URL
https://opencores.org/ocsvn/rtfbitmapcontroller/rtfbitmapcontroller/trunk
Subversion Repositories rtfbitmapcontroller
[/] [rtfbitmapcontroller/] [trunk/] [rtl/] [verilog/] [rfFrameBuffer_fta64.sv] - Rev 28
Go to most recent revision | Compare with Previous | Blame | View Log
`timescale 1ns / 1ps
// ============================================================================
// __
// \\__/ o\ (C) 2008-2023 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
// rfFrameBuffer_fta64.sv
// - Displays a bitmap from memory.
//
//
// BSD 3-Clause License
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//
// The default base screen address is:
// $0200000 - the third meg of RAM
//
// ============================================================================
//`define USE_CLOCK_GATE 1'b1
`define INTERNAL_SYNC_GEN 1'b1
`define WXGA800x600 1'b1
//`define WXGA1366x768 1'b1
`define FBC_ADDR 32'hFD0400001
import const_pkg::*;
`define ABITS 31:0
import fta_bus_pkg::*;
import gfx_pkg::*;
module rfFrameBuffer_fta64(
rst_i,
irq_o,
cs_config_i,
cs_io_i,
s_clk_i, s_req, s_resp,
m_clk_i, m_fst_o,
// m_cyc_o, m_stb_o, m_ack_i, m_we_o, m_sel_o, m_adr_o, m_dat_i, m_dat_o,
m_req, m_resp,
dot_clk_i, rgb_i, rgb_o, xonoff_i, xal_o
`ifdef INTERNAL_SYNC_GEN
, hsync_o, vsync_o, blank_o, border_o, hctr_o, vctr_o, fctr_o, vblank_o
`else
, hsync_i, vsync_i, blank_i
`endif
);
parameter BUSWID = 64;
parameter FBC_ADDR = 32'hFED70001;
parameter FBC_ADDR_MASK = 32'h00FF0000;
parameter CFG_BUS = 8'd0;
parameter CFG_DEVICE = 5'd0;
parameter CFG_FUNC = 3'd0;
parameter CFG_VENDOR_ID = 16'h0;
parameter CFG_DEVICE_ID = 16'h0;
parameter CFG_SUBSYSTEM_VENDOR_ID = 16'h0;
parameter CFG_SUBSYSTEM_ID = 16'h0;
parameter CFG_ROM_ADDR = 32'hFFFFFFF0;
parameter CFG_REVISION_ID = 8'd0;
parameter CFG_PROGIF = 8'd1;
parameter CFG_SUBCLASS = 8'h80; // 80 = Other
parameter CFG_CLASS = 8'h03; // 03 = display controller
parameter CFG_CACHE_LINE_SIZE = 8'd8; // 32-bit units
parameter CFG_MIN_GRANT = 8'h00;
parameter CFG_MAX_LATENCY = 8'h00;
parameter CFG_IRQ_LINE = 8'd6;
localparam CFG_HEADER_TYPE = 8'h00; // 00 = a general device
parameter MSIX = 1'b0;
parameter IRQ_MSGADR = 64'h0FD0900C1;
parameter IRQ_MSGDAT = 64'h1;
parameter PHYS_ADDR_BITS = 32;
localparam BITS_IN_ADDR_MAP = PHYS_ADDR_BITS - 16;
parameter MDW = 128; // Bus master data width
parameter MAP = 12'd0;
parameter BM_BASE_ADDR1 = 32'h00000000;
parameter BM_BASE_ADDR2 = 32'h00100000;
parameter REG_CTRL = 11'd0;
parameter REG_REFDELAY = 11'd1;
parameter REG_PAGE1ADDR = 11'd2;
parameter REG_PAGE2ADDR = 11'd3;
parameter REG_PXYZ = 11'd4;
parameter REG_PCOLCMD = 11'd5;
parameter REG_TOTAL = 11'd8;
parameter REG_SYNC_ONOFF = 11'd9;
parameter REG_BLANK_ONOFF = 11'd10;
parameter REG_BORDER_ONOFF = 11'd11;
parameter REG_RASTCMP = 11'd12;
parameter REG_BMPSIZE = 11'd13;
parameter REG_OOB_COLOR = 11'd14;
parameter REG_WINDOW = 11'd15;
parameter REG_IRQ_MSGADR = 11'd16;
parameter REG_IRQ_MSGDAT = 11'd17;
parameter REG_TRANS_COLOR = 11'd18;
parameter OPBLACK = 4'd0;
parameter OPCOPY = 4'd1;
parameter OPINV = 4'd2;
parameter OPAND = 4'd4;
parameter OPOR = 4'd5;
parameter OPXOR = 4'd6;
parameter OPANDN = 4'd7;
parameter OPNAND = 4'd8;
parameter OPNOR = 4'd9;
parameter OPXNOR = 4'd10;
parameter OPORN = 4'd11;
parameter OPWHITE = 4'd15;
// Sync Generator defaults: 800x600 60Hz
// Driven by a 40MHz clock
`ifdef WXGA800x600
parameter phSyncOn = 40; // 40 front porch
parameter phSyncOff = 168; // 128 sync
parameter phBlankOff = 252; //256 // 88 back porch
//parameter phBorderOff = 336; // 80 border
parameter phBorderOff = 256; // 80 border
//parameter phBorderOn = 976; // 640 display
parameter phBorderOn = 1056; // 800 display
parameter phBlankOn = 1052; // 4 border
parameter phTotal = 1056; // 1056 total clocks
parameter pvSyncOn = 1; // 1 front porch
parameter pvSyncOff = 5; // 4 vertical sync
parameter pvBlankOff = 28; // 23 back porch
parameter pvBorderOff = 28; // 44 border 0
//parameter pvBorderOff = 72; // 44 border 0
parameter pvBorderOn = 628; // 600 display
//parameter pvBorderOn = 584; // 512 display
parameter pvBlankOn = 628; // 44 border 0
parameter pvTotal = 628; // 628 total scan lines
`endif
`ifdef WXGA1366x768
// Driven by an 85.86MHz clock
parameter phSyncOn = 72; // 72 front porch
parameter phSyncOff = 216; // 144 sync
parameter phBlankOff = 434; // 212 back porch
parameter phBorderOff = 434; // 0 border
parameter phBorderOn = 1800; // 1366 display
parameter phBlankOn = 1800; // 0 border
parameter phTotal = 1800; // 1800 total clocks
// 47.7 = 60 * 795 kHz
parameter pvSyncOn = 2; // 1 front porch
