URL
https://opencores.org/ocsvn/qspiflash/qspiflash/trunk
Subversion Repositories qspiflash
[/] [qspiflash/] [trunk/] [rtl/] [llqspi.v] - Rev 23
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Filename: llqspi.v // // Project: A Set of Wishbone Controlled SPI Flash Controllers // // Purpose: Reads/writes a word (user selectable number of bytes) of data // to/from a Quad SPI port. The port is understood to be // a normal SPI port unless the driver requests four bit mode. // When not in use, unlike our previous SPI work, no bits will // toggle. // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2015,2017-2019, Gisselquist Technology, LLC // // This file is part of the set of Wishbone controlled SPI flash controllers // project // // The Wishbone SPI flash controller project is free software (firmware): // you can redistribute it and/or modify it under the terms of the GNU Lesser // General Public License as published by the Free Software Foundation, either // version 3 of the License, or (at your option) any later version. // // The Wishbone SPI flash controller project is distributed in the hope // that it will be useful, but WITHOUT ANY WARRANTY; without even the implied // warranty of MERCHANTIBILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. (It's in the $(ROOT)/doc directory. Run make // with no target there if the PDF file isn't present.) If not, see // <http://www.gnu.org/licenses/> for a copy. // // License: LGPL, v3, as defined and found on www.gnu.org, // http://www.gnu.org/licenses/lgpl.html // // //////////////////////////////////////////////////////////////////////////////// // // `default_nettype none // `define QSPI_IDLE 3'h0 `define QSPI_START 3'h1 `define QSPI_BITS 3'h2 `define QSPI_READY 3'h3 `define QSPI_HOLDING 3'h4 `define QSPI_STOP 3'h5 `define QSPI_STOP_B 3'h6 // Modes `define QSPI_MOD_SPI 2'b00 `define QSPI_MOD_QOUT 2'b10 `define QSPI_MOD_QIN 2'b11 // Which level of formal proofs will we be doing? As a component, or a // top-level? `ifdef LLQSPI_TOP `define ASSUME assume `else `define ASSUME assert `endif // module llqspi(i_clk, // Module interface i_wr, i_hold, i_word, i_len, i_spd, i_dir, o_word, o_valid, o_busy, // QSPI interface o_sck, o_cs_n, o_mod, o_dat, i_dat); input wire i_clk; // Chip interface // Can send info // i_dir = 1, i_spd = 0, i_hold = 0, i_wr = 1, // i_word = { 1'b0, 32'info to send }, // i_len = # of bytes in word-1 input wire i_wr, i_hold; input wire [31:0] i_word; input wire [1:0] i_len; // 0=>8bits, 1=>16 bits, 2=>24 bits, 3=>32 bits input wire i_spd; // 0 -> normal QPI, 1 -> QSPI input wire i_dir; // 0 -> read, 1 -> write to SPI output reg [31:0] o_word; output reg o_valid, o_busy; // Interface with the QSPI lines output reg o_sck; output reg o_cs_n; output reg [1:0] o_mod; output reg [3:0] o_dat; input wire [3:0] i_dat; // output wire [22:0] o_dbg; // assign o_dbg = { state, spi_len, // o_busy, o_valid, o_cs_n, o_sck, o_mod, o_dat, i_dat }; // Timing: // // Tick Clk BSY/WR CS_n BIT/MO STATE // 0 1 0/0 1 - // 1 1 0/1 1 - // 2 