OpenCores
URL https://opencores.org/ocsvn/rf6809/rf6809/trunk

Subversion Repositories rf6809

[/] [rf6809/] [trunk/] [rtl/] [noc/] [video/] [rfSpriteController_x12.sv] - Rev 22

Go to most recent revision | Compare with Previous | Blame | View Log

`timescale 1ns / 1ps
// ============================================================================
//        __
//   \\__/ o\    (C) 2005-2022  Robert Finch, Waterloo
//    \  __ /    All rights reserved.
//     \/_//     robfinch<remove>@finitron.ca
//       ||
//
//      rfSpriteController_x12.v
//              sprite / hardware cursor controller, 12-bit slave bus
//
// BSD 3-Clause License
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
//    contributors may be used to endorse or promote products derived from
//    this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//                                                                          
//
//      Sprite Controller
//
//      FEATURES
//      - parameterized number of sprites 1,2,4,6,8,14 or 32
//      - sprite image cache buffers
//              - each image cache is capable of holding multiple
//                sprite images
//              - an embedded DMA controller is used for sprite reload
//      - programmable image offset within cache
//      - programmable sprite width,height, and pixel size
//              - sprite width and height may vary from 1 to 64 as long
//                as the product doesn't exceed 4096.
//          - pixels may be programmed to be 1,2,3 or 4 video clocks
//            both height and width are programmable
//      - programmable sprite position
//      - programmable 8, 16 or 32 bits for color
//              eg 32k color + 1 bit alpha blending indicator (1,5,5,5)
//      - fixed display and DMA priority
//          sprite 0 highest, sprite 31 lowest
//      - graphics plane control
//
//              This core requires an external timing generator to
//      provide horizontal and vertical sync signals, but
//      otherwise can be used as a display controller on it's
//      own. However, normally this core would be embedded
//      within another core such as a VGA controller. Sprite
//      positions are referenced to the rising edge of the
//      vertical and horizontal sync pulses.
//              The core includes an embedded dual port RAM to hold the
//      sprite images. The image RAM is updated using a built in DMA
//      controller. The DMA controller uses 32 bit accesses to fill
//      the sprite buffers. The circuit features an automatic bus
//  transaction timeout; if the system bus hasn't responded
//  within 20 clock cycles, the DMA controller moves onto the
//  next address.
//              The controller uses a ram underlay to cache the values
//      of the registers. This is a lot cheaper resource wise than
//      using a 32 to 1 multiplexor (well at least for an FPGA).
//
//      All registers are 32 bits wide
//
//      These registers repeat in incrementing block of four registers
//      and pertain to each sprite
//      00:     - position register
//              HPOS    [11: 0] horizontal position (hctr value)
//          VPOS        [27:16] vertical position (vctr value)
//
//      04:     SZ      - size register
//                      bits
//                      [ 7: 0] width of sprite in pixels - 1
//                      [15: 8] height of sprite in pixels -1
//                      [19:16] size of horizontal pixels - 1 in clock cycles
//                      [23:20] size of vertical pixels in scan-lines - 1
//                              * the product of width * height cannot exceed 2048 !
//                              if it does, the display will begin repeating
//                      [27:24] output plane
//                      [31:30] color depth 01=RGB332,10=RGB555+A,11=RGB888+A
//                              
//      08: ADR [31:12] 20 bits sprite image address bits
//                      This registers contain the high order address bits of the
//          location of the sprite image in system memory.
//                      The DMA controller will assign the low order 12 bits
//                      during DMA.
//                  [11:0] image offset bits [11:0]
//                      offset of the sprite image within the sprite image cache
//                      typically zero
//      
//      0C: TC  [23:0]  transparent color
//                      This register identifies which color of the sprite
//                      is transparent
//
//
//
//      0C-1FC: registers reserved for up to thirty-one other sprites
//
//      200:            DMA burst reg sprite 0
//                              [8:0]  burst start
//                              [24:16] burst end
//      ...
//      27C:            DMA burst reg sprite 31
//
//      Global status and control
//      3C0: EN [31:0] sprite enable register
//  3C4: IE     [31:0] sprite interrupt enable / status
//      3C8: SCOL       [31:0] sprite-sprite collision register
//      3CC: BCOL       [31:0] sprite-background collision register
//      3D0: DT         [31:0] sprite DMA trigger on
//      3D4: DT         [31:0] sprite DMA trigger off
//      3D8: VDT        [31:0] sprite vertical sync DMA trigger
//      3EC: BC     [23:0] background color
//  3FC: ADDR   [31:0] sprite DMA address bits [63:32]
//
//=============================================================================

