OpenCores
URL https://opencores.org/ocsvn/plasma/plasma/trunk

Subversion Repositories plasma

[/] [plasma/] [trunk/] [vhdl/] [mlite_cpu.vhd] - Rev 359

Go to most recent revision | Compare with Previous | Blame | View Log

---------------------------------------------------------------------
-- TITLE: Plasma CPU core
-- AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
-- DATE CREATED: 2/15/01
-- FILENAME: mlite_cpu.vhd
-- PROJECT: Plasma CPU core
-- COPYRIGHT: Software placed into the public domain by the author.
--    Software 'as is' without warranty.  Author liable for nothing.
-- NOTE:  MIPS(tm) and MIPS I(tm) are registered trademarks of MIPS 
--    Technologies.  MIPS Technologies does not endorse and is not 
--    associated with this project.
-- DESCRIPTION:
--    Top level VHDL document that ties the nine other entities together.
--
-- Executes all MIPS I(tm) opcodes but exceptions and non-aligned
-- memory accesses.  Based on information found in:
--    "MIPS RISC Architecture" by Gerry Kane and Joe Heinrich
--    and "The Designer's Guide to VHDL" by Peter J. Ashenden
--
-- The CPU is implemented as a two or three stage pipeline.
-- An add instruction would take the following steps (see cpu.gif):
-- Stage #0:
--    1.  The "pc_next" entity passes the program counter (PC) to the 
--        "mem_ctrl" entity which fetches the opcode from memory.
-- Stage #1:
--    2.  The memory returns the opcode.
-- Stage #2:
--    3.  "Mem_ctrl" passes the opcode to the "control" entity.
--    4.  "Control" converts the 32-bit opcode to a 60-bit VLWI opcode
--        and sends control signals to the other entities.
--    5.  Based on the rs_index and rt_index control signals, "reg_bank" 
--        sends the 32-bit reg_source and reg_target to "bus_mux".
--    6.  Based on the a_source and b_source control signals, "bus_mux"
--        multiplexes reg_source onto a_bus and reg_target onto b_bus.
-- Stage #3 (part of stage #2 if using two stage pipeline):
--    7.  Based on the alu_func control signals, "alu" adds the values
--        from a_bus and b_bus and places the result on c_bus.
--    8.  Based on the c_source control signals, "bus_bux" multiplexes
--        c_bus onto reg_dest.
--    9.  Based on the rd_index control signal, "reg_bank" saves
--        reg_dest into the correct register.
-- Stage #3b:
--   10.  Read or write memory if needed.
--
-- All signals are active high. 
-- Here are the signals for writing a character to address 0xffff
-- when using a two stage pipeline:
--
-- Program:
-- addr     value  opcode 
-- =============================
--   3c: 00000000  nop
--   40: 34040041  li $a0,0x41
--   44: 3405ffff  li $a1,0xffff
--   48: a0a40000  sb $a0,0($a1)
--   4c: 00000000  nop
--   50: 00000000  nop
--
--      intr_in                             mem_pause 
--  reset_in                               byte_we     Stages
--     ns         address     data_w     data_r        40 44 48 4c 50
--   3600  0  0  00000040   00000000   34040041  0  0   1  
--   3700  0  0  00000044   00000000   3405FFFF  0  0   2  1  
--   3800  0  0  00000048   00000000   A0A40000  0  0      2  1  
--   3900  0  0  0000004C   41414141   00000000  0  0         2  1
--   4000  0  0  0000FFFC   41414141   XXXXXX41  1  0         3  2  
--   4100  0  0  00000050   00000000   00000000  0  0               1
---------------------------------------------------------------------
library ieee;
use work.mlite_pack.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
 
entity mlite_cpu is
   generic(memory_type     : string  := "XILINX_16X"; --ALTERA_LPM, or DUAL_PORT_
           mult_type       : string  := "DEFAULT"; --AREA_OPTIMIZED
           shifter_type    : string  := "DEFAULT"; --AREA_OPTIMIZED
           alu_type        : string  := "DEFAULT"; --AREA_OPTIMIZED
           pipeline_stages : natural := 2); --2 or 3
   port(clk          : in std_logic;
        reset_in     : in std_logic;
        intr_in      : in std_logic;
 
        address_next : out std_logic_vector(31 downto 2); --for synch ram
        byte_we_next : out std_logic_vector(3 downto 0); 
 
        address      : out std_logic_vector(31 downto 2);
        byte_we      : out std_logic_vector(3 downto 0);
        data_w       : out std_logic_vector(31 downto 0);
        data_r       : in std_logic_vector(31 downto 0);
        mem_pause    : in std_logic);
end; --entity mlite_cpu
 
