO: VCD Signal dump enabled ...\n\n"); `endif end // generate clock always #20 mstr_test_clk = ~mstr_test_clk; always @(posedge mstr_test_clk) vector = vector + 1; // hookup wishbone master model wb_master_model #(.dwidth(16), .awidth(32)) u0 ( .clk(mstr_test_clk), .rst(rstn), .adr(adr), .din(dat_i), .dout(dat_o), .cyc(cyc), .stb(stb), .we(we), .sel(), .ack(ack), .err(1'b0), .rty(1'b0) ); // Address decoding for different PIT module instances wire stb0 = stb && ~adr[4] && ~adr[3]; wire stb1 = stb && ~adr[4] && adr[3]; wire stb2 = stb && adr[4] && ~adr[3]; wire stb3 = stb && adr[4] && adr[3]; // Create the Read Data Bus assign dat_i = ({16{stb0}} & dat0_i) | ({16{stb1}} & dat1_i) | ({16{stb2}} & dat2_i) | ({16{stb3}} & {8'b0, dat3_i[7:0]}); assign ack = ack_1 || ack_2 || ack_3 || ack_4; // hookup wishbone_PIT_master core - Parameters take all default values // Async Reset, 16 bit Bus, 16 bit Granularity pit_top pit_1( // wishbone interface .wb_clk_i(mstr_test_clk), .wb_rst_i(1'b0), .arst_i(rstn), .wb_adr_i(adr[2:0]), .wb_dat_i(dat_o), .wb_dat_o(dat0_i), .wb_we_i(we), .wb_stb_i(stb0), .wb_cyc_i(cyc), .wb_sel_i( 2'b11 ), .wb_ack_o(ack_1), .pit_irq_o(inta_1), .pit_o(pit_1_out), .ext_sync_i(1'b0), .cnt_sync_o(count_en_1), .cnt_flag_o(count_flag_1) ); // hookup wishbone_PIT_slave core - Parameters take all default values // Sync Reset, 16 bit Bus, 16 bit Granularity pit_top #(.ARST_LVL(1'b1)) pit_2( // wishbone interface .wb_clk_i(mstr_test_clk), .wb_rst_i(sync_reset), .arst_i(1'b0), .wb_adr_i(adr[2:0]), .wb_dat_i(dat_o), .wb_dat_o(dat1_i), .wb_we_i(we), .wb_stb_i(stb1), .wb_cyc_i(cyc), .wb_sel_i( 2'b11 ), .wb_ack_o(ack_2), .pit_irq_o(inta_2), .pit_o(pit_2_out), .ext_sync_i(count_en_1), .cnt_sync_o(count_en_2), .cnt_flag_o(count_flag_2) ); // hookup wishbone_PIT_slave core // 16 bit Bus, 16 bit Granularity pit_top #(.NO_PRESCALE(1'b1)) pit_3( // wishbone interface .wb_clk_i(mstr_test_clk), .wb_rst_i(sync_reset), .arst_i(1'b1), .wb_adr_i(adr[2:0]), .wb_dat_i(dat_o), .wb_dat_o(dat2_i), .wb_we_i(we), .wb_stb_i(stb2), .wb_cyc_i(cyc), .wb_sel_i( 2'b11 ), .wb_ack_o(ack_3), .pit_irq_o(inta_3), .pit_o(pit_3_out), .ext_sync_i(count_en_1), .cnt_sync_o(count_en_3), .cnt_flag_o(count_flag_3) ); // hookup wishbone_PIT_slave core // 8 bit Bus, 8 bit Granularity pit_top #(.DWIDTH(8)) pit_4( // wishbone interface .wb_clk_i(mstr_test_clk), .wb_rst_i(sync_reset), .arst_i(1'b1), .wb_adr_i(adr[2:0]), .wb_dat_i(dat_o[7:0]), .wb_dat_o(dat3_i[7:0]), .wb_we_i(we), .wb_stb_i(stb3), .wb_cyc_i(cyc), .wb_sel_i( 2'b11 ), .wb_ack_o(ack_4), .pit_irq_o(inta_4), .pit_o(pit_4_out), .ext_sync_i(count_en_1), .cnt_sync_o(count_en_4), .cnt_flag_o(count_flag_4) ); // Test Program