module rfSpriteController_x12(
// Bus Slave interface
//------------------------------
// Slave signals
input rst_i,                    // reset
input s_clk_i,                  // clock
input         s_cs_i,
input         s_cyc_i,  // cycle valid
input         s_stb_i,  // data transfer
output        s_ack_o,  // transfer acknowledge
input         s_we_i,   // write
input  [ 9:0] s_adr_i,  // address
input  [11:0] s_dat_i,  // data input
output reg [11:0] s_dat_o,      // data output
//------------------------------
// Bus Master Signals
input m_clk_i,                          // clock
output [1:0]  m_bte_o,
output [2:0]  m_cti_o,
output reg    m_cyc_o,  // cycle is valid
output        m_stb_o,  // strobe output
input         m_ack_i,  // input data is ready
input         m_err_i,  
output        m_we_o,
output [3:0] m_sel_o,
output reg [35:0] m_adr_o,      // DMA address
input  [47:0] m_dat_i,  // data input
output [47:0] m_dat_o,
output [4:0] m_spriteno_o,
//--------------------------
input dot_clk_i,                // video dot clock
input hsync_i,                  // horizontal sync pulse
input vsync_i,                  // vertical sync pulse
input blank_i,                  // blanking signal
//input [3:0] rgbPlane_i,               // 0 = background, higher numbers closer to front
input [31:0] zrgb_i,                    // input pixel stream
//output reg [3:0] rgbPlane_o,
output [31:0] zrgb_o,   // output pixel stream
output irq,                                     // interrupt request
input test
);

reg m_soc_o;
wire vclk = dot_clk_i;
wire hSync = hsync_i;
wire vSync = vsync_i;
wire [31:0] zrgbIn = zrgb_i;
reg [31:0] zrgbOut;
assign zrgb_o = zrgbOut;

//--------------------------------------------------------------------
// Core Parameters
//--------------------------------------------------------------------
parameter pnSpr = 32;           // number of sprites
parameter phBits = 12;          // number of bits in horizontal timing counter
parameter pvBits = 12;          // number of bits in vertical timing counter
localparam pnSprm = pnSpr-1;


//--------------------------------------------------------------------
// Variable Declarations
//--------------------------------------------------------------------

reg [9:0] adr_i;
reg [11:0] dat_i;
reg we_i;

wire [4:0] sprN = adr_i[8:4];

reg [phBits-1:0] hctr;          // horizontal reference counter (counts dots since hSync)
reg [pvBits-1:0] vctr;          // vertical reference counter (counts scanlines since vSync)
reg sprSprIRQ;
reg sprBkIRQ;

reg [23:0] out;                 // sprite output
reg outact;                             // sprite output is active
reg [3:0] outplane;
reg [pnSprm:0] bkCollision;             // sprite-background collision
reg [23:0] bgTc;                // background transparent color
reg [23:0] bkColor;             // background color


reg [pnSprm:0] sprWe;   // block ram write enable for image cache update
reg [pnSprm:0] sprRe;   // block ram read enable for image cache update

// Global control registers
reg [31:0] sprEn;       // enable sprite
reg [pnSprm:0] sprCollision;        // sprite-sprite collision
reg sprSprIe;                   // sprite-sprite interrupt enable
reg sprBkIe;            // sprite-background interrupt enable
reg sprSprIRQPending;   // sprite-sprite collision interrupt pending
reg sprBkIRQPending;    // sprite-background collision interrupt pending
reg sprSprIRQPending1;  // sprite-sprite collision interrupt pending
reg sprBkIRQPending1;   // sprite-background collision interrupt pending
reg sprSprIRQ1;                 // vclk domain regs
reg sprBkIRQ1;

// Sprite control registers
reg [31:0] sprSprCollision;
reg [pnSprm:0] sprSprCollision1;
reg [31:0] sprBkCollision;
reg [pnSprm:0] sprBkCollision1;
reg [23:0] sprTc [pnSprm:0];            // sprite transparent color code
// How big the pixels are:
// 1 to 16 video clocks
reg [3:0] hSprRes [pnSprm:0];           // sprite horizontal resolution
reg [3:0] vSprRes [pnSprm:0];           // sprite vertical resolution
reg [7:0] sprWidth [pnSprm:0];          // number of pixels in X direction
reg [7:0] sprHeight [pnSprm:0];         // number of vertical pixels
reg [3:0] sprPlane [pnSprm:0];          // output plane sprite is in
reg [1:0] sprColorDepth [pnSprm:0];
reg [1:0] colorBits;
// Sprite DMA control
reg [8:0] sprBurstStart [pnSprm:0];
reg [8:0] sprBurstEnd   [pnSprm:0];
reg [31:0] vSyncT;                                                              // DMA on vSync

// display and timing signals
reg [31:0] hSprReset;   // horizontal reset
reg [31:0] vSprReset;   // vertical reset
reg [31:0] hSprDe;              // sprite horizontal display enable
reg [31:0] vSprDe;              // sprite vertical display enable
reg [31:0] sprDe;                       // display enable
reg [phBits-1:0] hSprPos [pnSprm:0];    // sprite horizontal position
reg [pvBits-1:0] vSprPos [pnSprm:0];    // sprite vertical position
reg [7:0] hSprCnt [pnSprm:0];   // sprite horizontal display counter
reg [7:0] vSprCnt [pnSprm:0];   // vertical display counter
reg [11:0] sprImageOffs [pnSprm:0];     // offset within sprite memory
reg [12:0] sprAddr [pnSprm:0];  // index into sprite memory (pixel number)
reg [9:0] sprAddr1 [pnSprm:0];  // index into sprite memory
reg [9:0] sprAddr2 [pnSprm:0];  // index into sprite memory
reg [9:0] sprAddr3 [pnSprm:0];  // index into sprite memory
reg [9:0] sprAddr4 [pnSprm:0];  // index into sprite memory
reg [11:0] sprAddrB [pnSprm:0]; // backup address cache for rescan
wire [23:0] sprOut4 [pnSprm:0]; // sprite image data output
reg [23:0] sprOut [pnSprm:0];   // sprite image data output
reg [23:0] sprOut5 [pnSprm:0];  // sprite image data output

