URL
https://opencores.org/ocsvn/rf68000/rf68000/trunk
Subversion Repositories rf68000
[/] [rf68000/] [trunk/] [rtl/] [cpu/] [rf68000_mmu.sv] - Rev 3
Compare with Previous | Blame | View Log
`timescale 1ns / 1ps
// ============================================================================
// __
// \\__/ o\ (C) 2016-2022 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
// rf68000_mmu.sv
//
//
// BSD 3-Clause License
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//
// ============================================================================
//
`define LOW 1'b0
`define HIGH 1'b1
module rf68000_mmu(rst_i, clk_i, s_ex_i, s_cs_i, s_cyc_i, s_stb_i, s_ack_o, s_we_i,
s_asid_i, s_adr_i, s_dat_i, s_dat_o,
pea_o, cyc_o, stb_o, we_o, pdat_o,
exv_o, rdv_o, wrv_o);
input rst_i;
input clk_i;
input s_ex_i; // executable address
input s_cs_i;
input s_cyc_i;
input s_stb_i;
input s_we_i; // write strobe
output s_ack_o;
input [7:0] s_asid_i;
input [31:0] s_adr_i; // virtual address
input [31:0] s_dat_i;
output reg [31:0] s_dat_o;
output reg [31:0] pea_o;
output reg cyc_o;
output reg stb_o;
output reg we_o;
output reg [31:0] pdat_o;
output reg exv_o; // execute violation
output reg rdv_o; // read violation
output reg wrv_o; // write violation
wire cs = s_cyc_i && s_stb_i && s_cs_i;
wire [5:0] okey = s_asid_i[5:0];
wire [5:0] akey = s_asid_i[5:0];
ack_gen #(
.READ_STAGES(3),
.WRITE_STAGES(0),
.REGISTER_OUTPUT(1)
) uag1
(
.rst_i(rst_i),
.clk_i(clk_i),
.ce_i(1'b1),
.i(cs & ~s_we_i),
.we_i(cs & s_we_i),
.o(s_ack_o),
.rid_i(0),
.wid_i(0),
.rid_o(),
.wid_o()
);
reg cyc1,cyc2,stb1,stb2;
wire [17:0] douta;
wire [17:0] doutb;
wire [1:0] wx = doutb[17:16];
always @(posedge clk_i)
exv_o <= s_ex_i & ~wx[0] & cyc2 & stb2;
always @(posedge clk_i)
rdv_o <= 1'b0;
always @(posedge clk_i)
wrv_o <= s_we_i & ~wx[1] & cyc2 & stb2;
wire [14:0] addra = {akey[5:0],s_adr_i[10: 2]};
wire [14:0] addrb = {okey[5:0],s_adr_i[24:16]};
wire clka = clk_i;
wire clkb = clk_i;
wire [17:0] dina = s_dat_i[17:0];
wire [17:0] dinb = 18'h0;
wire ena = cs;
wire enb = 1'b1;
wire wea = s_we_i;
wire web = 1'b0;
// xpm_memory_tdpram: True Dual Port RAM
// Xilinx Parameterized Macro, version 2022.2
xpm_memory_tdpram #(
.ADDR_WIDTH_A(15), // DECIMAL
.ADDR_WIDTH_B(15), // DECIMAL
.AUTO_SLEEP_TIME(0), // DECIMAL
.BYTE_WRITE_WIDTH_A(18), // DECIMAL
.BYTE_WRITE_WIDTH_B(18), // DECIMAL
.CASCADE_HEIGHT(0), // DECIMAL
.CLOCKING_MODE("common_clock"), // String
.ECC_MODE("no_ecc"), // String
.MEMORY_INIT_FILE("none"), // String
.MEMORY_INIT_PARAM("0"), // String
.MEMORY_OPTIMIZATION("true"), // String
.MEMORY_PRIMITIVE("auto"), // String
.MEMORY_SIZE(589824), // DECIMAL
.MESSAGE_CONTROL(0), // DECIMAL
.READ_DATA_WIDTH_A(18), // DECIMAL
.READ_DATA_WIDTH_B(18), // DECIMAL
.READ_LATENCY_A(2), // DECIMAL
.READ_LATENCY_B(1), // DECIMAL
.READ_RESET_VALUE_A("0"), // String
.READ_RESET_VALUE_B("0"), // String
.RST_MODE_A("SYNC"), // String
.RST_MODE_B("SYNC"), // String
.SIM_ASSERT_CHK(0), // DECIMAL; 0=disable simulation messages, 1=enable simulation messages
.USE_EMBEDDED_CONSTRAINT(0), // DECIMAL
.USE_MEM_INIT(1), // DECIMAL
.USE_MEM_INIT_MMI(0), // DECIMAL
.WAKEUP_TIME("disable_sleep"), // String
.WRITE_DATA_WIDTH_A(18), // DECIMAL
.WRITE_DATA_WIDTH_B(18), // DECIMAL
.WRITE_MODE_A("no_change"), // String
.WRITE_MODE_B("no_change"), // String
.WRITE_PROTECT(1) // DECIMAL
)
xpm_memory_tdpram_inst (
.dbiterra(), // 1-bit output: Status signal to indicate double bit error occurrence
// on the data output of port A.