initial begin $display("\nstatus: %t Testbench started", $time); // reset system rstn = 1'b1; // negate reset repeat(1) @(posedge mstr_test_clk); sync_reset = 1'b1; // Make the sync reset 1 clock cycle long #2; // move the async reset away from the clock edge rstn = 1'b0; // assert async reset #5; // Keep the async reset pulse with less than a clock cycle rstn = 1'b1; // negate async reset repeat(1) @(posedge mstr_test_clk); sync_reset = 1'b0; $display("\nstatus: %t done reset", $time); test_num = test_num + 1; repeat(2) @(posedge mstr_test_clk); // // program core // reg_test_16; reg_test_8; u0.wb_write(1, SLAVE_0_CNTRL, PIT_CNTRL_SLAVE); // Enable Slave Mode u0.wb_write(1, SLAVE_1_CNTRL, PIT_CNTRL_SLAVE); // Enable Slave Mode u0.wb_write(1, SLAVE_2_CNTRL_1, 16'h0080); // Enable Slave Mode u0.wb_write(1, SLAVE_0_MOD, 16'h000a); // load Modulo u0.wb_write(1, SLAVE_1_MOD, 16'h0010); // load Modulo u0.wb_write(1, SLAVE_2_MOD_0, 16'h0010); // load Modulo // Set Master Mode PS=0, Modulo=16 test_num = test_num + 1; $display("TEST #%d Starts at vector=%d, ms_test", test_num, vector); u0.wb_write(1, PIT_MOD, 16'h0010); // load prescaler hi-byte u0.wb_write(1, PIT_CNTRL, PIT_CNTRL_ENA); // Enable to start counting $display("status: %t programmed registers", $time); wait_flag_set; // Wait for Counter to tomeout u0.wb_write(1, PIT_CNTRL, PIT_CNTRL_FLAG | PIT_CNTRL_ENA); // wait_flag_set; // Wait for Counter to tomeout u0.wb_write(1, PIT_CNTRL, PIT_CNTRL_FLAG | PIT_CNTRL_ENA); // repeat(10) @(posedge mstr_test_clk); u0.wb_write(1, PIT_CNTRL, 16'b0); // repeat(10) @(posedge mstr_test_clk); mstr_psx_modx(2,4); mstr_psx_modx(4,0); repeat(100) @(posedge mstr_test_clk); $display("\nTestbench done at vector=%d\n", vector); $finish; end // Poll for flag set task wait_flag_set; begin u0.wb_read(1, PIT_CNTRL, q); while(~|(q & PIT_CNTRL_FLAG)) u0.wb_read(1, PIT_CNTRL, q); // poll it until it is set $display("PIT Flag set detected at vector =%d", vector); end endtask // check register bits - reset, read/write task reg_test_16; begin test_num = test_num + 1; $display("TEST #%d Starts at vector=%d, reg_test_16", test_num, vector); u0.wb_cmp(0, PIT_CNTRL, 16'h4000); // verify reset u0.wb_cmp(0, PIT_MOD, 16'h0000); // verify reset u0.wb_cmp(0, PIT_COUNT, 16'h0001); // verify reset u0.wb_write(1, PIT_CNTRL, 16'hfffe); // load prescaler lo-byte u0.wb_cmp( 0, PIT_CNTRL, 16'hCf02); // verify write data u0.wb_write(1, PIT_CNTRL, 16'h0000); // load prescaler lo-byte u0.wb_cmp( 0, PIT_CNTRL, 16'h4000); // verify write data u0.wb_write(1, PIT_MOD, 16'h5555); // load prescaler lo-byte u0.wb_cmp( 0, PIT_MOD, 16'h5555); // verify write data u0.wb_write(1, PIT_MOD, 