parameter pvSyncOff = 5; // 3 vertical sync
parameter pvBlankOff = 27; // 23 back porch
parameter pvBorderOff = 27; // 2 border 0
parameter pvBorderOn = 795; // 768 display
parameter pvBlankOn = 795; // 1 border 0
parameter pvTotal = 795; // 795 total scan lines
`endif
// SYSCON
input rst_i; // system reset
output reg [31:0] irq_o;
input cs_config_i;
input cs_io_i;
// Peripheral IO slave port
input s_clk_i;
input fta_cmd_request64_t s_req;
output fta_cmd_response64_t s_resp;
// Video Memory Master Port
// Used to read memory via burst access
input m_clk_i; // system bus interface clock
output reg m_fst_o; // first access on scanline
output fta_cmd_request128_t m_req;
input fta_cmd_response128_t m_resp;
// Video
input dot_clk_i; // Video clock 80 MHz
`ifdef INTERNAL_SYNC_GEN
output hsync_o;
output vsync_o;
output blank_o;
output vblank_o;
output border_o;
output [11:0] hctr_o;
output [11:0] vctr_o;
output [5:0] fctr_o;
`else
input hsync_i; // start/end of scan line
input vsync_i; // start/end of frame
input blank_i; // blank the output
`endif
input [31:0] rgb_i;
output [31:0] rgb_o; // 32-bit RGB output
reg [31:0] rgb_o;
input xonoff_i;
output reg xal_o; // external access line (sprite access)
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// IO registers
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
reg irq;
reg rst_irq,rst_irq2;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
wire vclk;
reg cs,cs2;
reg cs_config;
reg cs_map;
reg cs_reg;
wire cs_edge;
reg we;
reg [7:0] sel;
reg [31:0] adri;
reg [63:0] dat;
wire irq_en;
reg [63:0] s_dat_o;
wire ack;
always_ff @(posedge s_clk_i)
cs <= s_req.cyc & s_req.stb & cs_io_i;
always_ff @(posedge s_clk_i)
we <= s_req.we;
always_ff @(posedge s_clk_i)
sel <= s_req.sel;
always_ff @(posedge s_clk_i)
adri <= s_req.padr;
always_ff @(posedge s_clk_i)
dat <= s_req.dat;
always_ff @(posedge s_clk_i)
cs_config <= s_req.cyc & s_req.stb & cs_config_i && adri[27:20]==CFG_BUS && adri[19:15]==CFG_DEVICE && adri[14:12]==CFG_FUNC;
wire cs_fbc;
always_comb
cs_map = cs && cs_fbc && adri[15:14]==3'd1;
always_comb
cs_reg = cs && cs_fbc && adri[15:14]==3'd0;
assign s_resp.next = 1'b0;
assign s_resp.stall = 1'b0;
assign s_resp.err = 1'b0;
assign s_resp.rty = 1'b0;
assign s_resp.pri = 4'd7;
assign s_resp.dat = s_dat_o;
vtdl #(.WID(1), .DEP(16)) urdyd1 (.clk(s_clk_i), .ce(1'b1), .a(4'd3), .d(cs_map|cs_reg|cs_config), .q(ack));
vtdl #(.WID(1), .DEP(16)) urdyd2 (.clk(s_clk_i), .ce(1'b1), .a(4'd4), .d(cs_map|cs_reg|cs_config), .q(s_resp.ack));
vtdl #(.WID(4), .DEP(16)) urdyd3 (.clk(s_clk_i), .ce(1'b1), .a(4'd5), .d(s_req.cid), .q(s_resp.cid));
vtdl #(.WID($bits(fta_tranid_t)), .DEP(16)) urdyd4 (.clk(s_clk_i), .ce(1'b1), .a(4'd5), .d(s_req.tid), .q(s_resp.tid));
vtdl #(.WID(32), .DEP(16)) urdyd5 (.clk(s_clk_i), .ce(1'b1), .a(4'd5), .d(s_req.padr), .q(s_resp.adr));
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
integer n, n1;
reg [31:0] fbc_addr;
reg [11:0] rastcmp;
reg [`ABITS] bm_base_addr1,bm_base_addr2;
color_depth_t color_depth, color_depth2;
wire [7:0] fifo_cnt;
reg onoff;
reg [2:0] hres,vres;
reg greyscale;
reg page;
reg [3:0] pals; // palette select
reg [15:0] hrefdelay;
reg [15:0] vrefdelay;
reg [15:0] windowLeft;
reg [15:0] windowTop;
reg [11:0] windowWidth,windowHeight;
reg [11:0] map; // memory access period
reg [11:0] mapctr;
reg [15:0] bmpWidth; // scan line increment (pixels)
reg [15:0] bmpHeight;
reg [`ABITS] baseAddr; // base address register
wire [MDW-1:0] rgbo1, rgbo1e, rgbo1o, rgbo1m;
reg [15:0] pixelRow;
reg [15:0] pixelCol;
wire [63:0] pal_wo;
wire [31:0] pal_o;
reg [15:0] px;
reg [15:0] py;
reg [7:0] pz;
reg [1:0] pcmd,pcmd_o;
reg [3:0] raster_op;
reg [31:0] zrgb;
reg [31:0] oob_color; // out-of-bounds color
reg [31:0] trans_color; // transparent color
reg [31:0] color;
reg [31:0] color_o;
reg rstcmd,rstcmd1;
reg [11:0] hTotal = phTotal;
reg [11:0] vTotal = pvTotal;
reg [11:0] hSyncOn = phSyncOn, hSyncOff = phSyncOff;
reg [11:0] vSyncOn = pvSyncOn, vSyncOff = pvSyncOff;
reg [11:0] hBlankOn = phBlankOn, hBlankOff = phBlankOff;
reg [11:0] vBlankOn = pvBlankOn, vBlankOff = pvBlankOff;
reg [11:0] hBorderOn = phBorderOn, hBorderOff = phBorderOff;
reg [11:0] vBorderOn = pvBorderOn, vBorderOff = pvBorderOff;
reg sgLock;
wire pe_hsync, pe_hsync2;
wire pe_vsync;
reg [11:0] tocnt; // bus timeout counter
reg vm_cyc_o;
reg [31:0] vm_adr_o;
// config
reg [63:0] irq_msgadr = IRQ_MSGADR;
reg [63:0] irq_msgdat = IRQ_MSGDAT;
wire [BUSWID-1:0] cfg_out;
generate begin : gConfigSpace
if (BUSWID==32) begin
pci32_config #(
.CFG_BUS(CFG_BUS),
