OpenCores
URL https://opencores.org/ocsvn/pit/pit/trunk

Subversion Repositories pit

[/] [pit/] [trunk/] [bench/] [verilog/] [tst_bench_top.v] - Rev 7

Go to most recent revision | Compare with Previous | Blame | View Log

////////////////////////////////////////////////////////////////////////////////
//
//  WISHBONE revB.2 compliant Programable Interval Timer - Test Bench
//
//  Author: Bob Hayes
//          rehayes@opencores.org
//
//  Downloaded from: http://www.opencores.org/projects/pit.....
//
////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2009, Robert Hayes
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above copyright
//       notice, this list of conditions and the following disclaimer in the
//       documentation and/or other materials provided with the distribution.
//     * Neither the name of the <organization> nor the
//       names of its contributors may be used to endorse or promote products
//       derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY Robert Hayes ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL Robert Hayes BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
////////////////////////////////////////////////////////////////////////////////
// 45678901234567890123456789012345678901234567890123456789012345678901234567890
 
 
`include "timescale.v"
 
module tst_bench_top();
 
        //
        // wires && regs
        //
        reg        mstr_test_clk;
        reg [19:0] vector;
	reg [ 7:0] test_num;
        reg        rstn;
	reg        sync_reset;
 
        wire [31:0] adr;
        wire [15:0] dat_i, dat_o, dat0_i, dat1_i, dat2_i, dat3_i;
        wire we;
        wire stb;
        wire cyc;
        wire ack;
        wire inta_1, inta_2, inta_3, inta_4;
	wire count_en_1;
	wire count_flag_1;
 
        reg [15:0] q, qq;
 
        wire scl, scl0_o, scl0_oen, scl1_o, scl1_oen;
        wire sda, sda0_o, sda0_oen, sda1_o, sda1_oen;
 
        // Name Address Locations
        parameter PIT_CNTRL = 5'b0_0000;
        parameter PIT_MOD   = 5'b0_0001;
        parameter PIT_COUNT = 5'b0_0010;
 
        parameter RD      = 1'b1;
        parameter WR      = 1'b0;
        parameter SADR    = 7'b0010_000;
 
	parameter CTR_EN  = 8'b1000_0000;  // core enable bit
	parameter CTR_IEN = 8'b0100_0000;  // core interrupt enable bit
 
	parameter PIT_CNTRL_SLAVE  = 16'h8000;  // PIT Slave mode
	parameter PIT_CNTRL_FLAG   = 16'h0004;  // PIT Rollover Flag
	parameter PIT_CNTRL_IRQEN  = 16'h0002;  // PIT Interupt Enable
	parameter PIT_CNTRL_ENA    = 16'h0001;  // PIT Enable
 
        parameter SLAVE_0_CNTRL = 5'b0_1000;
        parameter SLAVE_0_MOD   = 5'b0_1001;
        parameter SLAVE_0_COUNT = 5'b0_1010;
 
        parameter SLAVE_1_CNTRL = 5'b1_0000;
        parameter SLAVE_1_MOD   = 5'b1_0001;
        parameter SLAVE_1_COUNT = 5'b1_0010;
 
        parameter SLAVE_2_CNTRL_0 = 5'b1_1000;
        parameter SLAVE_2_CNTRL_1 = 5'b1_1001;
        parameter SLAVE_2_MOD_0   = 5'b1_1010;
        parameter SLAVE_2_MOD_1   = 5'b1_1011;
        parameter SLAVE_2_COUNT_0 = 5'b1_1100;
        parameter SLAVE_2_COUNT_1 = 5'b1_1101;
 
        // initial values and testbench setup
        initial
          begin
            mstr_test_clk = 0;
            vector = 0;
	    test_num = 0;
 
            `ifdef WAVES
                 $shm_open("waves");
                 $shm_probe("AS",tst_bench_top,"AS");
                 $display("\nINFO: Signal dump enabled ...\n\n");
              `endif
 
              `ifdef WAVES_V
                 $dumpfile ("pit_wave_dump.lxt");
                 $dumpvars (0, tst_bench_top);
                 $dumpon;
                 $display("\nINFO: VCD Signal dump enabled ...\n\n");
              `endif
 
          end
 
        // generate clock
        always #20 mstr_test_clk = ~mstr_test_clk;
 
        always @(posedge mstr_test_clk)
          vector = vector + 1;
 