// DMA access
reg [31:12] sprSysAddr [pnSprm:0];      // system memory address of sprite image (low bits)
reg [4:0] dmaOwner;                     // which sprite has the DMA channel
reg [31:0] sprDt;               // DMA trigger register
reg dmaActive;                          // this flag indicates that a block DMA transfer is active

genvar g;

//--------------------------------------------------------------------
// DMA control / bus interfacing
//--------------------------------------------------------------------
reg cs_regs;
always_ff @(posedge s_clk_i)
        cs_regs <= s_cyc_i & s_stb_i & s_cs_i;
always_ff @(posedge s_clk_i)
        adr_i <= s_adr_i;
always_ff @(posedge s_clk_i)
        dat_i <= s_dat_i;
always_ff @(posedge s_clk_i)
        we_i <= s_we_i;

ack_gen #(
        .READ_STAGES(3),
        .WRITE_STAGES(1),
        .REGISTER_OUTPUT(1)
)
uag1 (
        .clk_i(s_clk_i),
        .ce_i(1'b1),
        .i(cs_regs),
        .we_i(cs_regs & we_i),
        .o(s_ack_o)
);

assign irq = sprSprIRQ|sprBkIRQ;

//--------------------------------------------------------------------
// DMA control / bus interfacing
//--------------------------------------------------------------------

reg [5:0] dmaStart;
reg [8:0] cob;  // count of burst cycles

assign m_bte_o = 2'b00;
assign m_cti_o = 3'b000;
assign m_stb_o = m_cyc_o;
assign m_we_o = 1'b0;
assign m_sel_o = {4{m_cyc_o}};
assign m_dat_o = 48'h0;
assign m_spriteno_o = dmaOwner;

reg [2:0] mstate;
parameter IDLE = 3'd0;
parameter ACTIVE = 3'd1;
parameter ACK = 3'd2;
parameter NACK = 3'd3;

wire pe_m_ack_i;
edge_det ued2 (.rst(rst_i), .clk(m_clk_i), .ce(1'b1), .i(m_ack_i), .pe(pe_m_ack_i), .ne(), .ee());

always_ff @(posedge m_clk_i)
if (rst_i)
        mstate <= IDLE;
else begin
        case(mstate)
        IDLE:
                if (|sprDt)
                        mstate <= ACTIVE;
        ACTIVE:
                mstate <= ACK;
        ACK:
                if (m_ack_i | m_err_i)
                        mstate <= NACK;
        NACK:
                if (~(m_ack_i|m_err_i))
                        mstate <= cob==sprBurstEnd[dmaOwner] ? IDLE : ACTIVE;
        default:
                mstate <= IDLE;
        endcase
end

integer n30;
always_ff @(posedge m_clk_i)
begin
        case(mstate)
        IDLE:
                begin
                        dmaOwner <= 5'd0;
                        for (n30 = pnSprm; n30 >= 0; n30 = n30 - 1)
                                if (sprDt[n30])
                                        dmaOwner <= n30;
                end
        default:        ;
        endcase
end

always_ff @(posedge m_clk_i)
if (rst_i)
        dmaStart <= 6'b0;
else begin
        dmaStart <= {dmaStart[4:0],1'b0};
        case(mstate)
        IDLE:
                if (|sprDt)
                        dmaStart <= 6'h3F;
        default:        ;
        endcase
end

integer n32;
always_ff @(posedge m_clk_i)
begin
        case(mstate)
        IDLE:
                for (n32 = pnSprm; n32 >= 0; n32 = n32 - 1)
                        if (sprDt[n32])
                                cob <= sprBurstStart[n32];
        ACTIVE:
                cob <= cob + 2'd1;
        default:        ;
        endcase
end

always_ff @(posedge m_clk_i)
if (rst_i)
        wb_m_nack();
else begin
        case(mstate)
        IDLE:
                wb_m_nack();
        ACTIVE:
                begin
                        m_cyc_o <= 1'b1;
                        m_adr_o <= {sprSysAddr[dmaOwner],cob[8:0],3'h0};
                end
        ACK:
                if (m_ack_i|m_err_i)
                        wb_m_nack();
        endcase
end

task wb_m_nack;
begin
        m_cyc_o <= 1'b0;
        m_adr_o <= 36'h0;
end
endtask