.CFG_DEVICE(CFG_DEVICE),
.CFG_FUNC(CFG_FUNC),
.CFG_VENDOR_ID(CFG_VENDOR_ID),
.CFG_DEVICE_ID(CFG_DEVICE_ID),
.CFG_BAR0(FBC_ADDR),
.CFG_BAR0_MASK(FBC_ADDR_MASK),
.CFG_SUBSYSTEM_VENDOR_ID(CFG_SUBSYSTEM_VENDOR_ID),
.CFG_SUBSYSTEM_ID(CFG_SUBSYSTEM_ID),
.CFG_ROM_ADDR(CFG_ROM_ADDR),
.CFG_REVISION_ID(CFG_REVISION_ID),
.CFG_PROGIF(CFG_PROGIF),
.CFG_SUBCLASS(CFG_SUBCLASS),
.CFG_CLASS(CFG_CLASS),
.CFG_CACHE_LINE_SIZE(CFG_CACHE_LINE_SIZE),
.CFG_MIN_GRANT(CFG_MIN_GRANT),
.CFG_MAX_LATENCY(CFG_MAX_LATENCY),
.CFG_IRQ_LINE(CFG_IRQ_LINE)
)
ucfg1
(
.rst_i(rst_i),
.clk_i(s_clk_i),
.irq_i(irq),
.irq_o(irq_o),
.cs_config_i(cs_config),
.we_i(we),
.sel_i(sel),
.adr_i(adri),
.dat_i(dat),
.dat_o(cfg_out),
.cs_bar0_o(cs_fbc),
.cs_bar1_o(),
.cs_bar2_o(),
.irq_en_o(irq_en)
);
end
else if (BUSWID==64) begin
pci64_config #(
.CFG_BUS(CFG_BUS),
.CFG_DEVICE(CFG_DEVICE),
.CFG_FUNC(CFG_FUNC),
.CFG_VENDOR_ID(CFG_VENDOR_ID),
.CFG_DEVICE_ID(CFG_DEVICE_ID),
.CFG_BAR0(FBC_ADDR),
.CFG_BAR0_MASK(FBC_ADDR_MASK),
.CFG_SUBSYSTEM_VENDOR_ID(CFG_SUBSYSTEM_VENDOR_ID),
.CFG_SUBSYSTEM_ID(CFG_SUBSYSTEM_ID),
.CFG_ROM_ADDR(CFG_ROM_ADDR),
.CFG_REVISION_ID(CFG_REVISION_ID),
.CFG_PROGIF(CFG_PROGIF),
.CFG_SUBCLASS(CFG_SUBCLASS),
.CFG_CLASS(CFG_CLASS),
.CFG_CACHE_LINE_SIZE(CFG_CACHE_LINE_SIZE),
.CFG_MIN_GRANT(CFG_MIN_GRANT),
.CFG_MAX_LATENCY(CFG_MAX_LATENCY),
.CFG_IRQ_LINE(CFG_IRQ_LINE)
)
ucfg1
(
.rst_i(rst_i),
.clk_i(s_clk_i),
.irq_i(irq),
.irq_o(irq_o),
.cs_config_i(cs_config),
.we_i(we),
.sel_i(sel),
.adr_i(adri),
.dat_i(dat),
.dat_o(cfg_out),
.cs_bar0_o(cs_fbc),
.cs_bar1_o(),
.cs_bar2_o(),
.irq_en_o(irq_en)
);
end
end
endgenerate
wire [15:0] map_page;
wire [15:0] map_out;
// xpm_memory_tdpram: True Dual Port RAM
// Xilinx Parameterized Macro, version 2022.2
xpm_memory_tdpram #(
.ADDR_WIDTH_A(11), // DECIMAL
.ADDR_WIDTH_B(11), // DECIMAL
.AUTO_SLEEP_TIME(0), // DECIMAL
.BYTE_WRITE_WIDTH_A(BITS_IN_ADDR_MAP),
.BYTE_WRITE_WIDTH_B(BITS_IN_ADDR_MAP),
.CASCADE_HEIGHT(0), // DECIMAL
.CLOCKING_MODE("independent_clock"), // String
.ECC_MODE("no_ecc"), // String
.MEMORY_INIT_FILE("fb_map.mem"), // String
.MEMORY_INIT_PARAM(""), // String
.MEMORY_OPTIMIZATION("true"), // String
.MEMORY_PRIMITIVE("auto"), // String
.MEMORY_SIZE(2048*BITS_IN_ADDR_MAP),
.MESSAGE_CONTROL(0), // DECIMAL
.READ_DATA_WIDTH_A(BITS_IN_ADDR_MAP),
.READ_DATA_WIDTH_B(BITS_IN_ADDR_MAP),
.READ_LATENCY_A(2), // DECIMAL
.READ_LATENCY_B(2), // DECIMAL
.READ_RESET_VALUE_A("0"), // String
.READ_RESET_VALUE_B("0"), // String
.RST_MODE_A("SYNC"), // String
.RST_MODE_B("SYNC"), // String
.SIM_ASSERT_CHK(0), // DECIMAL; 0=disable simulation messages, 1=enable simulation messages
.USE_EMBEDDED_CONSTRAINT(0), // DECIMAL
.USE_MEM_INIT(1), // DECIMAL
.USE_MEM_INIT_MMI(0), // DECIMAL
.WAKEUP_TIME("disable_sleep"), // String
.WRITE_DATA_WIDTH_A(16), // DECIMAL
.WRITE_DATA_WIDTH_B(16), // DECIMAL
.WRITE_MODE_A("no_change"), // String
.WRITE_MODE_B("no_change"), // String
.WRITE_PROTECT(1) // DECIMAL
)
umap (
.dbiterra(), // 1-bit output: Status signal to indicate double bit error occurrence
// on the data output of port A.
.dbiterrb(), // 1-bit output: Status signal to indicate double bit error occurrence
// on the data output of port A.
.douta(map_out), // READ_DATA_WIDTH_A-bit output: Data output for port A read operations.
.doutb(map_page), // READ_DATA_WIDTH_B-bit output: Data output for port B read operations.
.sbiterra(), // 1-bit output: Status signal to indicate single bit error occurrence
// on the data output of port A.
.sbiterrb(), // 1-bit output: Status signal to indicate single bit error occurrence
// on the data output of port B.
.addra(adri[13:3]), // ADDR_WIDTH_A-bit input: Address for port A write and read operations.
.addrb(vm_adr_o[26:16]), // ADDR_WIDTH_B-bit input: Address for port B write and read operations.
.clka(s_clk_i), // 1-bit input: Clock signal for port A. Also clocks port B when
// parameter CLOCKING_MODE is "common_clock".
.clkb(m_clk_i), // 1-bit input: Clock signal for port B when parameter CLOCKING_MODE is
// "independent_clock". Unused when parameter CLOCKING_MODE is
// "common_clock".
.dina(dat[15:0]), // WRITE_DATA_WIDTH_A-bit input: Data input for port A write operations.
.dinb(16'd0), // WRITE_DATA_WIDTH_B-bit input: Data input for port B write operations.
.ena(cs_map), // 1-bit input: Memory enable signal for port A. Must be high on clock
// cycles when read or write operations are initiated. Pipelined
// internally.
.enb(onoff), // 1-bit input: Memory enable signal for port B. Must be high on clock
// cycles when read or write operations are initiated. Pipelined
// internally.