	// hookup wishbone master model
        wb_master_model #(.dwidth(16), .awidth(32))
	        u0 (
                .clk(mstr_test_clk),
                .rst(rstn),
                .adr(adr),
                .din(dat_i),
                .dout(dat_o),
                .cyc(cyc),
                .stb(stb),
                .we(we),
                .sel(),
                .ack(ack),
                .err(1'b0),
                .rty(1'b0)
        );
 
 
        // Address decoding for different PIT module instances
        wire stb0 = stb && ~adr[4] && ~adr[3];
        wire stb1 = stb && ~adr[4] &&  adr[3];
        wire stb2 = stb &&  adr[4] && ~adr[3];
        wire stb3 = stb &&  adr[4] &&  adr[3];
 
        // Create the Read Data Bus
        assign dat_i = ({16{stb0}} & dat0_i) |
	               ({16{stb1}} & dat1_i) |
		       ({16{stb2}} & dat2_i) |
		       ({16{stb3}} & {8'b0, dat3_i[7:0]});
 
        // hookup wishbone_PIT_master core - Parameters take all default values
	//  Async Reset, 16 bit Bus, 16 bit Granularity
        pit_top pit_1(
                // wishbone interface
                .wb_clk_i(mstr_test_clk),
                .wb_rst_i(1'b0),
                .arst_i(rstn),
                .wb_adr_i(adr[2:0]),
                .wb_dat_i(dat_o),
                .wb_dat_o(dat0_i),
                .wb_we_i(we),
                .wb_stb_i(stb0),
                .wb_cyc_i(cyc),
		.wb_sel_i( 2'b11 ),
                .wb_ack_o(ack),
                .pit_irq_o(inta_1),
 
                .pit_o(pit_1_out),
                .ext_sync_i(1'b0),
		.cnt_sync_o(count_en_1),
                .cnt_flag_o(count_flag_1)
        );
 
        // hookup wishbone_PIT_slave core - Parameters take all default values
	//  Sync Reset, 16 bit Bus, 16 bit Granularity
        pit_top #(.ARST_LVL(1'b1))
		pit_2(
                // wishbone interface
                .wb_clk_i(mstr_test_clk),
                .wb_rst_i(sync_reset),
                .arst_i(1'b0),
                .wb_adr_i(adr[2:0]),
                .wb_dat_i(dat_o),
                .wb_dat_o(dat1_i),
                .wb_we_i(we),
                .wb_stb_i(stb1),
                .wb_cyc_i(cyc),
		.wb_sel_i( 2'b11 ),
                .wb_ack_o(ack),
                .pit_irq_o(inta_2),
 
                .pit_o(pit_2_out),
                .ext_sync_i(count_en_1),
		.cnt_sync_o(count_en_2),
                .cnt_flag_o(count_flag_2)
        );
 
        // hookup wishbone_PIT_slave core
	//  16 bit Bus, 16 bit Granularity
        pit_top #(.NO_PRESCALE(1'b1))
		pit_3(
                // wishbone interface
                .wb_clk_i(mstr_test_clk),
                .wb_rst_i(sync_reset),
                .arst_i(1'b1),
                .wb_adr_i(adr[2:0]),
                .wb_dat_i(dat_o),
                .wb_dat_o(dat2_i),
                .wb_we_i(we),
                .wb_stb_i(stb2),
                .wb_cyc_i(cyc),
		.wb_sel_i( 2'b11 ),
                .wb_ack_o(ack),
                .pit_irq_o(inta_3),
 
                .pit_o(pit_3_out),
                .ext_sync_i(count_en_1),
		.cnt_sync_o(count_en_3),
                .cnt_flag_o(count_flag_3)
        );
 
        // hookup wishbone_PIT_slave core
	//  8 bit Bus, 8 bit Granularity
        pit_top #(.DWIDTH(8))
		pit_4(
                // wishbone interface
                .wb_clk_i(mstr_test_clk),
                .wb_rst_i(sync_reset),
                .arst_i(1'b1),
                .wb_adr_i(adr[2:0]),
                .wb_dat_i(dat_o[7:0]),
                .wb_dat_o(dat3_i[7:0]),
                .wb_we_i(we),
                .wb_stb_i(stb3),
                .wb_cyc_i(cyc),
		.wb_sel_i( 2'b11 ),
                .wb_ack_o(ack),
                .pit_irq_o(inta_4),
 
