URL
https://opencores.org/ocsvn/plasma/plasma/trunk
Subversion Repositories plasma
[/] [plasma/] [trunk/] [vhdl/] [mlite_pack.vhd] - Rev 132
Go to most recent revision | Compare with Previous | Blame | View Log
--------------------------------------------------------------------- -- TITLE: Plasma Misc. Package -- AUTHOR: Steve Rhoads (rhoadss@yahoo.com) -- DATE CREATED: 2/15/01 -- FILENAME: mlite_pack.vhd -- PROJECT: Plasma CPU core -- COPYRIGHT: Software placed into the public domain by the author. -- Software 'as is' without warranty. Author liable for nothing. -- DESCRIPTION: -- Data types, constants, and add functions needed for the Plasma CPU. --------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; package mlite_pack is constant ZERO : std_logic_vector(31 downto 0) := "00000000000000000000000000000000"; constant ONES : std_logic_vector(31 downto 0) := "11111111111111111111111111111111"; --make HIGH_Z equal to ZERO if compiler complains constant HIGH_Z : std_logic_vector(31 downto 0) := "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; subtype alu_function_type is std_logic_vector(3 downto 0); constant ALU_NOTHING : alu_function_type := "0000"; constant ALU_ADD : alu_function_type := "0001"; constant ALU_SUBTRACT : alu_function_type := "0010"; constant ALU_LESS_THAN : alu_function_type := "0011"; constant ALU_LESS_THAN_SIGNED : alu_function_type := "0100"; constant ALU_OR : alu_function_type := "0101"; constant ALU_AND : alu_function_type := "0110"; constant ALU_XOR : alu_function_type := "0111"; constant ALU_NOR : alu_function_type := "1000"; subtype shift_function_type is std_logic_vector(1 downto 0); constant SHIFT_NOTHING : shift_function_type := "00"; constant SHIFT_LEFT_UNSIGNED : shift_function_type := "01"; constant SHIFT_RIGHT_SIGNED : shift_function_type := "11"; constant SHIFT_RIGHT_UNSIGNED : shift_function_type := "10"; subtype mult_function_type is std_logic_vector(3 downto 0); constant MULT_NOTHING : mult_function_type := "0000"; constant MULT_READ_LO : mult_function_type := "0001"; constant MULT_READ_HI : mult_function_type := "0010"; constant MULT_WRITE_LO : mult_function_type := "0011"; constant MULT_WRITE_HI : mult_function_type := "0100"; constant MULT_MULT : mult_function_type := "0101"; constant MULT_SIGNED_MULT : mult_function_type := "0110"; constant MULT_DIVIDE : mult_function_type := "0111"; constant MULT_SIGNED_DIVIDE : mult_function_type := "1000"; subtype a_source_type is std_logic_vector(1 downto 0); constant A_FROM_REG_SOURCE : a_source_type := "00"; constant A_FROM_IMM10_6 : a_source_type := "01"; constant A_FROM_PC : a_source_type := "10"; subtype b_source_type is std_logic_vector(1 downto 0); constant B_FROM_REG_TARGET : b_source_type := "00"; constant B_FROM_IMM : b_source_type := "01"; constant B_FROM_SIGNED_IMM : b_source_type := "10"; constant B_FROM_IMMX4 : b_source_type := "11"; subtype c_source_type is std_logic_vector(2 downto 0); constant C_FROM_NULL : c_source_type := "000"; constant C_FROM_ALU : c_source_type := "001"; constant C_FROM_SHIFT : c_source_type := "001"; --same as alu constant C_FROM_MULT : c_source_type := "001"; --same as alu constant C_FROM_MEMORY : c_source_type := "010"; constant C_FROM_PC : c_source_type := "011"; constant C_FROM_PC_PLUS4 : c_source_type := "100"; constant C_FROM_IMM_SHIFT16: c_source_type := "101"; constant C_FROM_REG_SOURCEN: c_source_type := "110"; subtype pc_source_type is std_logic_vector(1 downto 0); constant FROM_INC4 : pc_source_type := "00"; constant FROM_OPCODE25_0 : pc_source_type := "01"; constant FROM_BRANCH : pc_source_type := "10"; constant FROM_LBRANCH : pc_source_type := "11"; subtype branch_function_type is std_logic_vector(2 downto 0); constant BRANCH_LTZ : branch_function_type := "000"; constant BRANCH_LEZ : branch_function_type := "001"; constant BRANCH_EQ : branch_function_type := "010"; constant BRANCH_NE : branch_function_type := "011"; constant BRANCH_GEZ : branch_function_type := "100"; constant BRANCH_GTZ : branch_function_type := "101"; constant BRANCH_YES : branch_function_type := "110"; -- mode(32=1,16=2,8=3), signed, write subtype mem_source_type is std_logic_vector(3 downto 0); constant MEM_FETCH : mem_source_type := "0000"; constant MEM_READ32 : mem_source_type := "0100"; constant MEM_WRITE32 : mem_source_type := "0101"; constant MEM_READ16 : mem_source_type := "1000"; constant MEM_READ16s : mem_source_type := "1010"; constant MEM_WRITE16 : mem_source_type := "1001"; constant MEM_READ8 : mem_source_type := "1100"; constant MEM_READ8s : mem_source_type := "1110"; constant MEM_WRITE8 : mem_source_type := "1101"; function bv_to_integer(bv: in std_logic_vector) return integer; function bv_adder(a : in std_logic_vector(32 downto 0); b : in std_logic_vector(32 downto 0); do_add: in std_logic) return std_logic_vector; function bv_adder_lookahead( a : in std_logic_vector(32 downto 0); b : in std_logic_vector(32 downto 0); do_add: in std_logic) return std_logic_vector; function bv_negate(a : in std_logic_vector) return std_logic_vector; function bv_increment(a : in std_logic_vector(31 downto 2) ) return std_logic_vector; function bv_inc6(a : in std_logic_vector ) return std_logic_vector; -- For Altera COMPONENT lpm_add_sub GENERIC ( lpm_width : NATURAL; lpm_direction : STRING := "UNUSED"; lpm_type : STRING; lpm_hint : STRING); PORT ( dataa : IN STD_LOGIC_VECTOR (lpm_width-1 DOWNTO 0); add_sub : IN STD_LOGIC ; datab : IN STD_LOGIC_VECTOR (lpm_width-1 DOWNTO 0); result : OUT STD_LOGIC_VECTOR (lpm_width-1 DOWNTO 0)); END COMPONENT; -- For Altera COMPONENT lpm_ram_dp GENERIC ( lpm_width : NATURAL; lpm_widthad : NATURAL; rden_used : STRING; intended_device_family : STRING; lpm_indata : STRING; lpm_wraddress_control : STRING; lpm_rdaddress_control : STRING; lpm_outdata : STRING; use_eab : STRING; lpm_type : STRING); PORT ( wren : IN STD_LOGIC ; wrclock : IN STD_LOGIC ; q : OUT STD_LOGIC_VECTOR (lpm_width-1 DOWNTO 0); data : IN STD_LOGIC_VECTOR (lpm_width-1 DOWNTO 0); rdaddress : IN STD_LOGIC_VECTOR (lpm_widthad-1 DOWNTO 0); wraddress : IN STD_LOGIC_VECTOR (lpm_widthad-1 DOWNTO 0)); END COMPONENT; -- For Altera component LPM_RAM_DQ generic ( LPM_WIDTH : natural; -- MUST be greater than 0 LPM_WIDTHAD : natural; -- MUST be greater than 0 LPM_NUMWORDS : natural := 0; LPM_INDATA : string := "REGISTERED"; LPM_ADDRESS_CONTROL: string := "REGISTERED"; LPM_OUTDATA : string := "REGISTERED"; LPM_FILE : string := "UNUSED"; LPM_TYPE : string := "LPM_RAM_DQ"; USE_EAB : string := "OFF"; INTENDED_DEVICE_FAMILY : string := "UNUSED"; LPM_HINT : string := "UNUSED"); port ( DATA : in std_logic_vector(LPM_WIDTH-1 downto 0); ADDRESS : in std_logic_vector(LPM_WIDTHAD-1 downto 0); INCLOCK : in std_logic := '0'; OUTCLOCK : in std_logic := '0'; WE : in std_logic; Q : out std_logic_vector(LPM_WIDTH-1 downto 0)); end component; -- For Xilinx component ramb4_s16_s16 port ( clka : in std_logic; rsta : in std_logic; addra : in std_logic_vector; dia : in std_logic_vector; ena : in std_logic; wea : in std_logic; doa : out std_logic_vector; clkb : in