// generate a write enable strobe for the sprite image memory
integer n1;
always_ff @(posedge m_clk_i)
for (n1 = 0; n1 < pnSpr; n1 = n1 + 1)
        sprWe[n1] <= (dmaOwner==n1 && m_ack_i);

reg [8:0] m_adr_or;
reg [47:0] m_dat_ir;
always_ff @(posedge m_clk_i)
if (m_ack_i)
        m_adr_or <= m_adr_o[11:3];
always_ff @(posedge m_clk_i)
if (m_ack_i) begin
        if (test)
                m_dat_ir <= {4{1'b0,dmaOwner,10'b0}};
        else
                m_dat_ir <= m_dat_i;
end

//--------------------------------------------------------------------
//--------------------------------------------------------------------

reg [11:0] reg_shadow [0:1023];
reg [9:0] radr;
always_ff @(posedge s_clk_i)
begin
    if (cs_regs & we_i)  reg_shadow[adr_i[9:0]] <= dat_i;
end
always @(posedge s_clk_i)
    radr <= adr_i[9:0];
wire [11:0] reg_shadow_o = reg_shadow[radr];

// register/sprite memory output mux
always_ff @(posedge s_clk_i)
        if (cs_regs)
                case (adr_i[9:0])               // synopsys full_case parallel_case
                10'b1111000000: s_dat_o <= 12'h0;
                10'b1111000001: s_dat_o <= {4'h0,sprEn[31:24]};
                10'b1111000010: s_dat_o <= sprEn[23:12];
                10'b1111000011: s_dat_o <= sprEn[11: 0];
                10'b1111000100: s_dat_o <= {10'b0,sprBkIe,sprSprIe};
                10'b1111000101: s_dat_o <= {4'h0,sprBkIRQPending|sprSprIRQPending,5'b0,sprBkIRQPending,sprSprIRQPending};
                10'b1111001000: s_dat_o <= 12'h0;
                10'b1111001001: s_dat_o <= {4'h0,sprSprCollision[31:24]};
                10'b1111001010: s_dat_o <= sprSprCollision[23:12];
                10'b1111001011: s_dat_o <= sprSprCollision[11: 0];
                10'b1111001100: s_dat_o <= 12'h0;
                10'b1111001101: s_dat_o <= {4'h0,sprBkCollision[31:24]};
                10'b1111001110: s_dat_o <= sprBkCollision[23:12];
                10'b1111001111: s_dat_o <= sprBkCollision[11: 0];
                10'b1111010000: s_dat_o <= 12'h0;
                10'b1111010001: s_dat_o <= {4'h0,sprDt[31:24]};
                10'b1111010010: s_dat_o <= sprDt[23:12];
                10'b1111010011: s_dat_o <= sprDt[11: 0];
                default:        s_dat_o <= reg_shadow_o;
                endcase
        else
                s_dat_o <= 12'h0;


// vclk -> clk_i
always @(posedge s_clk_i)
begin
        sprSprIRQ <= sprSprIRQ1;
        sprBkIRQ <= sprBkIRQ1;
        sprSprIRQPending <= sprSprIRQPending1;
        sprBkIRQPending <= sprBkIRQPending1;
        sprSprCollision <= sprSprCollision1;
        sprBkCollision <= sprBkCollision1;
end


// register updates
// on the clk_i domain
reg vSync1;
integer n33;
always_ff @(posedge s_clk_i)
if (rst_i) begin
        vSyncT <= 32'hFFFFFFFF;
        sprEn <= 32'hFFFFFFFF;
        sprDt <= 0;
  for (n33 = 0; n33 < pnSpr; n33 = n33 + 1) begin
                sprSysAddr[n33] <= 24'b0000_0000_0000_0011_0000_0000 + n33;     //0030_0000
        end
        sprSprIe <= 0;
        sprBkIe  <= 0;

  // Set reasonable starting positions on the screen
  // so that the sprites might be visible for testing
  for (n33 = 0; n33 < pnSpr; n33 = n33 + 1) begin
    hSprPos[n33] <= 200 + (n33 & 7) * 70;
    vSprPos[n33] <= 100 + (n33 >> 3) * 100;
    sprTc[n33] <= 24'h396739;
                sprWidth[n33] <= 8'd56;  // 56x36 sprites
                sprHeight[n33] <= 8'd36;
                hSprRes[n33] <= 0;      // our standard display
                vSprRes[n33] <= 0;
                sprImageOffs[n33] <= 0;
                sprPlane[n33] <= 4'hF;//n[3:0];
                sprBurstStart[n33] <= 9'h000;
                sprBurstEnd[n33] <= 9'h1FF;
                sprColorDepth[n33] <= 2'b10;
        end
  hSprPos[0] <= 210;
  vSprPos[0] <= 72;

  bgTc <= 24'h08_08_08;
  bkColor <= 24'hFF_FF_60;
end
else begin
        vSync1 <= vSync;
        if (vSync & ~vSync1)
                sprDt <= sprDt | vSyncT;