                .pit_o(pit_4_out),
                .ext_sync_i(count_en_1),
		.cnt_sync_o(count_en_4),
                .cnt_flag_o(count_flag_4)
        );
 
// Test Program
initial
  begin
      $display("\nstatus: %t Testbench started", $time);
 
      // reset system
      rstn = 1'b1; // negate reset
      repeat(1) @(posedge mstr_test_clk);
      sync_reset = 1'b1;  // Make the sync reset 1 clock cycle long
      #2;          // move the async reset away from the clock edge
      rstn = 1'b0; // assert async reset
      #5;          // Keep the async reset pulse with less than a clock cycle
      rstn = 1'b1; // negate async reset
      repeat(1) @(posedge mstr_test_clk);
      sync_reset = 1'b0;
 
      $display("\nstatus: %t done reset", $time);
      test_num = test_num + 1;
 
      repeat(2) @(posedge mstr_test_clk);
 
      //
      // program core
      //
 
      reg_test_16;
 
      reg_test_8;
 
      u0.wb_write(1, SLAVE_0_CNTRL,   PIT_CNTRL_SLAVE); // Enable Slave Mode
      u0.wb_write(1, SLAVE_1_CNTRL,   PIT_CNTRL_SLAVE); // Enable Slave Mode
      u0.wb_write(1, SLAVE_2_CNTRL_1, 16'h0080); // Enable Slave Mode
      u0.wb_write(1, SLAVE_0_MOD,     16'h000a); // load Modulo
      u0.wb_write(1, SLAVE_1_MOD,     16'h0010); // load Modulo
      u0.wb_write(1, SLAVE_2_MOD_0,   16'h0010); // load Modulo
 
      // Set Master Mode PS=0, Modulo=16
      test_num = test_num + 1;
      $display("TEST #%d Starts at vector=%d, ms_test", test_num, vector);
 
      u0.wb_write(1, PIT_MOD,   16'h0010); // load prescaler hi-byte
      u0.wb_write(1, PIT_CNTRL, PIT_CNTRL_ENA); // Enable to start counting
      $display("status: %t programmed registers", $time);
 
      wait_flag_set;  // Wait for Counter to tomeout
      u0.wb_write(1, PIT_CNTRL, PIT_CNTRL_FLAG | PIT_CNTRL_ENA); //
 
      wait_flag_set;  // Wait for Counter to tomeout
      u0.wb_write(1, PIT_CNTRL, PIT_CNTRL_FLAG | PIT_CNTRL_ENA); //
 
      repeat(10) @(posedge mstr_test_clk);
      u0.wb_write(1, PIT_CNTRL, 16'b0); //
 
      repeat(10) @(posedge mstr_test_clk);
 
      mstr_psx_modx(2,4);
 
      mstr_psx_modx(4,0);
 
      repeat(100) @(posedge mstr_test_clk);
      $display("\nTestbench done at vector=%d\n", vector);
      $finish;
  end
 
// Poll for flag set
task wait_flag_set;
  begin
    u0.wb_read(1, PIT_CNTRL, q);
    while(~|(q & PIT_CNTRL_FLAG))
      u0.wb_read(1, PIT_CNTRL, q); // poll it until it is set
    $display("PIT Flag set detected at vector =%d", vector);
  end
endtask
 
// check register bits - reset, read/write
task reg_test_16;
  begin
      test_num = test_num + 1;
      $display("TEST #%d Starts at vector=%d, reg_test_16", test_num, vector);
      u0.wb_cmp(0, PIT_CNTRL, 16'h4000);   // verify reset
      u0.wb_cmp(0, PIT_MOD,   16'h0000);   // verify reset
      u0.wb_cmp(0, PIT_COUNT, 16'h0001);   // verify reset
 
      u0.wb_write(1, PIT_CNTRL, 16'hfffe); // load prescaler lo-byte
      u0.wb_cmp(  0, PIT_CNTRL, 16'hCf02); // verify write data
      u0.wb_write(1, PIT_CNTRL, 16'h0000); // load prescaler lo-byte
      u0.wb_cmp(  0, PIT_CNTRL, 16'h4000); // verify write data
 
      u0.wb_write(1, PIT_MOD, 16'h5555); // load prescaler lo-byte
      u0.wb_cmp(  0, PIT_MOD, 16'h5555); // verify write data
      u0.wb_write(1, PIT_MOD, 16'haaaa); // load prescaler lo-byte
      u0.wb_cmp(  0, PIT_MOD, 16'haaaa); // verify write data
 