.dbiterrb(), // 1-bit output: Status signal to indicate double bit error occurrence
// on the data output of port A.
.douta(douta), // READ_DATA_WIDTH_A-bit output: Data output for port A read operations.
.doutb(doutb), // READ_DATA_WIDTH_B-bit output: Data output for port B read operations.
.sbiterra(), // 1-bit output: Status signal to indicate single bit error occurrence
// on the data output of port A.
.sbiterrb(), // 1-bit output: Status signal to indicate single bit error occurrence
// on the data output of port B.
.addra(addra), // ADDR_WIDTH_A-bit input: Address for port A write and read operations.
.addrb(addrb), // ADDR_WIDTH_B-bit input: Address for port B write and read operations.
.clka(clka), // 1-bit input: Clock signal for port A. Also clocks port B when
// parameter CLOCKING_MODE is "common_clock".
.clkb(clkb), // 1-bit input: Clock signal for port B when parameter CLOCKING_MODE is
// "independent_clock". Unused when parameter CLOCKING_MODE is
// "common_clock".
.dina(dina), // WRITE_DATA_WIDTH_A-bit input: Data input for port A write operations.
.dinb(dinb), // WRITE_DATA_WIDTH_B-bit input: Data input for port B write operations.
.ena(ena), // 1-bit input: Memory enable signal for port A. Must be high on clock
// cycles when read or write operations are initiated. Pipelined
// internally.
.enb(enb), // 1-bit input: Memory enable signal for port B. Must be high on clock
// cycles when read or write operations are initiated. Pipelined
// internally.
.injectdbiterra(1'b0), // 1-bit input: Controls double bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.injectdbiterrb(1'b0), // 1-bit input: Controls double bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.injectsbiterra(1'b0), // 1-bit input: Controls single bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.injectsbiterrb(1'b0), // 1-bit input: Controls single bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.regcea(1'b1), // 1-bit input: Clock Enable for the last register stage on the output
// data path.
.regceb(1'b1), // 1-bit input: Clock Enable for the last register stage on the output
// data path.
.rsta(1'b0), // 1-bit input: Reset signal for the final port A output register stage.
// Synchronously resets output port douta to the value specified by
// parameter READ_RESET_VALUE_A.
.rstb(1'b0), // 1-bit input: Reset signal for the final port B output register stage.
// Synchronously resets output port doutb to the value specified by
// parameter READ_RESET_VALUE_B.
.sleep(1'b0), // 1-bit input: sleep signal to enable the dynamic power saving feature.
.wea(wea), // WRITE_DATA_WIDTH_A/BYTE_WRITE_WIDTH_A-bit input: Write enable vector
// for port A input data port dina. 1 bit wide when word-wide writes are
// used. In byte-wide write configurations, each bit controls the
// writing one byte of dina to address addra. For example, to
// synchronously write only bits [15-8] of dina when WRITE_DATA_WIDTH_A
// is 32, wea would be 4'b0010.
.web(web) // WRITE_DATA_WIDTH_B/BYTE_WRITE_WIDTH_B-bit input: Write enable vector
// for port B input data port dinb. 1 bit wide when word-wide writes are
// used. In byte-wide write configurations, each bit controls the
// writing one byte of dinb to address addrb. For example, to
// synchronously write only bits [15-8] of dinb when WRITE_DATA_WIDTH_B
// is 32, web would be 4'b0010.
);
always_ff @(posedge clk_i)
if (s_cs_i)
s_dat_o <= {14'h0,douta};
else
s_dat_o <= 32'h0;
always @(posedge clk_i)
if (rst_i) begin
cyc_o <= 1'b0;
stb_o <= 1'b0;
pea_o <= 32'h0;
pdat_o <= 'd0;
end
else begin
pea_o[15: 0] <= s_adr_i[15:0];
pea_o[31:16] <= doutb[15:0];
pdat_o <= s_dat_i;
if (s_cs_i)
pea_o <= 'd0;
if (cs) begin
cyc_o <= 1'b0;
stb_o <= 1'b0;
end
else begin
cyc_o <= s_cyc_i;
stb_o <= s_stb_i;
end
end
always_comb
we_o <= wx[1] & s_we_i;
endmodule