        // clear DMA trigger bit once DMA is recognized
        if (dmaStart[5])
                sprDt[dmaOwner] <= 1'b0;

        if (cs_regs & we_i) begin

                casez (adr_i[9:0])
                10'b100?????00: sprBurstStart[adr_i[6:2]] <= dat_i[8:0];
                10'b100?????01: sprBurstEnd[adr_i[6:2]] <= dat_i[8:0];
                10'b1111000000: ;       // 3C0
                10'b1111000001: sprEn[31:24] <= dat_i[7:0];
                10'b1111000010: sprEn[23:12] <= dat_i;
                10'b1111000011: sprEn[11: 0] <= dat_i;
                10'b1111000100: // 3C4
                        begin
                                sprSprIe <= dat_i[0];
                                sprBkIe <= dat_i[1];
                        end
                // update DMA trigger
                // s_dat_i[7:0] indicates which triggers to set  (1=set,0=ignore)
                // s_dat_i[7:0] indicates which triggers to clear (1=clear,0=ignore)
                10'b1111010000: ;       // 3D0
                10'b1111010001: sprDt[31:24] <= sprDt[31:24] | dat_i[7:0];
                10'b1111010010: sprDt[23:12] <= sprDt[23:12] | dat_i;
                10'b1111010011: sprDt[11: 0] <= sprDt[11: 0] | dat_i;
                10'b1111010100: ;       // 3D4
                10'b1111010101: sprDt[31:24] <= sprDt[31:24] & ~dat_i[7:0];
                10'b1111010110: sprDt[23:12] <= sprDt[23:12] & ~dat_i;
                10'b1111010111: sprDt[11: 0] <= sprDt[11: 0] & ~dat_i;
                10'b1111011000: ;       // 3D8
                10'b1111011001: vSyncT[31:24] <= dat_i[7:0];
                10'b1111011010: vSyncT[23:12] <= dat_i;
                10'b1111011011: vSyncT[11: 0] <= dat_i;
                10'b1111101000: ;       // 3E8
                10'b1111101001: ;
                10'b1111101010: bgTc[23:12] <= dat_i;
                10'b1111101011: bgTc[11: 0] <= dat_i;
                10'b1111101100: ;       // 3EC
                10'b1111101101: ;
                10'b1111101110: bkColor[23:12] <= dat_i;
                10'b1111101111: bkColor[11: 0] <= dat_i;
                10'b0?????0000: hSprPos[sprN] <= dat_i[10: 0];
                10'b0?????0001: vSprPos[sprN] <= dat_i[10: 0];
                10'b0?????0100: sprWidth[sprN] <= dat_i[7:0];
                10'b0?????0101: sprHeight[sprN] <= dat_i[7:0];
                10'b0?????0110:
                                begin
                hSprRes[sprN] <= dat_i[3:0];
                vSprRes[sprN] <= dat_i[7:4];
                                end
                10'b0?????0111:
                                begin
                                        sprPlane[sprN] <= dat_i[3:0];
                                        sprColorDepth[sprN] <= dat_i[7:6];
                                end
                10'b0?????1000: ;// DMA address set on clk_i domain
                10'b0?????1001: sprSysAddr[sprN][31:24] <= dat_i[7:0];
                10'b0?????1010: sprSysAddr[sprN][23:12] <= dat_i;
                10'b0?????1011: sprImageOffs[sprN][10:0] <= dat_i[10:0];
                10'b0?????1100: sprTc[sprN][23:12] <= dat_i;
                10'b0?????1101: sprTc[sprN][11: 0] <= dat_i;
                default:        ;
                endcase
        
        end
end

//-------------------------------------------------------------
// Sprite Image Cache RAM
// This RAM is dual ported with an SoC side and a display
// controller side.
//-------------------------------------------------------------

integer n2;
always_ff @(posedge vclk)
for (n2 = 0; n2 < pnSpr; n2 = n2 + 1)
case(sprColorDepth[n2])
2'd1:   sprAddr1[n2] <= sprAddr[n2][11:2];
2'd2:   sprAddr1[n2] <= sprAddr[n2][10:1];
2'd3:   sprAddr1[n2] <= sprAddr[n2][ 9:0];
default:        ;
endcase

integer n4, n5, n27;
always_ff @(posedge vclk)
for (n4 = 0; n4 < pnSpr; n4 = n4 + 1)
        sprAddr2[n4] <= sprAddr1[n4];
always_ff @(posedge vclk)
for (n5 = 0; n5 < pnSpr; n5 = n5 + 1)
        sprAddr3[n5] <= sprAddr2[n5];
always_ff @(posedge vclk)
for (n27 = 0; n27 < pnSpr; n27 = n27 + 1)
        sprAddr4[n27] <= sprAddr3[n27];

