URL
https://opencores.org/ocsvn/raytrac/raytrac/trunk
Subversion Repositories raytrac
[/] [raytrac/] [trunk/] [fpbranch/] [cntrl/] [opcoder.vhd] - Rev 107
Go to most recent revision | Compare with Previous | Blame | View Log
--! @file opcoder.vhd --! @brief Decodificador de operacion. --! @author Julián Andrés Guarín Reyes. -------------------------------------------------------------- -- RAYTRAC -- Author Julian Andres Guarin -- opcoder.vhd -- This file is part of raytrac. -- -- raytrac is free software: you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation, either version 3 of the License, or -- (at your option) any later version. -- -- raytrac is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with raytrac. If not, see <http://www.gnu.org/licenses/>. --! Libreria de definicion de senales y tipos estandares, comportamiento de operadores aritmeticos y logicos.\n Signal and types definition library. This library also defines library ieee; --! Paquete de definicion estandard de logica. Standard logic definition pack. use ieee.std_logic_1164.all; --! Se usaran en esta descripcion los componentes del package arithpack.vhd.\n It will be used in this description the components on the arithpack.vhd package. use work.arithpack.all; --! La entidad opcoder es la etapa combinatoria que decodifica la operacion que se va a realizar. --! \n\n --! Las entradas a esta descripción son: los vectores A,B,C,D, las entradas opcode y addcode. Las salidas del decodificador, estarán conectadas a las entradas de los 6 multiplicadores de una entidad uf. Los operandos de los multiplicadores, también conocidos como factores, son las salida m0f0, m0f1 para el multiplicador 1 y así hasta el multiplicador 5. Básicamente lo que opera aquí en esta descripción es un multiplexor, el cual selecciona a través de opcode y addcode qué componentes de los vectores se conectaran a los operandos de los multiplicadores. entity opcoder is generic ( width : integer := 18; structuralDescription : string:= "NO" ); port ( Ax,Bx,Cx,Dx,Ay,By,Cy,Dy,Az,Bz,Cz,Dz : in std_logic_vector (width-1 downto 0); m0f0,m0f1,m1f0,m1f1,m2f0,m2f1,m3f0,m3f1,m4f0,m4f1,m5f0,m5f1 : out std_logic_vector (width-1 downto 0); opcode,addcode : in std_logic ); end entity; --! Arquitectura del decodificador de operación. --! El bloque de arquitectura del decodificador es simplemente una cascada de multiplexores. La selección se hace en función de las señales appcode y addcode\n --! La siguiente tabla describe el comportamiento de los multiplexores:\n --! \n\n --! --! <table> --! <tr><th></th><th>OPCODE</th><th>ADDCODE</th><th>f0</th><th>f1</th><th> </th><th>OPCODE</th><th>ADDCODE</th><th>f0</th><th>f1</th><th> </th></tr> <tr><td>m0</td><td>0</td><td>0</td><td>Ax</td><td>Bx</td><td> </td><td>0</td><td>0</td><td>Cx</td><td>Dx</td><td>m3</td></tr> <tr><td>m0</td><td>0</td><td>1</td><td>Ax</td><td>Bx</td><td> </td><td>0</td><td>1</td><td>Cx</td><td>Dx</td><td>m3</td></tr> <tr><td>m0</td><td>1</td><td>0</td><td>Ay</td><td>Bz</td><td> </td><td>1</td><td>0</td><td>Ax</td><td>Bz</td><td>m3</td></tr> <tr><td>m0</td><td>1</td><td>1</td><td>Cy</td><td>Dz</td><td> </td><td>1</td><td>1</td><td>Cx</td><td>Dz</td><td>m3</td></tr> <tr><td>m1</td><td>0</td><td>0</td><td>Ay</td><td>By</td><td> </td><td>0</td><td>0</td><td>Cy</td><td>Dy</td><td>m4</td></tr> <tr><td>m1</td><td>0</td><td>1</td><td>Ay</td><td>By</td><td> </td><td>0</td><td>1</td><td>Cy</td><td>Dy</td><td>m4</td></tr> <tr><td>m1</td><td>1</td><td>0</td><td>Az</td><td>By</td><td> </td><td>1</td><td>0</td><td>Ax</td><td>By</td><td>m4</td></tr> <tr><td>m1</td><td>1</td><td>1</td><td>Cz</td><td>Dy</td><td> </td><td>1</td><td>1</td><td>Cx</td><td>Dy</td><td>m4</td></tr> <tr><td>m2</td><td>0</td><td>0</td><td>Az</td><td>Bz</td><td> </td><td>0</td><td>0</td><td>Cz</td><td>Dz</td><td>m5</td></tr> <tr><td>m2</td><td>0</td><td>1</td><td>Az</td><td>Bz</td><td> </td><td>0</td><td>1</td><td>Cz</td><td>Dz</td><td>m5</td></tr> <tr><td>m2</td><td>1</td><td>0</td><td>Az</td><td>Bx</td><td> </td><td>1</td><td>0</td><td>Ay</td><td>Bx</td><td>m5</td></tr> <tr><td>m2</td><td>1</td><td>1</td><td>Cz</td><td>Dx</td><td> </td><td>1</td><td>1</td><td>Cy</td><td>Dx</td><td>m5</td></tr></table> --! \n\n --! Por ejemplo para ver la tabla de verdad del m0f0, consultar el registro (línea) m0 y el atributo (columna) f0.\n architecture opcoder_arch of opcoder is signal aycy,bzdz,azcz,bydy,bxdx,axcx: std_logic_vector(width-1 downto 0); begin --! Proceso que describe las 2 etapas de multiplexores. --! Proceso que describe las 2 etapas de multiplexores. Una corresponde al selector addcode, que selecciona con que operadores realizará la operación producto cruz, es decir, seleccionará si realiza la operación AxB ó CxD. En el caso del producto punto, esta etapa de multiplexación no tendrá repercusión en el resultado de la deocdificación de la operación. La otra etapa utiliza el selector opcode, el cual decide si usa los operandos decodificados en la primera etapa de multiplexores, en el caso de que opcode sea 1, seleccionando la operación producto cruz, o por el contrario seleccionando una decodificación de operadores que lleven a cabo la operación producto punto. originalMuxGen: if structuralDescription="NO" generate procOpcoder: process (Ax,Bx,Cx,Dx,Ay,By,Cy,Dy,Az,Bz,Cz,Dz,aycy,bzdz,azcz,bydy,bxdx,axcx,opcode,addcode) begin case (addcode) is -- Estamos ejecutando CxD when '1'=> aycy <= Cy; bzdz <= Dz; azcz <= Cz; bydy <= Dy; axcx <= Cx; bxdx <= Dx; when others => -- Estamos ejecutando AxB aycy <= Ay; bzdz <= Bz; azcz <= Az; bydy <= By; axcx <= Ax; bxdx <= Bx; end case; case (opcode) is -- Estamos ejecutando Producto Cruz when '1' => m0f0 <= aycy; m0f1 <= bzdz; m1f0 <= azcz; m1f1 <= bydy; m2f0 <= axcx; m2f1 <= bzdz; m3f0 <= azcz; m3f1 <= bxdx; m4f0 <= axcx; m4f1 <= bydy; m5f0 <= aycy; m5f1 <= bxdx; when others => -- Estamos ejecutando Producto Punto m0f0 <= Ax; m0f1 <= Bx; m1f0 <= Ay; m1f1 <= By; m2f0 <= Az; m2f1 <= Bz; m3f0 <= Cx; m3f1 <= Dx; m4f0 <= Cy; m4f1 <= Dy; m5f0 <= Cz; m5f1 <= Dz; end case; end process procOpcoder; end generate originalMuxGen; fastMuxGen: if structuralDescription="YES" generate mux0 : fastmux generic map (width) port map (ay,cy,addcode,aycy); mux1 : fastmux generic map (width) port map (bz,dz,addcode,bzdz); mux2 : fastmux generic map (width) port map (az,cz,addcode,azcz); mux3 : fastmux generic map (width) port map (by,dy,addcode,bydy); mux4 : fastmux generic map (width) port map (bx,dx,addcode,bxdx); mux5 : fastmux generic map (width) port map (ax,cx,addcode,axcx); -- Segunda etapa de multiplexores muxa : fastmux generic map (width) port map (ax,aycy,opcode,m0f0); muxb : fastmux generic map (width) port map (bx,bzdz,opcode,m0f1); muxc : fastmux generic map (width) port map (ay,azcz,opcode,m1f0); muxd : fastmux generic map (width) port map (by,bydy,opcode,m1f1); muxe : fastmux generic map (width) port map (az,azcz,opcode,m2f0); muxf : fastmux generic map (width) port map (bz,bxdx,opcode,m2f1); muxg : fastmux generic map (width) port map (cx,axcx,opcode,m3f0); muxh : fastmux generic map (width) port map (dx,bzdz,opcode,m3f1); muxi : fastmux generic map (width) port map (cy,axcx,opcode,m4f0); muxj : fastmux generic map (width) port map (dy,bydy,opcode,m4f1); muxk : fastmux generic map (width) port map (cz,aycy,opcode,m5f0); muxl : fastmux generic map (width) port map (dz,bxdx,opcode,m5f1); end generate fastMuxGen; end opcoder_arch;
Go to most recent revision | Compare with Previous | Blame | View Log