OpenCores
URL https://opencores.org/ocsvn/raytrac/raytrac/trunk

Subversion Repositories raytrac

[/] [raytrac/] [branches/] [fp_sgdma/] [deprecated/] [fadd32.vhd] - Rev 118

Go to most recent revision | Compare with Previous | Blame | View Log

------------------------------------------------
--! @file ema32x2.vhd
--! @brief RayTrac Floating Point Adder  
--! @author Julián Andrés Guarín Reyes
--------------------------------------------------
 
 
-- RAYTRAC (FP BRANCH)
-- Author Julian Andres Guarin
-- ema32x2.vhd
-- This file is part of raytrac.
-- 
--     raytrac is free software: you can redistribute it and/or modify
--     it under the terms of the GNU General Public License as published by
--     the Free Software Foundation, either version 3 of the License, or
--     (at your option) any later version.
-- 
--     raytrac is distributed in the hope that it will be useful,
--     but WITHOUT ANY WARRANTY; without even the implied warranty of
--     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--     GNU General Public License for more details.
-- 
--     You should have received a copy of the GNU General Public License
--     along with raytrac.  If not, see <http://www.gnu.org/licenses/>
 
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
 
 
--! Esta entidad recibe dos n&uacutemeros en formato punto flotante IEEE 754, de precision simple y devuelve las mantissas signadas y corridas, y el exponente correspondiente al resultado antes de normalizarlo al formato float. 
--!\nLas 2 mantissas y el exponente entran despues a la entidad add2 que suma las mantissas y entrega el resultado en formato IEEE 754.
entity ema32x2 is 
	port (
		clk,dpc		: in std_logic;
		a32,b32		: in std_logic_vector (31 downto 0);
		c32			: out std_logic_vector(31 downto 0)
	);
end ema32x2;
 
architecture ema32x2_arch of ema32x2 is
 
	component lpm_mult 
	generic (
		lpm_hint			: string;
		lpm_representation	: string;
		lpm_type			: string;
		lpm_widtha			: natural;
		lpm_widthb			: natural;
		lpm_widthp			: natural
	);
	port (
		dataa	: in std_logic_vector ( lpm_widtha-1 downto 0 );
		datab	: in std_logic_vector ( lpm_widthb-1 downto 0 );
		result	: out std_logic_vector( lpm_widthp-1 downto 0 )
	);
	end component;	
 
	signal s1zero														: std_logic;
	signal s1delta														: std_logic_vector(5 downto 0);
	signal s0delta,s1exp,s2exp,s3exp,s4exp,s5exp,s5factor,s6exp,s6factor: std_logic_vector(7 downto 0);
	signal s1shifter,s5factorhot9										: std_logic_vector(8 downto 0);
	signal s1pl,s5pl													: std_logic_vector(17 downto 0);
	signal s5postshift,s6postshift										: std_logic_vector(22 downto 0);
	signal s1umantshift,s1umantfixed,s1postshift,s1xorslab,s2xorslab	: std_logic_vector(23 downto 0);
	signal s2umantshift,s2mantfixed,s3mantfixed,s3mantshift,s4xorslab	: std_logic_vector(24 downto 0);
	signal s5factorhot25												: std_logic_vector(24 downto 0);
	signal s4sresult,s5result,s6result									: std_logic_vector(25 downto 0); -- Signed mantissa result
	signal s1ph,s5ph													: std_logic_vector(26 downto 0);
	signal s0a,s0b														: std_logic_vector(31 downto 0); -- Float 32 bit 
 
begin
 
	process (clk)
	begin
		if clk'event and clk='1' then 
 
			--!Registro de entrada
			s0a <= a32;
			s0b(31) <= dpc xor b32(31);	--! Importante: Integrar el signo en el operando B
			s0b(30 downto 0) <= b32(30 downto 0);
 
			--!Etapa 0,Escoger el mayor exponente que sera el resultado desnormalizado, calcula cuanto debe ser el corrimiento de la mantissa con menor exponente y reorganiza los operandos, si el mayor es b, intercambia las posici&oacute;n si el mayor es a las posiciones la mantiene. Zero check.
			--!signo,exponente,mantissa
			if (s0b(30 downto 23)&s0a(30 downto 23))=x"0000" then 
				s1zero <= '0';
			else
				s1zero <= '1';
			end if;
			s1delta <= s0delta(7) & (s0delta(7) xor s0delta(4))&(s0delta(7) xor s0delta(4)) & s0delta(2 downto 0);			
			case s0delta(7) is
				when '1'  => 
					s1exp <= s0b(30 downto 23);
					s1umantshift <= s0a(31)&s0a(22 downto 0);
					s1umantfixed <= s0b(31)&s0b(22 downto 0);
				when others => 
					s1exp <= s0a(30 downto 23);
					s1umantshift <= s0b(31)&s0b(22 downto 0);
					s1umantfixed <= s0a(31)&s0a(22 downto 0);
			end case;
 
			--! Etapa 1: Denormalizaci&oacute;n de la mantissas.  
			case s1delta(4 downto 3) is
				when "00" =>	s2umantshift <= s1umantshift(23)&s1postshift(23 downto 0);
				when "01" =>	s2umantshift <= s1umantshift(23)&x"00"&s1postshift(23 downto 8);
				when "10" =>	s2umantshift <= s1umantshift(23)&x"0000"&s1postshift(23 downto 16);
				when others => 	s2umantshift <= (others => '0');		
			end case;
			s2mantfixed <= s1umantfixed(23) &         ( ( ('1'&s1umantfixed(22 downto 0)) xor s1xorslab)   + ( x"00000"&"000"&s1umantfixed(23)  )   ); 
			s2exp  <= s1exp;
 