16'haaaa); // load prescaler lo-byte u0.wb_cmp( 0, PIT_MOD, 16'haaaa); // verify write data u0.wb_write(0, PIT_COUNT, 16'hfffe); u0.wb_cmp( 0, PIT_COUNT, 16'h0001); // verify register not writable end endtask task reg_test_8; begin test_num = test_num + 1; $display("TEST #%d Starts at vector=%d, reg_test_8", test_num, vector); u0.wb_cmp(0, SLAVE_2_CNTRL_0, 16'h0000); // verify reset u0.wb_cmp(0, SLAVE_2_CNTRL_1, 16'h0040); // verify reset u0.wb_cmp(0, SLAVE_2_MOD_0, 16'h0000); // verify reset u0.wb_cmp(0, SLAVE_2_MOD_1, 16'h0000); // verify reset u0.wb_cmp(0, SLAVE_2_COUNT_0, 16'h0001); // verify reset u0.wb_cmp(0, SLAVE_2_COUNT_1, 16'h0000); // verify reset u0.wb_write(1, SLAVE_2_CNTRL_0, 16'hfffe); // load prescaler lo-byte u0.wb_cmp( 0, SLAVE_2_CNTRL_0, 16'h0002); // verify write data u0.wb_write(1, SLAVE_2_CNTRL_0, 16'h0000); // load prescaler lo-byte u0.wb_cmp( 0, SLAVE_2_CNTRL_0, 16'h0000); // verify write data u0.wb_cmp( 0, SLAVE_2_CNTRL_1, 16'h0040); // verify write data u0.wb_write(1, SLAVE_2_MOD_0, 16'hff55); // load prescaler lo-byte u0.wb_cmp( 0, SLAVE_2_MOD_0, 16'h0055); // verify write data u0.wb_write(1, SLAVE_2_MOD_0, 16'hffaa); // load prescaler lo-byte u0.wb_cmp( 0, SLAVE_2_MOD_0, 16'h00aa); // verify write data u0.wb_write(1, SLAVE_2_MOD_1, 16'hff66); // load prescaler lo-byte u0.wb_cmp( 0, SLAVE_2_MOD_1, 16'h0066); // verify write data u0.wb_write(1, SLAVE_2_MOD_1, 16'hff99); // load prescaler lo-byte u0.wb_cmp( 0, SLAVE_2_MOD_1, 16'h0099); // verify write data u0.wb_write(1, SLAVE_2_MOD_1, 16'hff00); // load prescaler lo-byte u0.wb_write(0, SLAVE_2_COUNT_0, 16'hfffe); u0.wb_cmp( 0, SLAVE_2_COUNT_0, 16'h0001); // verify register not writable u0.wb_write(0, SLAVE_2_COUNT_1, 16'hfffe); u0.wb_cmp( 0, SLAVE_2_COUNT_1, 16'h0000); // verify register not writable end endtask task mstr_psx_modx; input [ 3:0] ps_val; input [15:0] mod_val; reg [15:0] cntrl_val; begin test_num = test_num + 1; $display("TEST #%d Starts at vector=%d, mstr_psx_modx Pre=%h, Mod=%h", test_num, vector, ps_val, mod_val); // program internal registers cntrl_val = {1'b0, 3'b0, ps_val, 8'b0} | PIT_CNTRL_IRQEN; u0.wb_write(1, PIT_MOD, mod_val); // load modulo u0.wb_write(1, PIT_CNTRL, ( cntrl_val | PIT_CNTRL_ENA)); // Enable to start counting wait_flag_set; // Wait for Counter to timeout u0.wb_write(1, PIT_CNTRL, cntrl_val | PIT_CNTRL_FLAG | PIT_CNTRL_ENA); // wait_flag_set; // Wait for Counter to timeout u0.wb_write(1, PIT_CNTRL, cntrl_val | PIT_CNTRL_FLAG | PIT_CNTRL_ENA); // repeat(10) @(posedge mstr_test_clk); u0.wb_write(1, PIT_CNTRL, 16'b0); // end endtask endmodule // tst_bench_top
Go to most recent revision | Compare with Previous | Blame | View Log