.injectdbiterra(1'b0), // 1-bit input: Controls double bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.injectdbiterrb(1'b0), // 1-bit input: Controls double bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.injectsbiterra(1'b0), // 1-bit input: Controls single bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.injectsbiterrb(1'b0), // 1-bit input: Controls single bit error injection on input data when
// ECC enabled (Error injection capability is not available in
// "decode_only" mode).
.regcea(1'b1), // 1-bit input: Clock Enable for the last register stage on the output
// data path.
.regceb(onoff), // 1-bit input: Clock Enable for the last register stage on the output
// data path.
.rsta(1'b0), // 1-bit input: Reset signal for the final port A output register stage.
// Synchronously resets output port douta to the value specified by
// parameter READ_RESET_VALUE_A.
.rstb(1'b0), // 1-bit input: Reset signal for the final port B output register stage.
// Synchronously resets output port doutb to the value specified by
// parameter READ_RESET_VALUE_B.
.sleep(~onoff), // 1-bit input: sleep signal to enable the dynamic power saving feature.
.wea(we), // WRITE_DATA_WIDTH_A/BYTE_WRITE_WIDTH_A-bit input: Write enable vector
// for port A input data port dina. 1 bit wide when word-wide writes are
// used. In byte-wide write configurations, each bit controls the
// writing one byte of dina to address addra. For example, to
// synchronously write only bits [15-8] of dina when WRITE_DATA_WIDTH_A
// is 32, wea would be 4'b0010.
.web(1'b0) // WRITE_DATA_WIDTH_B/BYTE_WRITE_WIDTH_B-bit input: Write enable vector
// for port B input data port dinb. 1 bit wide when word-wide writes are
// used. In byte-wide write configurations, each bit controls the
// writing one byte of dinb to address addrb. For example, to
// synchronously write only bits [15-8] of dinb when WRITE_DATA_WIDTH_B
// is 32, web would be 4'b0010.
);
always_comb
m_req.padr <= {map_page,vm_adr_o[15:0]};
// End of xpm_memory_tdpram_inst instantiation
delay3 #(1) udly1 (.clk(m_clk_i), .ce(1'b1), .i(vm_cyc_o), .o(m_req.cyc));
`ifdef INTERNAL_SYNC_GEN
wire hsync_i, vsync_i, blank_i;
VGASyncGen usg1
(
.rst(rst_i),
.clk(vclk),
.eol(),
.eof(),
.hSync(hsync_o),
.vSync(vsync_o),
.hCtr(hctr_o),
.vCtr(vctr_o),
.blank(blank_o),
.vblank(vblank),
.vbl_int(),
.border(border_o),
.hTotal_i(hTotal),
.vTotal_i(vTotal),
.hSyncOn_i(hSyncOn),
.hSyncOff_i(hSyncOff),
.vSyncOn_i(vSyncOn),
.vSyncOff_i(vSyncOff),
.hBlankOn_i(hBlankOn),
.hBlankOff_i(hBlankOff),
.vBlankOn_i(vBlankOn),
.vBlankOff_i(vBlankOff),
.hBorderOn_i(hBorderOn),
.hBorderOff_i(hBorderOff),
.vBorderOn_i(vBorderOn),
.vBorderOff_i(vBorderOff)
);
assign hsync_i = hsync_o;
assign vsync_i = vsync_o;
assign blank_i = blank_o;
assign vblank_o = vblank;
`endif
edge_det edcs1
(
.rst(rst_i),
.clk(s_clk_i),
.ce(1'b1),
.i(cs_reg),
.pe(cs_edge),
.ne(),
.ee()
);
// Frame counter
//
VT163 #(6) ub1
(
.clk(vclk),
.clr_n(!rst_i),
.ent(pe_vsync),
.enp(1'b1),
.ld_n(1'b1),
.d(6'd0),
.q(fctr_o),
.rco()
);
always_ff @(posedge vclk)
if (rst_i)
irq <= LOW;
else begin
if (hctr_o==12'd02 && rastcmp==vctr_o)
irq <= HIGH;
else if (rst_irq|rst_irq2)
irq <= LOW;
end
always_comb
baseAddr = page ? bm_base_addr2 : bm_base_addr1;
// Color palette RAM for 8bpp modes
// 64x1024 A side, 32x2048 B side
// 3 cycle latency
fb_palram upal1 // Actually 1024x64
(
.clka(s_clk_i), // input wire clka
.ena(cs & adri[13]), // input wire ena
.wea({8{we}}&sel), // input wire [3 : 0] wea
.addra(adri[12:3]), // input wire [8 : 0] addra
.dina(dat), // input wire [31 : 0] dina
.douta(pal_wo), // output wire [31 : 0] douta
.clkb(vclk), // input wire clkb
.enb(1'b1), // input wire enb
.web(1'b0), // input wire [3 : 0] web
.addrb({pals,rgbo4[5:0]}), // input wire [8 : 0] addrb
.dinb(32'h0), // input wire [31 : 0] dinb
.doutb(pal_o) // output wire [31 : 0] doutb
);
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
always_ff @(posedge s_clk_i)
if (rst_i) begin
page <= 1'b0;
pals <= 4'h0;
hres <= 3'd1;
vres <= 3'd1;
windowWidth <= 12'd800;
windowHeight <= 12'd600;
onoff <= 1'b1;
color_depth <= BPP16;
color_depth2 <= BPP16;
greyscale <= 1'b0;
bm_base_addr1 <= BM_BASE_ADDR1;
bm_base_addr2 <= BM_BASE_ADDR2;
hrefdelay <= 16'hFF39;//16'd3964;//16'hFF99;//12'd103;
vrefdelay <= 16'hFFEA;//16'hFFF3;12'd13;
windowLeft <= 16'h0;
windowTop <= 16'h0;
windowWidth <= 16'd800;
windowHeight <= 16'd600;
bmpWidth <= 16'd800;