			--! Etapa2: Signar la mantissa denormalizada.
			s3mantfixed <= s2mantfixed;
			s3mantshift <= s2umantshift(24)&         (  (      s2umantshift(23 downto 0)  xor s2xorslab)   + ( x"00000"&"000"&s2umantshift(24)  )   ); 
			s3exp 		<= s2exp;
 
			--! Etapa 3: Etapa 3 Realizar la suma, quitar el signo de la mantissa y codificar el corrimiento hacia la izquierda.
			s4sresult	<= (s3mantshift(24)&s3mantshift)+(s3mantfixed(24)&s3mantfixed);
			s4exp 		<= s3exp; 
 
			--! Etapa 4: Quitar el signo a la mantissa resultante.
			s5result	<= s4sresult(25)&((s4sresult(24 downto 0) xor s4xorslab)  +(x"000000"&s4sresult(25)));
			s5exp		<= s4exp; 
 
 
			--! Etapa 5: Codificar el corrimiento para la normalizacion de la mantissa resultante.
			s6result 		<= s5result;
			s6exp			<= s5exp;
			s6factor		<= s5factor;
			s6postshift		<= s5postshift;
 
			--! Etapa 6: Entregar el resultado.
			c32(31)				<= s6result(25);
			c32(30 downto 23)	<= s6exp+s6factor+x"ff";
			case s6factor(4 downto 3) is 
				when "01" 	=> c32(22 downto 0) <= s6postshift(14 downto 00)&x"00";
				when "10" 	=> c32(22 downto 0) <= s6postshift(06 downto 00)&x"0000";
				when others => c32(22 downto 0)	<= s6postshift;
			end case; 
		end if;
	end process;
	--! Combinatorial gremlin, Etapa 0 el corrimiento de la mantissa con menor exponente y reorganiza los operandos,\n
	--! si el mayor es b, intercambia las posici&oacute;n si el mayor es a las posiciones la mantiene. 
	s0delta <=  s0a(30 downto 23)-s0b(30 downto 23);
	--! Combinatorial Gremlin, Etapa 1 Codificar el factor de corrimiento de denormalizacion y denormalizar la mantissa no fija. Signar la mantissa que se queda fija.
	decodeshiftfactor:
	process (s1delta(2 downto 0))
	begin
		case s1delta(2 downto 0) is
			when "111" =>  s1shifter(8 downto 0) <= '0'&s1delta(5)&"00000"&not(s1delta(5))&'0';
			when "110" =>  s1shifter(8 downto 0) <= "00"&s1delta(5)&"000"&not(s1delta(5))&"00";
			when "101" =>  s1shifter(8 downto 0) <= "000"&s1delta(5)&'0'&not(s1delta(5))&"000";
			when "100" =>  s1shifter(8 downto 0) <= '0'&x"10";
			when "011" =>  s1shifter(8 downto 0) <= "000"&not(s1delta(5))&'0'&s1delta(5)&"000";
			when "010" =>  s1shifter(8 downto 0) <= "00"&not(s1delta(5))&"000"&s1delta(5)&"00";
			when "001" =>  s1shifter(8 downto 0) <= '0'&not(s1delta(5))&"00000"&s1delta(5)&'0';
			when others => s1shifter(8 downto 0) <=    not(s1delta(5))&"0000000"&s1delta(5);
		end case;
	end process;
	denormhighshiftermult:lpm_mult
	generic	map ("DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9","UNSIGNED","LPM_MULT",9,18,27)
	port 	map (s1shifter,s1zero&s1umantshift(22 downto 06),s1ph);	
	denormlowshiftermult:lpm_mult
	generic	map ("DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9","UNSIGNED","LPM_MULT",9,9,18)
	port 	map (s1shifter,s1umantshift(5 downto 0)&"000",s1pl);	
 
	s1postshift(23 downto 7) <= s1ph(25 downto 9);
	s1postshift(06 downto 0) <= s1ph(08 downto 2) or s1pl(17 downto 11);
	s1xorslab(23 downto 0) <= (others => s1umantfixed(23)); 
 
	--! Combinatorial Gremlin, Etapa 2: Signar la mantissa denormalizada. 
	s2xorslab <= (others => s2umantshift(24));
 
	--! Combinatorial Gremlin, Etapa 4: Quitar el signo de la mantissa resultante.
	s4xorslab <= (others => s4sresult(25));
 
	--! Combinatorial Gremlin, Etapa 5: Codificar el factor de normalizacion de la mantissa resultante.
	normalizerdecodeshift:
	process (s5result,s5factorhot25)
	begin
		s5factor<=(others => '0');
		s5factorhot25 <= (others => '0');
		for i in 24 downto 0 loop
			if s5result(i)='1' then
				s5factor <= conv_std_logic_vector(24-i,8);
				s5factorhot25(24-i) <= '1';
				exit;
			end if;
		end loop;
		s5factorhot9 <= (s5factorhot25(8 downto 1)or s5factorhot25(16 downto 9)or s5factorhot25(24 downto 17)) & s5factorhot25(0);
	end process;	
	normhighshiftermult:lpm_mult
	generic map ("DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9","UNSIGNED","LPM_MULT",9,18,27)
	port 	map (s5factorhot9,s5result(24 downto 7),s5ph);
	normlowshiftermult:lpm_mult
	generic map ("DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9","UNSIGNED","LPM_MULT",9,9,18)
	port 	map (s5factorhot9,s5result(06 downto 0)&"00",s5pl);
	s5postshift(22 downto 15) <= s5ph(16 downto 09);
	s5postshift(14 downto 06) <= s5ph(08 downto 00); --! Activar este pedazo si se requiere extrema precision	     or s5pl(17 downto 9);
	s5postshift(05 downto 00) <= s5pl(08 downto 03); 
 
 
 
 
 
end ema32x2_arch;
 
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.