1 1/0 0 - QSPI_START // 3 0 1/0 0 - QSPI_START // 4 0 1/0 0 0 QSPI_BITS // 5 1 1/0 0 0 QSPI_BITS // 6 0 1/0 0 1 QSPI_BITS // 7 1 1/0 0 1 QSPI_BITS // 8 0 1/0 0 2 QSPI_BITS // 9 1 1/0 0 2 QSPI_BITS // 10 0 1/0 0 3 QSPI_BITS // 11 1 1/0 0 3 QSPI_BITS // 12 0 1/0 0 4 QSPI_BITS // 13 1 1/0 0 4 QSPI_BITS // 14 0 1/0 0 5 QSPI_BITS // 15 1 1/0 0 5 QSPI_BITS // 16 0 1/0 0 6 QSPI_BITS // 17 1 1/1 0 6 QSPI_BITS // 18 0 1/1 0 7 QSPI_READY // 19 1 0/1 0 7 QSPI_READY // 20 0 1/0/V 0 8 QSPI_BITS // 21 1 1/0 0 8 QSPI_BITS // 22 0 1/0 0 9 QSPI_BITS // 23 1 1/0 0 9 QSPI_BITS // 24 0 1/0 0 10 QSPI_BITS // 25 1 1/0 0 10 QSPI_BITS // 26 0 1/0 0 11 QSPI_BITS // 27 1 1/0 0 11 QSPI_BITS // 28 0 1/0 0 12 QSPI_BITS // 29 1 1/0 0 12 QSPI_BITS // 30 0 1/0 0 13 QSPI_BITS // 31 1 1/0 0 13 QSPI_BITS // 32 0 1/0 0 14 QSPI_BITS // 33 1 1/0 0 14 QSPI_BITS // 34 0 1/0 0 15 QSPI_READY // 35 1 1/0 0 15 QSPI_READY // 36 1 1/0/V 0 - QSPI_STOP // 37 1 1/0 0 - QSPI_STOPB // 38 1 1/0 1 - QSPI_IDLE // 39 1 0/0 1 - // Now, let's switch from single bit to quad mode // 40 1 0/0 1 - QSPI_IDLE // 41 1 0/1 1 - QSPI_IDLE // 42 1 1/0 0 - QSPI_START // 43 0 1/0 0 - QSPI_START // 44 0 1/0 0 0 QSPI_BITS // 45 1 1/0 0 0 QSPI_BITS // 46 0 1/0 0 1 QSPI_BITS // 47 1 1/0 0 1 QSPI_BITS // 48 0 1/0 0 2 QSPI_BITS // 49 1 1/0 0 2 QSPI_BITS // 50 0 1/0 0 3 QSPI_BITS // 51 1 1/0 0 3 QSPI_BITS // 52 0 1/0 0 4 QSPI_BITS // 53 1 1/0 0 4 QSPI_BITS // 54 0 1/0 0 5 QSPI_BITS // 55 1 1/0 0 5 QSPI_BITS // 56 0 1/0 0 6 QSPI_BITS // 57 1 1/1/QR 0 6 QSPI_BITS // 58 0 1/1/QR 0 7 QSPI_READY // 59 1 0/1/QR 0 7 QSPI_READY // 60 0 1/0/?/V 0 8-11 QSPI_BITS // 61 1 1/0/? 0 8-11 QSPI_BITS // 62 0 1/0/? 0 12-15 QSPI_BITS // 63 1 1/0/? 0 12-15 QSPI_BITS // 64 1 1/0/?/V 0 - QSPI_STOP // 65 1 1/0/? 0 - QSPI_STOPB // 66 1 1/0/? 1 - QSPI_IDLE // 67 1 0/0 1 - QSPI_IDLE // Now let's try something entirely in Quad read mode, from the // beginning // 68 1 0/1/QR 1 - QSPI_IDLE // 69 1 1/0 0 - QSPI_START // 70 0 1/0 0 - QSPI_START // 71 0 1/0 0 0-3 QSPI_BITS // 72 1 1/0 0 0-3 QSPI_BITS // 73 0 1/1/QR 0 4-7 QSPI_BITS // 74 1 0/1/QR 0 4-7 QSPI_BITS // 75 0 1/?/?/V 0 8-11 QSPI_BITS // 76 1 1/?/? 0 8-11 QSPI_BITS // 77 0 1/1/QR 0 12-15 QSPI_BITS // 78 1 0/1/QR 0 12-15 QSPI_BITS // 79 0 1/?/?/V 0 16-19 QSPI_BITS // 80 1 1/0 0 16-19 QSPI_BITS // 81 0 1/0 0 20-23 QSPI_BITS // 82 1 1/0 0 20-23 QSPI_BITS // 83 1 1/0/V 0 - QSPI_STOP // 84 1 1/0 0 - QSPI_STOPB // 85 1 1/0 1 - QSPI_IDLE // 86 1 0/0 1 - QSPI_IDLE wire i_miso; assign i_miso = i_dat[1]; reg r_spd, r_dir; reg [5:0] spi_len; reg [31:0] r_word; reg [30:0] r_input; reg [2:0] state; initial state = `QSPI_IDLE; initial o_sck = 1'b1; initial o_cs_n = 1'b1; initial o_dat = 4'hd; initial o_valid = 1'b0; initial o_busy = 1'b0; initial r_input = 31'h000; initial o_mod = `QSPI_MOD_SPI; initial o_word = 0; always @(posedge i_clk) if ((state == `QSPI_IDLE)&&(o_sck)) begin o_cs_n <= 1'b1; o_valid <= 1'b0; o_busy <= 1'b0; o_mod <= `QSPI_MOD_SPI; r_word <= i_word; r_spd <= i_spd; r_dir <= i_dir; if ((i_wr)&&(!o_busy)) begin state <= `QSPI_START; spi_len<= { 1'b0, i_len, 3'b000 } + 6'h8; o_cs_n <= 1'b0; // o_sck <= 1'b1; o_busy <= 1'b1; end end else if (state == `QSPI_START) begin // We come in here with sck high, stay here 'til sck is low o_sck <= 1'b0; if (o_sck == 1'b0) begin state <= `QSPI_BITS; spi_len<= spi_len - ( (r_spd)? 