std_logic; rstb : in std_logic; addrb : in std_logic_vector; dib : in std_logic_vector; enb : in std_logic; web : in std_logic); end component; -- For Xilinx component reg_file_dp_ram port ( addra : IN std_logic_VECTOR(4 downto 0); addrb : IN std_logic_VECTOR(4 downto 0); clka : IN std_logic; clkb : IN std_logic; dinb : IN std_logic_VECTOR(31 downto 0); douta : OUT std_logic_VECTOR(31 downto 0); web : IN std_logic); end component; -- For Xilinx component reg_file_dp_ram_xc4000xla port ( A : IN std_logic_vector(4 DOWNTO 0); DI : IN std_logic_vector(31 DOWNTO 0); WR_EN : IN std_logic; WR_CLK : IN std_logic; DPRA : IN std_logic_vector(4 DOWNTO 0); SPO : OUT std_logic_vector(31 DOWNTO 0); DPO : OUT std_logic_vector(31 DOWNTO 0)); end component; component pc_next port(clk : in std_logic; reset_in : in std_logic; pc_new : in std_logic_vector(31 downto 2); take_branch : in std_logic; pause_in : in std_logic; opcode25_0 : in std_logic_vector(25 downto 0); pc_source : in pc_source_type; pc_out : out std_logic_vector(31 downto 0); pc_out_plus4 : out std_logic_vector(31 downto 0)); end component; component mem_ctrl generic(ACCURATE_TIMING : boolean := false); port(clk : in std_logic; reset_in : in std_logic; pause_in : in std_logic; nullify_op : in std_logic; address_pc : in std_logic_vector(31 downto 0); opcode_out : out std_logic_vector(31 downto 0); address_data : in std_logic_vector(31 downto 0); mem_source : in mem_source_type; data_write : in std_logic_vector(31 downto 0); data_read : out std_logic_vector(31 downto 0); pause_out : out std_logic; mem_address : out std_logic_vector(31 downto 0); mem_data_w : out std_logic_vector(31 downto 0); mem_data_r : in std_logic_vector(31 downto 0); mem_byte_sel : out std_logic_vector(3 downto 0); mem_write : out std_logic); end component; component control port(opcode : in std_logic_vector(31 downto 0); intr_signal : in std_logic; rs_index : out std_logic_vector(5 downto 0); rt_index : out std_logic_vector(5 downto 0); rd_index : out std_logic_vector(5 downto 0); imm_out : out std_logic_vector(15 downto 0); alu_func : out alu_function_type; shift_func : out shift_function_type; mult_func : out mult_function_type; branch_func : out branch_function_type; a_source_out : out a_source_type; b_source_out : out b_source_type; c_source_out : out c_source_type; pc_source_out: out pc_source_type; mem_source_out:out mem_source_type); end component; component reg_bank generic(memory_type : string := "TRI_PORT"); port(clk : in std_logic; reset_in : in std_logic; pause : in std_logic; rs_index : in std_logic_vector(5 downto 0); rt_index : in std_logic_vector(5 downto 0); rd_index : in std_logic_vector(5 downto 0); reg_source_out : out std_logic_vector(31 downto 0); reg_target_out : out std_logic_vector(31 downto 0); reg_dest_new : in std_logic_vector(31 downto 0); intr_enable : out std_logic); end component; component bus_mux port(imm_in : in std_logic_vector(15 downto 0); reg_source : in std_logic_vector(31 downto 0); a_mux : in a_source_type; a_out : out std_logic_vector(31 downto 0); reg_target : in std_logic_vector(31 downto 0); b_mux : in b_source_type; b_out : out std_logic_vector(31 downto 0); c_bus : in std_logic_vector(31 downto 0); c_memory : in std_logic_vector(31 downto 0); c_pc : in std_logic_vector(31 downto 0); c_pc_plus4 : in std_logic_vector(31 downto 0); c_mux : in c_source_type; reg_dest_out : out std_logic_vector(31 downto 0); branch_func : in branch_function_type; take_branch : out std_logic); end component; component alu