architecture logic of mlite_cpu is
   --When using a two stage pipeline "sigD <= sig".
   --When using a three stage pipeline "sigD <= sig when rising_edge(clk)",
   --  so sigD is delayed by one clock cycle.
   signal opcode         : std_logic_vector(31 downto 0);
   signal rs_index       : std_logic_vector(5 downto 0);
   signal rt_index       : std_logic_vector(5 downto 0);
   signal rd_index       : std_logic_vector(5 downto 0);
   signal rd_indexD      : std_logic_vector(5 downto 0);
   signal reg_source     : std_logic_vector(31 downto 0);
   signal reg_target     : std_logic_vector(31 downto 0);
   signal reg_dest       : std_logic_vector(31 downto 0);
   signal reg_destD      : std_logic_vector(31 downto 0);
   signal a_bus          : std_logic_vector(31 downto 0);
   signal a_busD         : std_logic_vector(31 downto 0);
   signal b_bus          : std_logic_vector(31 downto 0);
   signal b_busD         : std_logic_vector(31 downto 0);
   signal c_bus          : std_logic_vector(31 downto 0);
   signal c_alu          : std_logic_vector(31 downto 0);
   signal c_shift        : std_logic_vector(31 downto 0);
   signal c_mult         : std_logic_vector(31 downto 0);
   signal c_memory       : std_logic_vector(31 downto 0);
   signal imm            : std_logic_vector(15 downto 0);
   signal pc_future      : std_logic_vector(31 downto 2);
   signal pc_current     : std_logic_vector(31 downto 2);
   signal pc_plus4       : std_logic_vector(31 downto 2);
   signal alu_func       : alu_function_type;
   signal alu_funcD      : alu_function_type;
   signal shift_func     : shift_function_type;
   signal shift_funcD    : shift_function_type;
   signal mult_func      : mult_function_type;
   signal mult_funcD     : mult_function_type;
   signal branch_func    : branch_function_type;
   signal take_branch    : std_logic;
   signal a_source       : a_source_type;
   signal b_source       : b_source_type;
   signal c_source       : c_source_type;
   signal pc_source      : pc_source_type;
   signal mem_source     : mem_source_type;
   signal pause_mult     : std_logic;
   signal pause_ctrl     : std_logic;
   signal pause_pipeline : std_logic;
   signal pause_any      : std_logic;
   signal pause_non_ctrl : std_logic;
   signal pause_bank     : std_logic;
   signal nullify_op     : std_logic;
   signal intr_enable    : std_logic;
   signal intr_signal    : std_logic;
   signal exception_sig  : std_logic;
   signal reset_reg      : std_logic_vector(3 downto 0);
   signal reset          : std_logic;
begin  --architecture
 
   pause_any <= (mem_pause or pause_ctrl) or (pause_mult or pause_pipeline);
   pause_non_ctrl <= (mem_pause or pause_mult) or pause_pipeline;
   pause_bank <= (mem_pause or pause_ctrl or pause_mult) and not pause_pipeline;
   nullify_op <= '1' when (pc_source = FROM_LBRANCH and take_branch = '0')
                          or intr_signal = '1' or exception_sig = '1'
                          else '0';
   c_bus <= c_alu or c_shift or c_mult;
   reset <= '1' when reset_in = '1' or reset_reg /= "1111" else '0';
 
   --synchronize reset and interrupt pins
   intr_proc: process(clk, reset_in, reset_reg, intr_in, intr_enable, 
      pc_source, pc_current, pause_any)
   begin
      if reset_in = '1' then
         reset_reg <= "0000";
         intr_signal <= '0';
      elsif rising_edge(clk) then
         if reset_reg /= "1111" then
            reset_reg <= reset_reg + 1;
         end if;
 
         --don't try to interrupt a multi-cycle instruction
         if pause_any = '0' then
            if intr_in = '1' and intr_enable = '1' and 
                  pc_source = FROM_INC4 then
               --the epc will contain pc+4
               intr_signal <= '1';
            else
               intr_signal <= '0';
            end if;
         end if;
 
      end if;
   end process;
 
   u1_pc_next: pc_next PORT MAP (
        clk          => clk,
        reset_in     => reset,
        take_branch  => take_branch,
        pause_in     => pause_any,
        pc_new       => c_bus(31 downto 2),
        opcode25_0   => opcode(25 downto 0),
        pc_source    => pc_source,
        pc_future    => pc_future,
        pc_current   => pc_current,
        pc_plus4     => pc_plus4);
 