bmpHeight <= 16'd600;
map <= MAP;
pcmd <= 2'b00;
rstcmd1 <= 1'b0;
rst_irq <= 1'b0;
rastcmp <= 12'hFFF;
oob_color <= 32'h00003C00;
irq_msgadr <= IRQ_MSGADR;
irq_msgdat <= IRQ_MSGDAT;
end
else begin
color_depth2 <= color_depth;
rstcmd1 <= rstcmd;
rst_irq <= 1'b0;
if (rstcmd & ~rstcmd1)
pcmd <= 2'b00;
if (cs_edge) begin
if (we) begin
casez(adri[13:3])
REG_CTRL:
begin
if (sel[0]) onoff <= dat[0];
if (sel[1]) begin
color_depth <= color_depth_t'(dat[9:8]);
greyscale <= dat[12];
end
if (sel[2]) begin
hres <= dat[18:16];
vres <= dat[22:20];
end
if (sel[3]) begin
page <= dat[24];
pals <= dat[28:25];
end
if (|sel[7:6]) map <= dat[59:48];
end
REG_REFDELAY:
begin
if (|sel[1:0]) hrefdelay <= dat[15:0];
if (|sel[3:2]) vrefdelay <= dat[31:16];
end
REG_PAGE1ADDR: bm_base_addr1 <= dat;
REG_PAGE2ADDR: bm_base_addr2 <= dat;
REG_PXYZ:
begin
if (|sel[1:0]) px <= dat[15:0];
if (|sel[3:2]) py <= dat[31:16];
if (|sel[ 4]) pz <= dat[39:32];
end
REG_PCOLCMD:
begin
if (sel[0]) pcmd <= dat[1:0];
if (sel[1]) raster_op <= dat[11:8];
if (|sel[7:2]) color <= dat[63:16];
end
REG_RASTCMP:
begin
if (sel[0]) rastcmp[7:0] <= dat[7:0];
if (sel[1]) rastcmp[11:8] <= dat[11:8];
if (sel[7]) rst_irq <= dat[63];
end
REG_BMPSIZE:
begin
if (|sel[1:0]) bmpWidth <= dat[15:0];
if (|sel[5:4]) bmpHeight <= dat[47:32];
end
REG_OOB_COLOR:
begin
if (|sel[3:0]) oob_color[31:0] <= dat[31:0];
end
REG_WINDOW:
begin
if (|sel[1:0]) windowWidth <= dat[11:0];
if (|sel[3:2]) windowHeight <= dat[27:16];
if (|sel[5:4]) windowLeft <= dat[47:32];
if (|sel[7:6]) windowTop <= dat[63:48];
end
REG_IRQ_MSGADR:
begin
if (sel[0]) irq_msgadr <= dat[7:0];
if (sel[1]) irq_msgadr <= dat[15:8];
if (sel[2]) irq_msgadr <= dat[23:16];
if (sel[3]) irq_msgadr <= dat[31:24];
if (sel[4]) irq_msgadr <= dat[39:32];
if (sel[5]) irq_msgadr <= dat[47:40];
if (sel[6]) irq_msgadr <= dat[55:48];
if (sel[7]) irq_msgadr <= dat[63:56];
end
REG_IRQ_MSGDAT:
begin
if (sel[0]) irq_msgdat <= dat[7:0];
if (sel[1]) irq_msgdat <= dat[15:8];
if (sel[2]) irq_msgdat <= dat[23:16];
if (sel[3]) irq_msgdat <= dat[31:24];
if (sel[4]) irq_msgdat <= dat[39:32];
if (sel[5]) irq_msgdat <= dat[47:40];
if (sel[6]) irq_msgdat <= dat[55:48];
if (sel[7]) irq_msgdat <= dat[63:56];
end
`ifdef INTERNAL_SYNC_GEN
REG_TOTAL:
begin
if (!sgLock) begin
if (|sel[1:0]) hTotal <= dat[11:0];
if (|sel[3:2]) vTotal <= dat[27:16];
end
if (|sel[7:4]) begin
if (dat[63:32]==32'hA1234567)
sgLock <= 1'b0;
else if (dat[63:32]==32'h7654321A)
sgLock <= 1'b1;
end
end
REG_SYNC_ONOFF:
if (!sgLock) begin
if (|sel[1:0]) hSyncOff <= dat[11:0];
if (|sel[3:2]) hSyncOn <= dat[27:16];
if (|sel[5:4]) vSyncOff <= dat[43:32];
if (|sel[7:6]) vSyncOn <= dat[59:48];
end
REG_BLANK_ONOFF:
if (!sgLock) begin
if (|sel[1:0]) hBlankOff <= dat[11:0];
if (|sel[3:2]) hBlankOn <= dat[27:16];
if (|sel[5:4]) vBlankOff <= dat[43:32];
if (|sel[7:6]) vBlankOn <= dat[59:48];
end
REG_BORDER_ONOFF:
begin
if (|sel[1:0]) hBorderOff <= dat[11:0];
if (|sel[3:2]) hBorderOn <= dat[27:16];
if (|sel[5:4]) vBorderOff <= dat[43:32];
if (|sel[7:6]) vBorderOn <= dat[59:48];
end
`endif
default: ;
endcase
end
end
if (cs_reg) begin
if (BUSWID==64)
casez(adri[13:3])
REG_CTRL:
begin
s_dat_o[0] <= onoff;
s_dat_o[11:8] <= color_depth2;
s_dat_o[12] <= greyscale;
s_dat_o[18:16] <= hres;
s_dat_o[22:20] <= vres;
s_dat_o[24] <= page;
s_dat_o[28:25] <= pals;
s_dat_o[47:32] <= bmpWidth;
s_dat_o[59:48] <= map;
end
REG_REFDELAY: s_dat_o <= {32'h0,vrefdelay,hrefdelay};
REG_PAGE1ADDR: s_dat_o <= bm_base_addr1;
REG_PAGE2ADDR: s_dat_o <= bm_base_addr2;
REG_PXYZ: s_dat_o <= {20'h0,pz,py,px};
REG_PCOLCMD: s_dat_o <= {color_o,12'd0,raster_op,14'd0,pcmd};
REG_OOB_COLOR: s_dat_o <= {32'h0,oob_color};
REG_WINDOW: s_dat_o <= {windowTop,windowLeft,4'h0,windowHeight,4'h0,windowWidth};
REG_IRQ_MSGADR: s_dat_o <= irq_msgadr;
REG_IRQ_MSGDAT: s_dat_o <= irq_msgdat;
11'b1?_????_????_?: s_dat_o <= pal_wo;
default: s_dat_o <= 'd0;
endcase
else
casez(adri[13:2])
{REG_CTRL,1'b0}:
begin
s_dat_o[0] <= onoff;
s_dat_o[11:8] <= color_depth2;
s_dat_o[12] <= greyscale;
s_dat_o[18:16] <= hres;
s_dat_o[22:20] <= vres;
s_dat_o[24] <= page;
s_dat_o[28:25] <= pals;
end
{REG_CTRL,1'b1}:
begin
s_dat_o[15: 0] <= bmpWidth;
s_dat_o[27:16] <= map;
end
{REG_REFDELAY,1'b0}: s_dat_o <= {vrefdelay,hrefdelay};
{REG_PAGE1ADDR,1'b0}: s_dat_o <= bm_base_addr1;
{REG_PAGE2ADDR,1'b0}: s_dat_o <= bm_base_addr2;
{REG_PXYZ,1'b0}: s_dat_o <= {py,px};
{REG_PXYZ,1'b1}: s_dat_o <= {16'h0,pz};