// The pixels are displayed from most signicant to least signicant bits of the 
// word. Display order is opposite to memory storage. So, the least significant
// address bits are flipped to get the correct display.
integer n3;
always_ff @(posedge vclk)
for (n3 = 0; n3 < pnSpr; n3 = n3 + 1)
case(sprColorDepth[n3])
2'd1:
        case(~sprAddr4[n3][1:0])
        2'd3:   sprOut5[n3] <= sprOut4[n3][23:18];
        2'd2:   sprOut5[n3] <= sprOut4[n3][17:12];
        2'd1:   sprOut5[n3] <= sprOut4[n3][11:6];
        2'd0:   sprOut5[n3] <= sprOut4[n3][5:0];
        endcase
2'd2:
        case(~sprAddr4[n3][0])
        1'd0:   sprOut5[n3] <= {sprOut4[n3][12],20'h0000,sprOut4[n3][10:0]};
        1'd1:   sprOut5[n3] <= {sprOut4[n3][23],20'h0000,sprOut4[n3][22:12]};
        endcase
2'd3:
        sprOut5[n3] <= sprOut4[n3];
default:        ;
endcase

generate
for (g = 0; g < pnSpr; g = g + 1) begin : sprRam
        SpriteRam_x12 sprRam0
        (
                .clka(m_clk_i),
                .addra(m_adr_or),
                .dina(m_dat_ir),
                .ena(sprWe[g]),
                .wea(sprWe[g]),
                // Core reg and output reg 3 clocks from read address
                .clkb(vclk),
                .addrb(sprAddr1[g]),
                .doutb(sprOut4[g]),
                .enb(1'b1)
        );
        end
endgenerate

//-------------------------------------------------------------
// Timing counters and addressing
// Sprites are like miniature bitmapped displays, they need
// all the same timing controls.
//-------------------------------------------------------------

// Create a timing reference using horizontal and vertical
// sync
wire hSyncEdge, vSyncEdge;
edge_det ed0(.rst(rst_i), .clk(vclk), .ce(1'b1), .i(hSync), .pe(hSyncEdge), .ne(), .ee() );
edge_det ed1(.rst(rst_i), .clk(vclk), .ce(1'b1), .i(vSync), .pe(vSyncEdge), .ne(), .ee() );

always_ff @(posedge vclk)
if (hSyncEdge) hctr <= {phBits{1'b0}};
else hctr <= hctr + 2'd1;

always_ff @(posedge vclk)
if (vSyncEdge) vctr <= {pvBits{1'b0}};
else if (hSyncEdge) vctr <= vctr + 2'd1;

// track sprite horizontal reset
integer n19;
always_ff @(posedge vclk)
for (n19 = 0; n19 < pnSpr; n19 = n19 + 1)
        hSprReset[n19] <= hctr==hSprPos[n19];

// track sprite vertical reset
integer n20;
always_ff @(posedge vclk)
for (n20 = 0; n20 < pnSpr; n20 = n20 + 1)
        vSprReset[n20] <= vctr==vSprPos[n20];

integer n21;
always_comb
for (n21 = 0; n21 < pnSpr; n21 = n21 + 1)
        sprDe[n21] <= hSprDe[n21] & vSprDe[n21];


// take care of sprite size scaling
// video clock division
reg [31:0] hSprNextPixel;
reg [31:0] vSprNextPixel;
reg [3:0] hSprPt [31:0];   // horizontal pixel toggle
reg [3:0] vSprPt [31:0];   // vertical pixel toggle
integer n17;
always_comb
for (n17 = 0; n17 < pnSpr; n17 = n17 + 1)
    hSprNextPixel[n17] = hSprPt[n17]==hSprRes[n17];
integer n18;
always_comb
for (n18 = 0; n18 < pnSpr; n18 = n18 + 1)
    vSprNextPixel[n18] = vSprPt[n18]==vSprRes[n18];

// horizontal pixel toggle counter
integer n6;
always_ff @(posedge vclk)
for (n6 = 0; n6 < pnSpr; n6 = n6 + 1)
        if (hSprReset[n6])
                hSprPt[n6] <= 4'd0;
  else if (hSprNextPixel[n6])
    hSprPt[n6] <= 4'd0;
  else
    hSprPt[n6] <= hSprPt[n6] + 2'd1;

// vertical pixel toggle counter
integer n7;
always_ff @(posedge vclk)
for (n7 = 0; n7 < pnSpr; n7 = n7 + 1)
  if (hSprReset[n7]) begin
        if (vSprReset[n7])
                vSprPt[n7] <= 4'd0;
    else if (vSprNextPixel[n7])
      vSprPt[n7] <= 4'd0;
    else
      vSprPt[n7] <= vSprPt[n7] + 2'd1;
  end


// clock sprite image address counters
integer n8;
always_ff @(posedge vclk)
for (n8 = 0; n8 < pnSpr; n8 = n8 + 1) begin
    // hReset and vReset - top left of sprite,
    // reset address to image offset
        if (hSprReset[n8] & vSprReset[n8]) begin
                sprAddr[n8]  <= sprImageOffs[n8];
                sprAddrB[n8] <= sprImageOffs[n8];
        end
        // hReset:
        //  If the next vertical pixel
        //      set backup address to current address
        //  else
        //      set current address to backup address
        //      in order to rescan the line
        else if (hSprReset[n8]) begin
                if (vSprNextPixel[n8])
                        sprAddrB[n8] <= sprAddr[n8];
                else
                        sprAddr[n8]  <= sprAddrB[n8];
        end
        // Not hReset or vReset - somewhere on the sprite scan line
        // just advance the address when the next pixel should be
        // fetched
        else if (hSprDe[n8] & hSprNextPixel[n8])
                sprAddr[n8] <= sprAddr[n8] + 2'd1;
end