generic(adder_type : string := "DEFAULT"; alu_type : string := "DEFAULT"); port(a_in : in std_logic_vector(31 downto 0); b_in : in std_logic_vector(31 downto 0); alu_function : in alu_function_type; c_alu : out std_logic_vector(31 downto 0)); end component; component shifter generic( shifter_type : string := "DEFAULT" ); port(value : in std_logic_vector(31 downto 0); shift_amount : in std_logic_vector(4 downto 0); shift_func : in shift_function_type; c_shift : out std_logic_vector(31 downto 0)); end component; component mult generic ( adder_type : string := "DEFAULT"; mult_type : string := "DEFAULT"); port ( clk : in std_logic; reset_in : in std_logic; a, b : in std_logic_vector(31 downto 0); mult_func : in mult_function_type; c_mult : out std_logic_vector(31 downto 0); pause_out : out std_logic); end component; component pipeline port(clk : in std_logic; reset : in std_logic; a_bus : in std_logic_vector(31 downto 0); a_busD : out std_logic_vector(31 downto 0); b_bus : in std_logic_vector(31 downto 0); b_busD : out std_logic_vector(31 downto 0); alu_func : in alu_function_type; alu_funcD : out alu_function_type; shift_func : in shift_function_type; shift_funcD : out shift_function_type; mult_func : in mult_function_type; mult_funcD : out mult_function_type; reg_dest : in std_logic_vector(31 downto 0); reg_destD : out std_logic_vector(31 downto 0); rd_index : in std_logic_vector(5 downto 0); rd_indexD : out std_logic_vector(5 downto 0); rs_index : in std_logic_vector(5 downto 0); rt_index : in std_logic_vector(5 downto 0); pc_source : in pc_source_type; mem_source : in mem_source_type; a_source : in a_source_type; b_source : in b_source_type; c_source : in c_source_type; c_bus : in std_logic_vector(31 downto 0); pause_any : in std_logic; pause_pipeline : out std_logic); end component; component mlite_cpu generic(memory_type : string := "ALTERA"; mult_type : string := "DEFAULT"; shifter_type : string := "DEFAULT"; pipeline_stages : natural := 3); port(clk : in std_logic; reset_in : in std_logic; intr_in : in std_logic; mem_address : out std_logic_vector(31 downto 0); mem_data_w : out std_logic_vector(31 downto 0); mem_data_r : in std_logic_vector(31 downto 0); mem_byte_sel: out std_logic_vector(3 downto 0); mem_write : out std_logic; mem_pause : in std_logic); end component; component ram generic(memory_type : string := "DEFAULT"); port(clk : in std_logic; mem_byte_sel : in std_logic_vector(3 downto 0); mem_write : in std_logic; mem_address : in std_logic_vector(31 downto 0); mem_data_w : in std_logic_vector(31 downto 0); mem_data_r : out std_logic_vector(31 downto 0)); end component; --ram component uart generic(log_file : string := "UNUSED"); port(clk : in std_logic; reset : in std_logic; uart_sel : in std_logic; data : in std_logic_vector(7 downto 0); uart_read : in std_logic; uart_write : out std_logic; pause : out std_logic); end component; --uart component plasma generic(memory_type : string := "DEFAULT"; log_file : string := "UNUSED"); port(clk_in : in std_logic; reset_in : in std_logic; intr_in : in std_logic; uart_read : in std_logic; uart_write : out std_logic; mem_address_out : out std_logic_vector(31 downto 0); mem_data : out std_logic_vector(31 downto 0); mem_byte_sel_out : out std_logic_vector(3 downto 0); mem_write_out : out std_logic; mem_pause_in : in std_logic); end component; --plasma component plasma_if generic(memory_type : string := "ALTERA"; log_file : string := "UNUSED"); port(clk_in : in std_logic; reset_n : in std_logic; uart_read : in std_logic; uart_write : out std_logic; address : out std_logic_vector(31 downto 0); data : out std_logic_vector(31 downto 0); we_n : out std_logic; oe_n : out std_logic; be_n : out std_logic_vector(3 downto 0); sram0_cs_n : out std_logic; sram1_cs_n : out std_logic); end component; --plasma_if end; --package mlite_pack package body mlite_pack is function bv_to_integer(bv: in std_logic_vector) return integer is variable result : integer; variable b : integer; begin result := 0; b := 0; for index in bv'range loop if bv(index) = '1' then b := 1; else b := 0; end if; result := result * 2 + b; end loop; return result; end; --function bv_to_integer function bv_adder(a : in std_logic_vector(32 downto 0); b : in std_logic_vector(32 downto 0); do_add: in std_logic) return std_logic_vector is variable carry_in : std_logic; variable bb : std_logic_vector(32 downto 0); variable result : std_logic_vector(32 downto 0); begin result := '0' & ZERO; if do_add = '1' then bb := b; carry_in := '0'; else bb := not b; carry_in := '1'; end if; for index in 0 to 32 loop result(index) := a(index) xor bb(index) xor carry_in; carry_in := (carry_in and (a(index) or bb(index))) or (a(index) and bb(index)); end loop; return result; end; --function function bv_adder_lookahead( a : in std_logic_vector(32 downto 0); b : in std_logic_vector(32 downto 0); do_add: in std_logic) return std_logic_vector is variable carry : std_logic_vector(32 downto 0); variable p, g : std_logic_vector(32 downto 0); variable bb : std_logic_vector(32 downto 0); variable result : std_logic_vector(32 downto 0); variable i : natural; begin carry := '0' & ZERO; if do_add = '1' then bb := b; carry(0) := '0'; else bb := not b; carry(0) := '1'; end if; p := a or bb; --propogate g := a and bb; --generate for index in 0 to 7 loop i := index*4; carry(i+1) := g(i) or (p(i) and carry(i)); i := index*4+1; carry(i+1) := g(i) or (p(i) and g(i-1)) or ((p(i) and p(i-1)) and carry(i-1)); i := index*4+2; carry(i+1) := g(i) or (p(i) and g(i-1)) or (p(i) and p(i-1) and g(i-2)) or ((p(i) and p(i-1) and p(i-2)) and carry(i-2)); i := index*4+3; carry(i+1) := g(i) or (p(i) and g(i-1)) or (p(i) and p(i-1) and g(i-2)) or (p(i) and p(i-1) and p(i-2) and g(i-3)) or (((p(i) and p(i-1)) and (p(i-2) and p(i-3))) and carry(i-3)); end loop; result := (a xor bb) xor carry; return result; end; --function function bv_negate(a : in std_logic_vector) return std_logic_vector is variable carry_in : std_logic; variable not_a : std_logic_vector(31 downto 0); variable result : std_logic_vector(31 downto 0); begin result := ZERO; not_a := not a; carry_in := '1'; for index in a'reverse_range loop result(index) := not_a(index) xor carry_in; carry_in := carry_in and not_a(index); end loop; return result; end; --function function bv_increment(a : in std_logic_vector(31 downto 2) ) return std_logic_vector is variable carry_in : std_logic; variable result : std_logic_vector(31 downto 2); begin result := ZERO(31 downto 2); carry_in := '1'; for index in 2 to 31 loop result(index) := a(index) xor carry_in; carry_in := a(index) and carry_in; end loop; return result; end; --function function bv_inc6(a : in std_logic_vector ) return std_logic_vector is variable carry_in : std_logic; variable result : std_logic_vector(5 downto 0); begin result := "000000"; carry_in := '1'; for index in 0 to 5 loop result(index) := a(index) xor carry_in; carry_in := a(index) and carry_in; end loop; return result; end; --function end; --package body
Go to most recent revision | Compare with Previous | Blame | View Log