{REG_PCOLCMD,1'b0}: s_dat_o <= {12'd0,raster_op,14'd0,pcmd};
{REG_PCOLCMD,1'b1}: s_dat_o <= color_o;
{REG_OOB_COLOR,1'b0}: s_dat_o <= oob_color;
{REG_WINDOW,1'b0}: s_dat_o <= {4'h0,windowHeight,4'h0,windowWidth};
{REG_WINDOW,1'b1}: s_dat_o <= {windowTop,windowLeft};
{REG_IRQ_MSGADR,1'b0}: s_dat_o <= irq_msgadr[31:0];
{REG_IRQ_MSGADR,1'b1}: s_dat_o <= irq_msgadr[63:32];
{REG_IRQ_MSGDAT,1'b0}: s_dat_o <= irq_msgdat[31:0];
{REG_IRQ_MSGDAT,1'b1}: s_dat_o <= irq_msgdat[63:32];
12'b1?_????_????_?0: s_dat_o <= pal_wo;
default: s_dat_o <= 'd0;
endcase
end
else if (cs_map)
s_dat_o <= {40'h0,map_out};
else if (cs_config)
s_dat_o <= cfg_out;
else
s_dat_o <= 'h0;
end
//`ifdef USE_CLOCK_GATE
//BUFHCE ucb1
//(
// .I(dot_clk_i),
// .CE(onoff),
// .O(vclk)
//);
//`else
assign vclk = dot_clk_i;
//`endif
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Horizontal and Vertical timing reference counters
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
reg lef; // load even fifo
reg lof; // load odd fifo
edge_det edh1
(
.rst(rst_i),
.clk(vclk),
.ce(1'b1),
.i(hsync_i),
.pe(pe_hsync),
.ne(),
.ee()
);
edge_det edh2
(
.rst(rst_i),
.clk(m_clk_i),
.ce(1'b1),
.i(hsync_i),
.pe(pe_hsync2),
.ne(),
.ee()
);
edge_det edv1
(
.rst(rst_i),
.clk(vclk),
.ce(1'b1),
.i(vsync_i),
.pe(pe_vsync),
.ne(),
.ee()
);
wire [2:0] hc;
wire [2:0] vc;
pixelCounter upxc1
(
.rst(pe_hsync),
.clk(vclk),
.ce(1'b1),
.res(hres),
.d(hrefdelay),
.q(pixelCol),
.mq(hc)
);
pixelCounter upxr1
(
.rst(pe_vsync),
.clk(vclk),
.ce(pe_hsync),
.res(vres),
.d(vrefdelay),
.q(pixelRow),
.mq(vc)
);
always_comb
lef = ~pixelRow[0];
always_comb
lof = pixelRow[0];
always_ff @(posedge vclk)
xal_o <= vc != 4'd1;
// Bits per pixel minus one.
reg [4:0] bpp;
always_comb
case(color_depth2)
BPP8: bpp = 7;
BPP16: bpp = 15;
BPP24: bpp = 23;
BPP32: bpp = 31;
default: bpp = 15;
endcase
reg [5:0] shifts;
always_comb
case(MDW)
128:
case(color_depth2)
BPP8: shifts = 6'd16;
BPP16: shifts = 6'd8;
BPP24: shifts = 6'd5;
BPP32: shifts = 6'd4;
default: shifts = 6'd8;
endcase
64:
case(color_depth2)
BPP8: shifts = 6'd8;
BPP16: shifts = 6'd4;
BPP24: shifts = 6'd2;
BPP32: shifts = 6'd2;
default: shifts = 6'd4;
endcase
32:
case(color_depth2)
BPP8: shifts = 6'd4;
BPP16: shifts = 6'd2;
BPP24: shifts = 6'd1;
BPP32: shifts = 6'd1;
default: shifts = 6'd2;
endcase
default:
begin
$display("rfFramBuffer_fta64: Bad master bus width");
$finish;
end
endcase
wire vFetch = !vblank;//pixelRow < windowHeight;
reg fifo_rrst;
reg fifo_wrst;
always_comb fifo_rrst = pixelCol==16'hFFFF;
always_comb fifo_wrst = pe_hsync2 && vc==4'd1;
wire[31:0] grAddr,xyAddr;
reg [11:0] fetchCol;
localparam CMS = MDW==128 ? 6 : MDW==64 ? 5 : 4;
wire [CMS:0] mb,me,ce;
reg [MDW-1:0] mem_strip;
wire [MDW-1:0] mem_strip_o;
// Compute fetch address
gfx_calc_address #(.SW(MDW)) u1
(
.clk(m_clk_i),
.base_address_i(baseAddr),
.color_depth_i(color_depth2),
.bmp_width_i(bmpWidth),
.x_coord_i(windowLeft),
.y_coord_i(windowTop + pixelRow),
.address_o(grAddr),
.mb_o(),
.me_o(),
.ce_o()
);
// Compute address for get/set pixel
gfx_calc_address #(.SW(MDW)) u2
(
.clk(m_clk_i),
.base_address_i(baseAddr),
.color_depth_i(color_depth2),
.bmp_width_i(bmpWidth),
.x_coord_i(px),
.y_coord_i(py),
.address_o(xyAddr),
.mb_o(mb),
.me_o(me),
.ce_o(ce)
);
always_ff @(posedge m_clk_i)
if (pe_hsync2)
mapctr <= 12'hFFE;
else begin
if (mapctr == map)
mapctr <= 12'd0;
else
mapctr <= mapctr + 12'd1;
end
wire memreq = mapctr==12'd0 && vc==4'd1;
// The following bypasses loading the fifo when all the pixels from a scanline
// are buffered in the fifo and the pixel row doesn't change. Since the fifo
// pointers are reset at the beginning of a scanline, the fifo can be used like
// a cache.
wire blankEdge;
edge_det ed2(.rst(rst_i), .clk(m_clk_i), .ce(1'b1), .i(blank_i), .pe(blankEdge), .ne(), .ee() );
reg do_loads;
reg load_fifo = 1'b0;
always_ff @(posedge m_clk_i)
//load_fifo <= fifo_cnt < 10'd1000 && vFetch && onoff && xonoff && !m_cyc_o && do_loads;
load_fifo <= /*fifo_cnt < 8'd224 &&*/ vFetch && onoff && xonoff_i && (fetchCol < windowWidth) && memreq;
// The following table indicates the number of pixel that will fit into the
// video fifo.
reg [11:0] hCmp;
always_comb
case(color_depth2)
BPP8: hCmp = 12'd2048;
BPP16: hCmp = 12'd1024;
BPP24: hCmp = 12'd640;
BPP32: hCmp = 12'd512;
default: hCmp = 12'd1024;
endcase
/*
always @(posedge m_clk_i)
// if windowWidth > hCmp we always load because the fifo isn't large enough to act as a cache.