6'h4 : 6'h1 ); if (r_spd) r_word <= { r_word[27:0], 4'h0 }; else r_word <= { r_word[30:0], 1'b0 }; end o_mod <= (r_spd) ? { 1'b1, r_dir } : `QSPI_MOD_SPI; o_cs_n <= 1'b0; o_busy <= 1'b1; o_valid <= 1'b0; if (r_spd) o_dat <= r_word[31:28]; else o_dat <= { 3'b110, r_word[31] }; end else if (!o_sck) begin o_sck <= 1'b1; o_busy <= ((state != `QSPI_READY)||(!i_wr)); o_valid <= 1'b0; end else if (state == `QSPI_BITS) begin // Should enter into here with at least a spi_len // of one, perhaps more o_sck <= 1'b0; o_busy <= 1'b1; if (r_spd) begin o_dat <= r_word[31:28]; r_word <= { r_word[27:0], 4'h0 }; spi_len <= spi_len - 6'h4; if (spi_len == 6'h4) state <= `QSPI_READY; end else begin o_dat <= { 3'b110, r_word[31] }; r_word <= { r_word[30:0], 1'b0 }; spi_len <= spi_len - 6'h1; if (spi_len == 6'h1) state <= `QSPI_READY; end o_valid <= 1'b0; if (!o_mod[1]) r_input <= { r_input[29:0], i_miso }; else if (o_mod[1]) r_input <= { r_input[26:0], i_dat }; end else if (state == `QSPI_READY) begin o_valid <= 1'b0; o_cs_n <= 1'b0; o_busy <= 1'b1; // This is the state on the last clock (both low and // high clocks) of the data. Data is valid during // this state. Here we chose to either STOP or // continue and transmit more. o_sck <= (i_hold); // No clocks while holding r_spd <= i_spd; r_dir <= i_dir; if (i_spd) begin r_word <= { i_word[27:0], 4'h0 }; spi_len<= { 1'b0, i_len, 3'b000 } + 6'h8 - 6'h4; end else begin r_word <= { i_word[30:0], 1'b0 }; spi_len<= { 1'b0, i_len, 3'b000 } + 6'h8 - 6'h1; end if((!o_busy)&&(i_wr))// Acknowledge a new request begin state <= `QSPI_BITS; o_busy <= 1'b1; o_sck <= 1'b0; // Read the new request off the bus // Set up the first bits on the bus o_mod <= (i_spd) ? { 1'b1, i_dir } : `QSPI_MOD_SPI; if (i_spd) o_dat <= i_word[31:28]; else o_dat <= { 3'b110, i_word[31] }; end else begin o_sck <= 1'b1; state <= (i_hold)?`QSPI_HOLDING : `QSPI_STOP; o_busy <= (!i_hold); end // Read a bit upon any transition o_valid <= 1'b1; if (!o_mod[1]) begin r_input <= { r_input[29:0], i_miso }; o_word <= { r_input[30:0], i_miso }; end else if (o_mod[1]) begin r_input <= { r_input[26:0], i_dat }; o_word <= { r_input[27:0], i_dat }; end end else if (state == `QSPI_HOLDING) begin // We need this state so that the o_valid signal // can get strobed with our last result. Otherwise // we could just sit in READY waiting for a new command. // // Incidentally, the change producing this state was // the result of a nasty race condition. See the // commends in wbqspiflash for more details. // o_valid <= 1'b0; o_cs_n <= 1'b0; o_busy <= 1'b0; r_spd <= i_spd; r_dir <= i_dir; if (i_spd) begin r_word <= { i_word[27:0], 4'h0 }; spi_len<= { 1'b0, i_len, 3'b100 }; end else begin r_word <= { i_word[30:0], 1'b0 }; spi_len<= { 1'b0, i_len, 3'b111 }; end if((!o_busy)&&(i_wr))// Acknowledge a new request begin state <= `QSPI_BITS; o_busy <= 1'b1; o_sck <= 1'b0; // Read the new request off the bus // Set up the first bits on the bus o_mod<=(i_spd)?