// clock sprite column (X) counter
integer n9;
always_ff @(posedge vclk)
for (n9 = 0; n9 < pnSpr; n9 = n9 + 1)
        if (hSprReset[n9])
                hSprCnt[n9] <= 8'd1;
        else if (hSprNextPixel[n9])
                hSprCnt[n9] <= hSprCnt[n9] + 2'd1;


// clock sprite horizontal display enable
integer n10;
always_ff @(posedge vclk)
for (n10 = 0; n10 < pnSpr; n10 = n10 + 1) begin
        if (hSprReset[n10])
                hSprDe[n10] <= 1'b1;
        else if (hSprNextPixel[n10]) begin
                if (hSprCnt[n10] == sprWidth[n10])
                        hSprDe[n10] <= 1'b0;
        end
end


// clock the sprite row (Y) counter
integer n11;
always_ff @(posedge vclk)
for (n11 = 0; n11 < pnSpr; n11 = n11 + 1)
        if (hSprReset[n11]) begin
                if (vSprReset[n11])
                        vSprCnt[n11] <= 8'd1;
                else if (vSprNextPixel[n11])
                        vSprCnt[n11] <= vSprCnt[n11] + 2'd1;
        end


// clock sprite vertical display enable
integer n12;
always_ff @(posedge vclk)
for (n12 = 0; n12 < pnSpr; n12 = n12 + 1) begin
        if (hSprReset[n12]) begin
                if (vSprReset[n12])
                        vSprDe[n12] <= 1'b1;
                else if (vSprNextPixel[n12]) begin
                        if (vSprCnt[n12] == sprHeight[n12])
                                vSprDe[n12] <= 1'b0;
                end
        end
end


//-------------------------------------------------------------
// Output stage
//-------------------------------------------------------------

// function used for color blending
// given an alpha and a color component, determine the resulting color
// this blends towards black or white
// alpha is eight bits ranging between 0 and 1.999...
// 1 bit whole, 7 bits fraction
function [7:0] fnBlend;
input [7:0] alpha;
input [7:0] colorbits;

begin
        fnBlend = (({8'b0,colorbits} * alpha) >> 7);
end
endfunction


// pipeline delays for display enable
reg [31:0] sprDe1, sprDe2, sprDe3, sprDe4, sprDe5, sprDe6;
reg [31:0] sproact;
integer n13;
always_ff @(posedge vclk)
for (n13 = 0; n13 < pnSpr; n13 = n13 + 1)
        sprDe1[n13] <= sprDe[n13];
integer n22;
always_ff @(posedge vclk)
for (n22 = 0; n22 < pnSpr; n22 = n22 + 1)
        sprDe2[n22] <= sprDe1[n22];
integer n23;
always_ff @(posedge vclk)
for (n23 = 0; n23 < pnSpr; n23 = n23 + 1)
        sprDe3[n23] <= sprDe2[n23];
integer n24;
always_ff @(posedge vclk)
for (n24 = 0; n24 < pnSpr; n24 = n24 + 1)
        sprDe4[n24] <= sprDe3[n24];
integer n25;
always_ff @(posedge vclk)
for (n25 = 0; n25 < pnSpr; n25 = n25 + 1)
        sprDe5[n25] <= sprDe4[n25];
integer n26;
always_ff @(posedge vclk)
for (n26 = 0; n26 < pnSpr; n26 = n26 + 1)
        sprDe6[n26] <= sprDe5[n26];


// Detect which sprite outputs are active
// The sprite output is active if the current display pixel
// address is within the sprite's area, the sprite is enabled,
// and it's not a transparent pixel that's being displayed.
integer n14;
always_ff @(posedge vclk)
for (n14 = 0; n14 < pnSpr; n14 = n14 + 1)
        sproact[n14] <= sprEn[n14] && sprDe5[n14] && sprTc[n14]!=sprOut5[n14];
integer n15;
always_ff @(posedge vclk)
for (n15 = 0; n15 < pnSpr; n15 = n15 + 1)
        sprOut[n15] <= sprOut5[n15];

// register sprite activity flag
// The image combiner uses this flag to know what to do with
// the sprite output.
always_ff @(posedge vclk)
        outact <= |sproact;

// Display data comes from the active sprite with the
// highest display priority.
// Make sure that alpha blending is turned off when
// no sprite is active.
integer n16;
always_ff @(posedge vclk)
begin
        out <= 24'h080; // alpha blend max (and off)
        outplane <= 4'h0;
        colorBits <= 2'b00;
        for (n16 = pnSprm; n16 >= 0; n16 = n16 - 1)
                if (sproact[n16]) begin
                        out <= sprOut[n16];
                        outplane <= sprPlane[n16];
                        colorBits <= sprColorDepth[n16];
                end
end