if (!(windowWidth < hCmp))
do_loads <= 1'b1;
// otherwise load the fifo only when the row changes to conserve memory bandwidth
else if (vc==4'd1)//pixelRow != opixelRow)
do_loads <= 1'b1;
else if (blankEdge)
do_loads <= 1'b0;
*/
always_comb m_req.bte = fta_bus_pkg::LINEAR;
always_comb m_req.cti = fta_bus_pkg::CLASSIC;
always_comb m_req.blen = 6'd63;
always_comb m_req.stb = m_req.cyc;
always_comb m_req.cid = 'd0;
always_comb m_req.tid = 15'h1234;
reg [31:0] adr;
typedef enum logic [3:0] {
IDLE = 4'd0,
LOADCOLOR = 4'd2,
LOADSTRIP = 4'd3,
STORESTRIP = 4'd4,
ACKSTRIP = 4'd5,
WAITLOAD = 4'd6,
WAITRST = 4'd7,
ICOLOR1 = 4'd8,
ICOLOR2 = 4'd9,
ICOLOR3 = 4'd10,
ICOLOR4 = 4'd11,
LOAD_OOB = 4'd12
} state_t;
state_t state;
reg [127:0] icolor1;
function rastop;
input [3:0] op;
input a;
input b;
case(op)
OPBLACK: rastop = 1'b0;
OPCOPY: rastop = b;
OPINV: rastop = ~a;
OPAND: rastop = a & b;
OPOR: rastop = a | b;
OPXOR: rastop = a ^ b;
OPANDN: rastop = a & ~b;
OPNAND: rastop = ~(a & b);
OPNOR: rastop = ~(a | b);
OPXNOR: rastop = ~(a ^ b);
OPORN: rastop = a | ~b;
OPWHITE: rastop = 1'b1;
default: rastop = 1'b0;
endcase
endfunction
always_ff @(posedge m_clk_i)
if (fifo_wrst)
adr <= grAddr;
else begin
if ((state==WAITLOAD && (m_resp.ack|tocnt[10])) || state==LOAD_OOB)
case(MDW)
32: adr <= adr + 32'd4;
64: adr <= adr + 32'd8;
default: adr <= adr + 32'd16;
endcase
end
always_ff @(posedge m_clk_i)
if (fifo_wrst)
fetchCol <= 12'd0;
else begin
if ((state==WAITLOAD && (m_resp.ack|tocnt[10])) || state==LOAD_OOB)
fetchCol <= fetchCol + shifts;
end
// Check for legal (positive) coordinates
// Illegal coordinates result in a red display
wire [15:0] xcol = fetchCol;
reg legal_x, legal_y;
always_comb legal_x = ~&xcol[15:12] && xcol < bmpWidth;
always_comb legal_y = ~&pixelRow[15:12] && pixelRow < bmpHeight;
reg modd;
always_comb
case(MDW)
32: modd <= m_req.padr[5:2]==4'hF;
64: modd <= m_req.padr[5:3]==3'h7;
default: modd <= m_req.padr[5:4]==2'h3;
endcase
always_ff @(posedge m_clk_i)
if (rst_i)
tocnt <= 'd0;
else begin
if (m_req.cyc)
tocnt <= tocnt + 2'd1;
else
tocnt <= 'd0;
end
always_ff @(posedge m_clk_i, posedge rst_i)
if (rst_i) begin
vm_cyc_o <= LOW;
m_req.we <= LOW;
m_req.sel <= 'd0;
vm_adr_o <= 'd0;
rstcmd <= 1'b0;
state <= IDLE;
rst_irq2 <= 1'b0;
end
else begin
wb_nack();
rst_irq2 <= 1'b0;
if (fifo_wrst)
m_fst_o <= HIGH;
case(state)
WAITRST:
if (pcmd==2'b00 && ~m_resp.ack) begin
rstcmd <= 1'b0;
state <= IDLE;
end
else
rstcmd <= 1'b1;
IDLE:
if (load_fifo && !(legal_x && legal_y))
state <= LOAD_OOB;
else if (load_fifo & ~m_resp.ack) begin
vm_cyc_o <= HIGH;
vm_adr_o <= adr;
m_req.sel <= 16'hFFFF;
state <= WAITLOAD;
end
// Send an IRQ message if needed.
else if (irq & ~m_resp.ack & MSIX) begin
vm_cyc_o <= HIGH;
vm_adr_o <= irq_msgadr;
m_req.we <= HIGH;
m_req.sel <= irq_msgadr[3] ? 16'hFF00 : 16'h00FF;
m_req.data1 <= {2{irq_msgdat}};
rst_irq2 <= 1'b1;
end
// The adr_o[5:3]==3'b111 causes the controller to wait until all eight
// 64 bit strips from the memory controller have been processed. Otherwise
// there would be cache thrashing in the memory controller and the memory
// bandwidth available would be greatly reduced. However fetches are also
// allowed when loads are not active or all strips for the current scan-
// line have been fetched.