{ 1'b1, i_dir } : `QSPI_MOD_SPI; if (i_spd) o_dat <= i_word[31:28]; else o_dat <= { 3'b110, i_word[31] }; end else begin o_sck <= 1'b1; state <= (i_hold)?`QSPI_HOLDING : `QSPI_STOP; o_busy <= (!i_hold); end end else if (state == `QSPI_STOP) begin o_sck <= 1'b1; // Stop the clock o_valid <= 1'b0; // Output may have just been valid, but no more o_busy <= 1'b1; // Still busy till port is clear state <= `QSPI_STOP_B; o_mod <= `QSPI_MOD_SPI; end else if (state == `QSPI_STOP_B) begin o_cs_n <= 1'b1; o_sck <= 1'b1; // Do I need this???? // spi_len <= 3; // Minimum CS high time before next cmd state <= `QSPI_IDLE; o_valid <= 1'b0; o_busy <= 1'b1; o_mod <= `QSPI_MOD_SPI; end else begin // Invalid states, should never get here state <= `QSPI_STOP; o_valid <= 1'b0; o_busy <= 1'b1; o_cs_n <= 1'b1; o_sck <= 1'b1; o_mod <= `QSPI_MOD_SPI; o_dat <= 4'hd; end `ifdef FORMAL reg prev_i_clk, past_valid; initial `ASSUME(i_clk == 1'b0); initial prev_i_clk = 1; always @($global_clock) begin prev_i_clk <= i_clk; `ASSUME(i_clk != prev_i_clk); end reg past_valid; initial past_valid = 1'b0; always @(posedge i_clk) past_valid <= 1'b1; /* always @(*) if (!$stable(i_spd)) assert($rose(i_clk)); */ always @(posedge i_clk) begin if ((past_valid)&&($past(i_wr))&&($past(o_busy))) begin // any time i_wr and o_busy are true, nothing changes // of spd, len, word or dir `ASSUME(i_wr); `ASSUME(i_spd == $past(i_spd)); `ASSUME(i_len == $past(i_len)); `ASSUME(i_word == $past(i_word)); `ASSUME(i_dir == $past(i_dir)); `ASSUME(i_hold == $past(i_hold)); end if ((past_valid)&&($past(i_wr))&&($past(o_busy))&&($past(state == `QSPI_IDLE))) assert($past(state)==state); if (i_hold == $past(i_hold)) assert($stable(i_hold)); end always @(*) begin if (o_mod == `QSPI_MOD_QOUT) `ASSUME(i_dat == o_dat); if (o_mod == `QSPI_MOD_SPI) `ASSUME(i_dat[3:2] == 2'b11); if (o_mod == `QSPI_MOD_SPI) `ASSUME(i_dat[0] == o_dat[0]); end initial `ASSUME(i_wr == 1'b0); initial `ASSUME(i_word == 0); always @($global_clock) if (!$rose(i_clk)) begin `ASSUME($stable(i_wr)); // `ASSUME($stable(i_len)); `ASSUME($stable(i_dir)); `ASSUME($stable(i_spd)); `ASSUME($stable(i_word)); // `ASSUME($stable(i_hold)); end always @($global_clock) if (!$fell(o_sck)) assume($stable(i_dat)); // This is ... not as believable. There might be a delay here. // For now, we'll just assume (not necessarily true) that the // output always @(posedge i_clk) if (past_valid) `ASSUME( (i_dat == $past(i_dat)) || (o_sck != $past(o_sck)) ); reg f_last_sck; always @(posedge i_clk) f_last_sck <= o_sck; reg [31:0] f_shiftreg, f_goal; initial f_shiftreg = 0; initial f_goal = 0; always @(posedge i_clk) if ((o_sck)&&(!f_last_sck)) begin if (o_mod == `QSPI_MOD_QOUT) f_shiftreg <= { f_shiftreg[28:0], o_dat }; else if (o_mod == `QSPI_MOD_SPI) f_shiftreg <= { f_shiftreg[30:0], o_dat[0] }; end reg [5:0] f_nsent, f_vsent; reg [2:0] f_nbits_r; wire [5:0] f_nbits; always @(posedge i_clk) if ((i_wr)&&(!o_busy)) begin f_goal <= i_word; f_nbits_r <= { 1'b0, i_len } + 3'h1; end assign f_nbits = { f_nbits_r, 3'b000 }; always @(posedge i_clk) if ((!o_sck)||(!o_cs_n)) assert(f_nbits != 0); always @(posedge i_clk) if (o_cs_n) f_nsent <= 0; else if ((!o_busy)&&(i_wr)) f_nsent <= 0; else if ((!f_last_sck)&&(o_sck)) begin if (o_mod == `QSPI_MOD_SPI) f_nsent <= f_nsent + 6'h1; else f_nsent <= f_nsent + 6'h4; end always @(posedge i_clk) if (o_cs_n) f_vsent <= 0; else f_vsent <= f_nsent; always @(posedge i_clk) if ((!o_cs_n)&&(state == `QSPI_BITS)&&(!o_sck)) begin if (o_mod != `QSPI_MOD_SPI) assert(f_nsent + spi_len + 6'h4 == f_nbits); else assert(f_nsent + spi_len + 6'h1 == f_nbits); end always @(posedge i_clk) assert((o_busy)||(f_goal[(f_nbits-1):0] == f_shiftreg[(f_nbits-1):0])); always @(posedge i_clk) begin // We are only ever in one of three speed modes, fourth mode // isn't allowed assert( (o_mod == `QSPI_MOD_SPI) ||(o_mod == `QSPI_MOD_QIN) ||(o_mod == `QSPI_MOD_QOUT)); if ((past_valid)&&($past(i_wr))&&(!$past(o_busy))) begin // Any accepted request leaves us in an active state assert(!o_cs_n); // Any accepted request allows us to set our speed assert(r_spd == $past(i_spd)); end // We're either busy, or idle with the clock high // or pausing (upon a request) mid-transaction assert((o_busy) ||((state == `QSPI_IDLE)&&(o_sck)&&(o_cs_n)) ||((state == `QSPI_READY)&&(o_sck)&&(!o_cs_n)) ||((state == `QSPI_HOLDING)&&(o_sck)&&(!o_cs_n)) ); // Anytime CS is idle, SCK is high if (o_cs_n) assert(o_sck); // What can we assert about i_hold? // When i_hold is asserted before a transaction completes, // the transaction will "hold" and wait for a next input. // i.e. the clock will stop // First assert that o_busy will be deasserted any time the // currently requested word has been sent // //if ((($past(i_wr))||(i_hold)) // &&(f_nsent == f_nbits)&&(!o_sck)&&(!o_cs_n)) // assert(!o_busy); // First, assert of i_hold that !o_busy will be set. if ((past_valid)&&($past(i_hold))&&(f_nsent == f_nbits)&&(!o_cs_n)) begin assert((!o_busy)||(o_sck)); end if ((past_valid)&&($past(i_hold))&&(!$past(i_wr)) &&(!$past(o_busy))&&(!$past(o_cs_n))) begin assert(!o_cs_n); assert($past(o_sck)==o_sck); end // DATA only changes on the falling edge of SCK if ((past_valid)&&(o_sck)) assert(o_dat==$past(o_dat)); // Valid is only ever true for one clock if ((past_valid)&&(o_valid)) assert(!$past(o_valid)); // Valid is only ever true after receiving a full number of bits if ((past_valid)&&(o_valid)) begin if ((!$past(i_wr))||($past(o_busy))) assert(f_nsent == f_nbits); end // In SPI mode, the top bits of o_dat are always 3'b110 // // This should be true, but there's a problem holding this // true // assert( (o_mod != `QSPI_MOD_SPI)||(o_dat[3:1] == 3'b110) ); // Either valid is true (this clock), or our output word is // identical to what it was on the last clock if (past_valid) assert((o_valid) || (o_word == $past(o_word))); end `endif endmodule