// combine the text / graphics color output with sprite color output
// blend color output
wire [23:0] blendedColor = {
        fnBlend(out[7:0],zrgbIn[23:16]),                // R
        fnBlend(out[7:0],zrgbIn[15: 8]),                // G
        fnBlend(out[7:0],zrgbIn[ 7: 0])};       // B


always_ff @(posedge vclk)
if (blank_i)
        zrgbOut <= 0;
else begin
        if (outact) begin
                if (zrgbIn[31:28] > outplane) begin                     // rgb input is in front of sprite
                        zrgbOut <= zrgbIn;
                end
                else 
                if (!out[23]) begin                     // a sprite is displayed without alpha blending
                        case(colorBits)
                        2'd0:   zrgbOut <= {outplane,4'h0,out[5:4],6'b0,out[3:2],6'b0,out[1:0],6'b0};
                        2'd1:   zrgbOut <= {outplane,4'h0,out[5:4],6'b0,out[3:2],6'b0,out[1:0],6'b0};
                        2'd2:   zrgbOut <= {outplane,4'h0,out[10:7],4'b0,out[6:3],4'b0,out[2:0],5'b0};
                        2'd3:   zrgbOut <= {outplane,4'h0,out[22:15],out[14:7],out[6:0]};
                        endcase
                end
                else
                        zrgbOut <= {outplane,4'h0,blendedColor};
        end
        else
                zrgbOut <= zrgbIn;
end


//--------------------------------------------------------------------
// Collision logic
//--------------------------------------------------------------------

// Detect when a sprite-sprite collision has occurred. The criteria
// for this is that a pixel from the sprite is being displayed, while
// there is a pixel from another sprite that could be displayed at the
// same time.

//--------------------------------------------------------------------
// Note this case has to be modified for the number of sprites
//--------------------------------------------------------------------
integer m1;
always_comb
begin
        sprCollision = sproact!=32'd0;
        for (m1 = 0; m1 < pnSpr; m1 = m1 + 1)
                sprCollision = sprCollision && !(sproact == (32'd1 << m1));
end

// Detect when a sprite-background collision has occurred
integer n31;
always_comb
for (n31 = 0; n31 < pnSpr; n31 = n31 + 1)
        bkCollision[n31] <=
                sproact[n31] && zrgbIn[31:28]==sprPlane[n31];

// Load the sprite collision register. This register continually
// accumulates collision bits until reset by reading the register.
// Set the collision IRQ on the first collision and don't set it
// again until after the collision register has been read.
always @(posedge vclk)
if (rst_i) begin
        sprSprIRQPending1 <= 0;
        sprSprCollision1 <= 0;
        sprSprIRQ1 <= 0;
end
else if (sprCollision) begin
        // isFirstCollision
        if ((sprSprCollision1==0)||(cs_regs && adr_i[9:2]==8'b11110010)) begin
                sprSprIRQPending1 <= 1;
                sprSprIRQ1 <= sprSprIe;
                sprSprCollision1 <= sproact;
        end
        else
                sprSprCollision1 <= sprSprCollision1|sproact;
end
else if (cs_regs && adr_i[9:2]==8'b11110010) begin
        sprSprCollision1 <= 0;
        sprSprIRQPending1 <= 0;
        sprSprIRQ1 <= 0;
end


// Load the sprite background collision register. This register
// continually accumulates collision bits until reset by reading
// the register.
// Set the collision IRQ on the first collision and don't set it
// again until after the collision register has been read.
// Note the background collision indicator is externally supplied,
// it will come from the color processing logic.
always @(posedge vclk)
if (rst_i) begin
        sprBkIRQPending1 <= 0;
        sprBkCollision1 <= 0;
        sprBkIRQ1 <= 0;
end
else if (|bkCollision) begin
        // Is the register being cleared at the same time
        // a collision occurss ?
        // isFirstCollision
        if ((sprBkCollision1==0) || (cs_regs && adr_i[9:2]==8'b11110011)) begin 
                sprBkIRQ1 <= sprBkIe;
                sprBkCollision1 <= bkCollision;
                sprBkIRQPending1 <= 1;
        end
        else
                sprBkCollision1 <= sprBkCollision1|bkCollision;
end
else if (cs_regs && adr_i[9:2]==8'b11110011) begin
        sprBkCollision1 <= 0;
        sprBkIRQPending1 <= 0;
        sprBkIRQ1 <= 0;
end

endmodule

/*
module SpriteRam32 (
        clka, adra, dia, doa, cea, wea,
        clkb, adrb, dib, dob, ceb, web
);
input clka;
input [9:0] adra;
input [31:0] dia;
output [31:0] doa;
input cea;
input wea;
input clkb;
input [9:0] adrb;
input [31:0] dib;
output [31:0] dob;
input ceb;
input web;

reg [31:0] mem [0:1023];
reg [9:0] radra;
reg [9:0] radrb;

always @(posedge clka)  if (cea) radra <= adra;
always @(posedge clkb)  if (ceb) radrb <= adrb;
assign doa = mem [radra];
assign dob = mem [radrb];
always @(posedge clka)
        if (cea & wea) mem[adra] <= dia;
always @(posedge clkb)
        if (ceb & web) mem[adrb] <= dib;

endmodule

*/

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.