else if (pcmd!=2'b00 && (modd || !(vFetch && onoff && xonoff_i && fetchCol < windowWidth))) begin
vm_cyc_o <= HIGH;
vm_adr_o <= xyAddr;
m_req.sel <= 16'hFFFF;
state <= LOADSTRIP;
end
LOADSTRIP:
if (m_resp.ack|tocnt[10]) begin
wb_nack();
mem_strip <= m_resp.dat;
icolor1 <= {96'b0,color} << mb;
rstcmd <= 1'b1;
if (pcmd==2'b01)
state <= ICOLOR3;
else if (pcmd==2'b10)
state <= ICOLOR2;
else begin
state <= WAITRST;
end
end
// Registered inline mem2color
ICOLOR3:
begin
color_o <= mem_strip >> mb;
state <= ICOLOR4;
end
ICOLOR4:
begin
for (n = 0; n < 32; n = n + 1)
color_o[n] <= (n <= bpp) ? color_o[n] : 1'b0;
state <= pcmd == 2'b0 ? (~m_resp.ack ? IDLE : WAITRST) : WAITRST;
if (pcmd==2'b00)
rstcmd <= 1'b0;
end
// Registered inline color2mem
ICOLOR2:
begin
for (n = 0; n < MDW; n = n + 1)
m_req.data1[n] <= (n >= mb && n <= me)
? ((n <= ce) ? rastop(raster_op, mem_strip[n], icolor1[n]) : icolor1[n])
: mem_strip[n];
state <= STORESTRIP;
end
STORESTRIP:
if (~m_resp.ack) begin
vm_cyc_o <= HIGH;
m_req.we <= HIGH;
m_req.sel <= 16'hFFFF;
vm_adr_o <= xyAddr;
state <= ACKSTRIP;
end
ACKSTRIP:
if (m_resp.ack|tocnt[10]) begin
wb_nack();
state <= pcmd == 2'b0 ? IDLE : WAITRST;
if (pcmd==2'b00)
rstcmd <= 1'b0;
end
WAITLOAD:
if (m_resp.ack|tocnt[10]) begin
wb_nack();
state <= IDLE;
end
LOAD_OOB:
state <= IDLE;
default: state <= IDLE;
endcase
end
task wb_nack;
begin
m_fst_o <= LOW;
vm_cyc_o <= LOW;
m_req.we <= LOW;
m_req.sel <= 16'h0000;
end
endtask
reg [31:0] rgbo2,rgbo4;
reg [MDW-1:0] rgbo3;
always_ff @(posedge vclk)
case(color_depth2)
BPP8: rgbo4 <= {24'h0,rgbo3[7:0]}; // feeds into palette
BPP16: rgbo4 <= {rgbo3[15:10],5'b0,rgbo3[9:5],5'b0,rgbo3[4:0],5'b0};
BPP24: rgbo4 <= {rgbo3[23:16],2'b0,rgbo3[15:8],2'b0,rgbo3[7:0],2'b0};
BPP32: rgbo4 <= {rgbo3[29:20],rgbo3[19:10],rgbo3[9:0]};
default: rgbo4 <= {rgbo3[15:10],5'b0,rgbo3[9:5],5'b0,rgbo3[4:0],5'b0};
endcase
reg rd_fifo,rd_fifo1,rd_fifo2;
/*
reg de;
always_ff @(posedge vclk)
if (rd_fifo1)
de <= ~blank_i;
*/
always_ff @(posedge vclk)
if (onoff && xonoff_i && !blank_i) begin
if (color_depth2==BPP8) begin
if (!greyscale)
zrgb <= pal_o;
else
zrgb <= {pal_o[31:30],pal_o[9:0],pal_o[9:0],pal_o[9:0]};
end
else
zrgb <= rgbo4;
end
else
zrgb <= 32'h00000000;
always_ff @(posedge vclk)
if (zrgb==trans_color)
rgb_o <= rgb_i;
else
rgb_o <= zrgb;
// Before the hrefdelay expires, pixelCol will be negative, which is greater
// than windowWidth as the value is unsigned. That means that fifo reading is
// active only during the display area 0 to windowWidth.
reg shift1;
always_comb shift1 = hc==hres;
reg [5:0] shift_cnt;
always_ff @(posedge vclk)
if (pe_hsync)
shift_cnt <= 5'd1;
else begin
if (shift1) begin
if (pixelCol==16'hFFFF)
shift_cnt <= shifts;
else if (!pixelCol[15]) begin
shift_cnt <= shift_cnt + 5'd1;
if (shift_cnt==shifts)
shift_cnt <= 5'd1;
end
else
shift_cnt <= 5'd1;
end
end
reg next_strip;
always_comb next_strip = (shift_cnt==shifts) && (hc==hres);
wire vrd;
reg shift,shift2;
always_ff @(posedge vclk) shift2 <= shift1;
always_ff @(posedge vclk) shift <= shift2;
always_ff @(posedge vclk) rd_fifo2 <= next_strip;
always_ff @(posedge vclk) rd_fifo <= rd_fifo2;
always_ff @(posedge vclk)
if (rd_fifo)
rgbo3 <= lef ? rgbo1o : rgbo1e;
else if (shift) begin
case(color_depth2)
BPP8: rgbo3 <= {8'h0,rgbo3[MDW-1:8]};
BPP16: rgbo3 <= {16'h0,rgbo3[MDW-1:16]};
BPP24: rgbo3 <= {24'h0,rgbo3[MDW-1:24]};
BPP32: rgbo3 <= {32'h0,rgbo3[MDW-1:32]};
default: rgbo3 <= {16'h0,rgbo3[MDW-1:16]};
endcase
end
/* Debugging
wire [127:0] dat;
assign dat[11:0] = pixelRow[0] ? 12'hEA4 : 12'h000;
assign dat[23:12] = pixelRow[1] ? 12'hEA4 : 12'h000;
assign dat[35:24] = pixelRow[2] ? 12'hEA4 : 12'h000;
assign dat[47:36] = pixelRow[3] ? 12'hEA4 : 12'h000;
assign dat[59:48] = pixelRow[4] ? 12'hEA4 : 12'h000;
assign dat[71:60] = pixelRow[5] ? 12'hEA4 : 12'h000;
assign dat[83:72] = pixelRow[6] ? 12'hEA4 : 12'h000;
assign dat[95:84] = pixelRow[7] ? 12'hEA4 : 12'h000;
assign dat[107:96] = pixelRow[8] ? 12'hEA4 : 12'h000;
assign dat[119:108] = pixelRow[9] ? 12'hEA4 : 12'h000;
*/
reg [MDW-1:0] oob_dat;
always_comb
case(color_depth2)
BPP8: oob_dat <= {MDW/8{oob_color[7:0]}};
BPP16: oob_dat <= {MDW/16{oob_color[15:0]}};
BPP24: oob_dat <= {MDW/24{oob_color[23:0]}};
BPP32: oob_dat <= {MDW/32{oob_color[31:0]}};
default: oob_dat <= {MDW/16{oob_color[15:0]}};
endcase
rfVideoFifo #(MDW) uf1
(
.wrst(fifo_wrst),
.wclk(m_clk_i),
.wr((((m_resp.ack|tocnt[10]) && state==WAITLOAD) || state==LOAD_OOB) && lef),
.di((state==LOAD_OOB) ? oob_dat : m_resp.dat),
.rrst(fifo_rrst),
.rclk(vclk),
.rd(rd_fifo & lof),
.dout(rgbo1e),
.cnt()
);
rfVideoFifo #(MDW) uf2
(
.wrst(fifo_wrst),
.wclk(m_clk_i),
.wr((((m_resp.ack|tocnt[10]) && state==WAITLOAD) || state==LOAD_OOB) && lof),
.di((state==LOAD_OOB) ? oob_dat : m_resp.dat),
.rrst(fifo_rrst),
.rclk(vclk),
.rd(rd_fifo & lef),
.dout(rgbo1o),
.cnt()
);
endmodule
// Horizontal or vertical pixel counter.
// If the count is negative, step by one keeps the meaning of the refdelay value
// consistent between different resolutions.
module pixelCounter(rst, clk, ce, res, d, q, mq);
input rst;
input clk;
input ce;
input [2:0] res;
input [15:0] d;
output reg [15:0] q;
output reg [2:0] mq; // modulo count
always_ff @(posedge clk)
if (rst) begin
mq <= 3'd1;
q <= d;
end
else begin
if (ce) begin
if (&q[15:12]) begin
q <= q + 16'd1;
mq <= 3'd1;
end
else if (mq==res) begin
mq <= 3'd1;
q <= q + 16'd1;
end
else
mq <= mq + 3'd1;
end
end
endmodule
Go to most recent revision | Compare with Previous | Blame | View Log