      u0.wb_write(0, PIT_COUNT, 16'hfffe);
      u0.wb_cmp(  0, PIT_COUNT, 16'h0001); // verify register not writable
  end
endtask
 
task reg_test_8;
  begin
      test_num = test_num + 1;
      $display("TEST #%d Starts at vector=%d, reg_test_8", test_num, vector);
      u0.wb_cmp(0, SLAVE_2_CNTRL_0, 16'h0000);   // verify reset
      u0.wb_cmp(0, SLAVE_2_CNTRL_1, 16'h0040);   // verify reset
      u0.wb_cmp(0, SLAVE_2_MOD_0,   16'h0000);   // verify reset
      u0.wb_cmp(0, SLAVE_2_MOD_1,   16'h0000);   // verify reset
      u0.wb_cmp(0, SLAVE_2_COUNT_0, 16'h0001);   // verify reset
      u0.wb_cmp(0, SLAVE_2_COUNT_1, 16'h0000);   // verify reset
 
      u0.wb_write(1, SLAVE_2_CNTRL_0, 16'hfffe); // load prescaler lo-byte
      u0.wb_cmp(  0, SLAVE_2_CNTRL_0, 16'h0002); // verify write data
      u0.wb_write(1, SLAVE_2_CNTRL_0, 16'h0000); // load prescaler lo-byte
      u0.wb_cmp(  0, SLAVE_2_CNTRL_0, 16'h0000); // verify write data
      u0.wb_cmp(  0, SLAVE_2_CNTRL_1, 16'h0040); // verify write data
 
      u0.wb_write(1, SLAVE_2_MOD_0, 16'hff55); // load prescaler lo-byte
      u0.wb_cmp(  0, SLAVE_2_MOD_0, 16'h0055); // verify write data
      u0.wb_write(1, SLAVE_2_MOD_0, 16'hffaa); // load prescaler lo-byte
      u0.wb_cmp(  0, SLAVE_2_MOD_0, 16'h00aa); // verify write data
      u0.wb_write(1, SLAVE_2_MOD_1, 16'hff66); // load prescaler lo-byte
      u0.wb_cmp(  0, SLAVE_2_MOD_1, 16'h0066); // verify write data
      u0.wb_write(1, SLAVE_2_MOD_1, 16'hff99); // load prescaler lo-byte
      u0.wb_cmp(  0, SLAVE_2_MOD_1, 16'h0099); // verify write data
      u0.wb_write(1, SLAVE_2_MOD_1, 16'hff00); // load prescaler lo-byte
 
      u0.wb_write(0, SLAVE_2_COUNT_0, 16'hfffe);
      u0.wb_cmp(  0, SLAVE_2_COUNT_0, 16'h0001); // verify register not writable
      u0.wb_write(0, SLAVE_2_COUNT_1, 16'hfffe);
      u0.wb_cmp(  0, SLAVE_2_COUNT_1, 16'h0000); // verify register not writable
  end
endtask
 
task mstr_psx_modx;
  input	[ 3:0] ps_val;
  input	[15:0] mod_val;
  reg   [15:0] cntrl_val;
  begin
      test_num = test_num + 1;
      $display("TEST #%d Starts at vector=%d, mstr_psx_modx Pre=%h, Mod=%h",
                test_num, vector, ps_val, mod_val);
      // program internal registers
 
      cntrl_val = {1'b0, 3'b0, ps_val, 8'b0} | PIT_CNTRL_IRQEN;
      u0.wb_write(1, PIT_MOD,   mod_val); // load modulo
      u0.wb_write(1, PIT_CNTRL, ( cntrl_val | PIT_CNTRL_ENA)); // Enable to start counting
 
      wait_flag_set;  // Wait for Counter to timeout
      u0.wb_write(1, PIT_CNTRL, cntrl_val | PIT_CNTRL_FLAG | PIT_CNTRL_ENA); //
 
      wait_flag_set;  // Wait for Counter to timeout
      u0.wb_write(1, PIT_CNTRL, cntrl_val | PIT_CNTRL_FLAG | PIT_CNTRL_ENA); //
 
      repeat(10) @(posedge mstr_test_clk);
 
      u0.wb_write(1, PIT_CNTRL, 16'b0); //
 
   end
endtask
 
 
endmodule  // tst_bench_top
 
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.