   u2_mem_ctrl: mem_ctrl 
      PORT MAP (
        clk          => clk,
        reset_in     => reset,
        pause_in     => pause_non_ctrl,
        nullify_op   => nullify_op,
        address_pc   => pc_future,
        opcode_out   => opcode,
 
        address_in   => c_bus,
        mem_source   => mem_source,
        data_write   => reg_target,
        data_read    => c_memory,
        pause_out    => pause_ctrl,
 
        address_next => address_next,
        byte_we_next => byte_we_next,
 
        address      => address,
        byte_we      => byte_we,
        data_w       => data_w,
        data_r       => data_r);
 
   u3_control: control PORT MAP (
        opcode       => opcode,
        intr_signal  => intr_signal,
        rs_index     => rs_index,
        rt_index     => rt_index,
        rd_index     => rd_index,
        imm_out      => imm,
        alu_func     => alu_func,
        shift_func   => shift_func,
        mult_func    => mult_func,
        branch_func  => branch_func,
        a_source_out => a_source,
        b_source_out => b_source,
        c_source_out => c_source,
        pc_source_out=> pc_source,
        mem_source_out=> mem_source,
        exception_out=> exception_sig);
 
   u4_reg_bank: reg_bank 
      generic map(memory_type => memory_type)
      port map (
        clk            => clk,
        reset_in       => reset,
        pause          => pause_bank,
        rs_index       => rs_index,
        rt_index       => rt_index,
        rd_index       => rd_indexD,
        reg_source_out => reg_source,
        reg_target_out => reg_target,
        reg_dest_new   => reg_destD,
        intr_enable    => intr_enable);
 
   u5_bus_mux: bus_mux port map (
        imm_in       => imm,
        reg_source   => reg_source,
        a_mux        => a_source,
        a_out        => a_bus,
 
        reg_target   => reg_target,
        b_mux        => b_source,
        b_out        => b_bus,
 
        c_bus        => c_bus,
        c_memory     => c_memory,
        c_pc         => pc_current,
        c_pc_plus4   => pc_plus4,
        c_mux        => c_source,
        reg_dest_out => reg_dest,
 
        branch_func  => branch_func,
        take_branch  => take_branch);
 
   u6_alu: alu 
      generic map (alu_type => alu_type)
      port map (
        a_in         => a_busD,
        b_in         => b_busD,
        alu_function => alu_funcD,
        c_alu        => c_alu);
 
   u7_shifter: shifter
      generic map (shifter_type => shifter_type)
      port map (
        value        => b_busD,
        shift_amount => a_busD(4 downto 0),
        shift_func   => shift_funcD,
        c_shift      => c_shift);
 
   u8_mult: mult 
      generic map (mult_type => mult_type)
      port map (
        clk       => clk,
        reset_in  => reset,
        a         => a_busD,
        b         => b_busD,
        mult_func => mult_funcD,
        c_mult    => c_mult,
        pause_out => pause_mult);
 
   pipeline2: if pipeline_stages <= 2 generate
      a_busD <= a_bus;
      b_busD <= b_bus;
      alu_funcD <= alu_func;
      shift_funcD <= shift_func;
      mult_funcD <= mult_func;
      rd_indexD <= rd_index;
      reg_destD <= reg_dest;
      pause_pipeline <= '0';
   end generate; --pipeline2
 
   pipeline3: if pipeline_stages > 2 generate
      --When operating in three stage pipeline mode, the following signals
      --are delayed by one clock cycle:  a_bus, b_bus, alu/shift/mult_func,
      --c_source, and rd_index.
   u9_pipeline: pipeline port map (
        clk            => clk,
        reset          => reset,
        a_bus          => a_bus,
        a_busD         => a_busD,
        b_bus          => b_bus,
        b_busD         => b_busD,
        alu_func       => alu_func,
        alu_funcD      => alu_funcD,
        shift_func     => shift_func,
        shift_funcD    => shift_funcD,
        mult_func      => mult_func,
        mult_funcD     => mult_funcD,
        reg_dest       => reg_dest,
        reg_destD      => reg_destD,
        rd_index       => rd_index,
        rd_indexD      => rd_indexD,
 
        rs_index       => rs_index,
        rt_index       => rt_index,
        pc_source      => pc_source,
        mem_source     => mem_source,
        a_source       => a_source,
        b_source       => b_source,
        c_source       => c_source,
        c_bus          => c_bus,
        pause_any      => pause_any,
        pause_pipeline => pause_pipeline);
 
   end generate; --pipeline3
 
end; --architecture logic
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.